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Abstract: Data augmentation is a promising technique in improving exploration and convergence
speed in deep reinforcement learning methodologies. In this work, we propose a data augmentation
framework based on generative models for creating completely novel states and increasing diversity.
For this purpose, a diffusion model is used to generate artificial states (learning the distribution of
original, collected states), while an additional model is trained to predict the action executed between
two consecutive states. These models are combined to create synthetic data for cases of high and
low immediate rewards, which are encountered less frequently during the agent’s interaction with
the environment. During the training process, the synthetic samples are mixed with the actually
observed data in order to speed up agent learning. The proposed methodology is tested on the Atari
2600 framework, producing realistic and diverse synthetic data which improve training in most cases.
Specifically, the agent is evaluated on three heterogeneous games, achieving a reward increase of
up to 31%, although the results indicate performance variance among the different environments.
The augmentation models are independent of the learning process and can be integrated to different
algorithms, as well as different environments, with slight adaptations.

Keywords: data augmentation; deep reinforcement learning; generative models; Arcade Learning
Environment; diffusion models

1. Introduction

Recently, deep learning models have demonstrated a significant performance boost
when data augmentation techniques are employed, mainly in tasks where it is difficult to
obtain high-quality actual data [1,2]. In such cases, synthetic samples are produced out of
real ones, in order to tackle dataset imbalance and enlarge small datasets, as the efficiency
of deep learning algorithms is highly dependent on the data used during training. Under
this scope, several methodologies have been proposed, mainly in the computer vision
domain, ranging from geometric transformations [3,4] to more advanced deep learning
approaches [5–7]. Tasks such as image classification and object detection are shown to
benefit significantly from data augmentation, highlighting the importance of diverse, high-
quality training samples.

In the context of reinforcement learning (RL), the generalization and convergence
speed of the agent is one of the main subjects of research, as many approaches struggle
to efficiently utilize the available data [8,9], especially in environments with sparse re-
wards. Thus, several attempts have been made to augment the datasets used for the agent’s
training, achieving quite satisfactory results and indicating that data augmentation is a
promising direction in RL [10–13]. Specifically, in RL environments with visual observa-
tions (where the state representation is an image), most existing approaches aim to augment
data by processing the original images with traditional techniques such as cropping, flip-
ping, etc. [12,14]. Although, these methods increase the model’s generalization ability, they
lack diversity in the sense that the new data arise directly from existing samples.
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In this work, a framework is presented for creating novel synthetic samples by learning
the distribution of the original images (states) rather than processing existing observations.
The main idea is to generate observations as similar as possible to states the agent could
encounter in the future and use them at earlier stages of the agent’s training. Depending
on the examined environment, states that provide useful information (basically in terms
of obtained rewards) may be observed after many timesteps, delaying the progress of
training. On top of that, the learned policy determines, to a high degree, the observed
states. This interdependence between the policy and the training samples may lead to local
optima and prevent the agent from improving its policy. In order to overcome this issue,
a generative process is proposed to enhance the diversity of the samples and speed up
training by mixing synthetic and real samples in each batch.

Another environment-specific issue that may arise in RL tasks is the imbalance of
the training set (with respect to the rewards of the collected samples). Similarly to class-
imbalanced supervised tasks, in environments with sparse rewards the agent is trained
on a dataset in which the majority of samples are neutral (i.e., the immediate reward is
zero), making the distinction among the qualities of different actions quite complex. Under
this scope, generative augmentation can be used to enrich the original set (consisting of
samples collected by the agent during its interaction with the environment) with samples
of a specific category (e.g., states with high reward). Based on the technique introduced
in this paper, samples can be produced independently of the type of observed data and
augment the dataset towards a certain direction, limiting the effect of class imbalance in
the agent’s performance.

The proposed methodology is split into two phases. At first, a diffusion model is
used to generate images that represent the current state and the next state of a sample.
Subsequently, a custom model for predicting the agent’s action that was executed in
between is employed, while the reward is determined based on the data that were used for
the training of the diffusion model. The produced samples are stored in a separate buffer
and are used along with real ones during the agent’s training to indirectly boost exploration
by representing completely novel (or less frequently encountered) states. The presented
augmentation models are designed for the Atari 2600 environment, though they can be
straightforwardly adapted to any environment with slight modifications. Specifically, in
this work, training with augmented data is performed on three different games provided
by the aforementioned environment. The proposed methodology improved (or performed
similarly to) the classic model-free deep Q-network (DQN) agent (which is used as the base
learning algorithm), as well as augmentation-based variants, in terms of the maximum
obtained reward and the timesteps needed to achieve it.

The contributions of this work can be summed up as follows;

1. Firstly, data augmentation is performed on visual state representations of RL environ-
ments in a generative manner, leading to an increase in the samples’ diversity.

2. Additionally, data synthesis can be guided by selecting the training data of the diffu-
sion models in order to generate novel, yet realistic, samples of a specific behavior
(in our context, samples of either high or low immediate reward). In this respect,
the training data may be more balanced, as, in most cases, state–action pairs with an
immediate impact on the obtained reward are quite rare.

3. Finally, the proposed augmentation technique is independent of the core learn-
ing algorithm, making it applicable to different agent architectures, as well as
training environments.

The remainder of this paper is structured as follows: Section 2 briefly presents funda-
mental definitions and terminology on agent-based systems and diffusion models, while
Section 3 overviews related approaches in both data augmentation and dynamics mod-
els for reinforcement learning environments. In Section 4, the proposed augmentation
methodology is described along with details on the implementation of the models and the
agent’s training process. The experimental setup is presented in Section 5 and the obtained
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results are analyzed in Section 6. Finally, Section 7 concludes and discusses potential future
extensions of the proposed framework.

2. Background
2.1. RL as Markov Decision Process

A reinforcement learning task where, considering a sequence of discrete timesteps t,
an intelligent agent makes decisions based on its interaction with the environment can be
described as a Markov decision process (MDP) [15]. Formally, an MDP is represented by a
tuple ⟨S, A, P, R, γ⟩ where:

• S is the state space, i.e., the set of all possible states;
• A is the action space, i.e., the set of all possible actions;
• Pa(s, s′) : S× A× S→ [0, 1] is the transition function which determines the probability

that given a current state s and an action a, the next state will be s′. Thus, Pa(s, s′) =
Pr(st+1 = s′|st = s, at = a);

• Ra(s) : S× A → R is the reward function which determines the immediate reward
obtained by executing action a while being in state s;

• γ ∈ [0, 1] is a discount factor used to calculate the expected return E[Gt].

In this context, the Markov property is satisfied, as the transition from a state s to a state s′,
as well as the immediate reward r after executing an action a, depend solely on this action
and the state s (Equation (1)). In this respect, the state representation at each timestep t
describes completely the properties of the state and it is independent of the path that led
to it.

P(st+1 = s′, rt+1 = r|st, at) = P(st+1 = s′, rt+1 = r|st, at, rt, st−1, . . . , r1, s0, a0) (1)

At each discrete timestep t, the agent selects an action at ∈ A, under a state representa-
tion st ∈ S, and transits to a new state st+1 ∈ S according to the environment’s dynamics,
as determined by P. During this transition, the agent obtains an immediate reward rt ∈ R
based on the properties of the specific environment. The goal of the agent is to determine a
policy for selecting actions that maximizes the expected return value (Equation (2)):

Qπ(st, at) = Eπ [Gt|st, at] = Eπ [
∞

∑
k=0

γkrt+k+1|st, at] (2)

for each state–action pair, that is a policy π such that Qπ(s, a) ≥ Qπ′(s, a) for all s ∈ S,
a ∈ A and any possible policy π′. The role of γ is to progressively reduce the effect of
future rewards, yet take them into account in the expected reward. Normally γ takes values
in the range [0, 1]; in the extreme case of γ = 0 only the immediate reward is considered,
while in the case of γ = 1 all rewards are treated equally, independently of when they
are obtained. The optimal Q-value function Q∗(s, a) = max

π
Qπ(s, a) satisfies the Bellman

optimality equation (Equation (3)):

Q∗(st, at) = E[rt+1 + γ max
at+1

Q∗(st+1, at+1)] (3)

which indicates that, given the Q-value is known for all actions in the next state, the best
action in the current state is the one maximizing the quantity r + γQ∗(s′, a′). In order to
determine the Q-value function in a real reinforcement learning task, a neural network
is used as a function approximator such that Q(s, a; θ) ≈ Q∗(s, a), where s ∈ S is a state
representation of the environment, a ∈ A is a possible action, and θ are the weights of the
model. The loss function (which is derived from the Bellman optimality equation) used for
the neural network’s training in the deep Q-learning algorithm is as follows (Equation 4)):

L(θ) = E(s,a,r,s′)∼U(D)[(r + γ max
a′

Q(s′, a′; θ)−Q(s, a; θ−))2] (4)
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The samples (s, a, r, s′) are drawn uniformly from a replay buffer D, where they are stored
during the agent’s interaction with the environment. As shown in Equation (4), the target
depends on the network being trained. In order to make the training process more stable,
the target network’s weights θ− are held fixed for a specific number of iterations and are
updated periodically.

2.2. Denoising Diffusion Probabilistic Models

Denoising diffusion probabilistic models (DDPMs) [16] are a class of generative models
used to produce novel samples by learning the distribution of the training data points.
The main idea is to diffuse the data by progressively adding noise to the samples and
then train the model to correctly predict the probability density function of the noise in
order to remove it and reproduce the original data. The training process is split in two
phases. In the forward diffusion process, noise sampled from a Gaussian distribution is
iteratively diffused into the data until they are completely mapped to another, more simple
distribution. Subsequently, a neural network models the reverse process that makes it
capable of generating new samples, by starting from random noisy data and progressively
mapping them to the distribution of the training data.

Formally, let q(x) be the underlying distribution of the training data, and x0 a sample
drawn from it (x0 ∼ q(x)). The distribution of the forward diffusion process is determined
in Equations (5) and (6). During the forward process, at each step t, a new latent variable
xt is produced by adding Gaussian noise of variance βt to the previous variable xt−1, as
described in Equation (7), where ϵ ∼ N (0, I).

q(xt|xt−1) = N (xt; µt = xt−1
√

1− βt, Σt = βtI) (5)

q(x1:T) = q(x1|x0)q(x2|x1)...q(xT |xT−1) =
T

∏
t=1

q(xt|xt−1) (6)

xt =
√

1− βtxt−1 +
√

βtϵt (7)

By setting at = 1− βt, āt = ∏t
i=1 ai and using the reparameterization trick [17], xt can be

sampled directly, without calculating all intermediate latent variables. Given the starting
data point x0, the distribution q takes the form of Equation (8) and the latent variable after
T timesteps can be calculated as shown in Equation (9).

q(xt|x0) = N (xt; µt = x0
√

āt, Σt = (1− āt)I) (8)

xt =
√

ātx0 +
√

1− ātϵ0 (9)

For the reverse process, a neural network is employed to model the distribution
p (i.e., the parameters of another Gaussian) that progressively removes the noise and
maps any random sample to the original distribution. The goal is to minimize the dis-
tance (Kullback–Leibler divergence) between pθ and the forward posterior distribution
q(xt−1|xt, x0), which is defined in Equation (10).

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI) (10)

where µ̃t(xt, x0) =
√

āt−1βt
1−āt

x0 +
√

at(1−āt−1)
1−āt

xt and β̃t =
1−āt−1

1−āt
βt. By setting the variance to a

fixed constant βt and using the reparameterizaton trick to express x0 in terms of xt, µ̃t is
defined as follows:

µ̃t(xt) =
1√
x̄t
(xt −

βt√
1− āt

)ϵt (11)

As a result, the neural network only needs to predict the noise ϵθ(xt ,t) at each timestep in
order to minimize the following loss function:

L(θ) = Et,x0,ϵ[∥ϵ− ϵθ(xt, t)∥2] (12)
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Concerning the model’s architecture, while the only restriction is that the input and
output of the network are of the same dimensionality, the most common approach is a
U-net-based neural network with residual and self-attention blocks. The model takes as
input the timestep and the respective sample (image) and predicts the noise at that point.
This way, after training is completed, any random noise sample (of the same dimensionality
as the original data) can be fed to the model and be mapped step by step to the distribution
of the training data, resulting in a completely new sample.

3. Related Work

Several approaches have been presented considering data augmentation for improving
the performance of RL agents. In [12], a set of image augmentation techniques (such as
translation, rotation, etc.) were applied to batches of original images before using them
for the model’s training. This technique was incorporated into the SAC [18] and PPO [19]
algorithms, achieving state-of-the-art performance on the DeepMind Control Suite [20] and
the OpenAI Gym benchmarks. A similar course has been followed in [21], showing that the
aforementioned methodology can be effectively combined with asynchronous actor–critic
algorithms as well [22]. Another relevant methodology is encountered in [14]. Here, the
authors apply simple cropping combined with padding in order to randomly shift the
original images in the first place and then average the Q function over a set of similar
samples (the ones produced by transformations of the same original image) to reduce
variance. The pipeline is integrated to the SAC algorithm and tested on the DeepMind and
Atari benchmarks, outperforming state-of-the-art results in several cases. An improved,
more time-efficient, version of the algorithm is presented in [13].

In the aforementioned approaches, the augmentation techniques are manually selected
and extended experimentation is required in order to determine the optimal method per
case. That is because the effect of each method depends on the features of the original image,
meaning an image transformation may lead to different behavior in different environments.
In order to overcome this issue, several attempts to automate the process of selecting
the most suitable augmentation technique have been made. In [7], a search algorithm
employing an RNN-based controller is used for automatic augmentation, improving the
model’s accuracy on image classification tasks. In the same context, the authors in [23]
present a differentiable selection policy that significantly reduces the computational cost of
the search and makes the algorithm more time efficient. In the field of RL, the concept of
automating augmentation selection has been investigated mainly through meta-learning
and upper confidence bounds (UCB) [24]. These strategies have been used as selection
formulas for specifying the most appropriate approach on RL tasks, achieving notable
performance [25,26].

In [27], the agent is trained on artificial trajectories imagined through a learned latent
space of the world model, while an extension of the idea is proposed in [11]. The concept
of mapping the representation to a latent space is also presented in [28]. In this case, the
authors decouple the augmentation process from policy learning in order to benefit from
data augmentation without introducing further complexity. A methodology for generating
adversarial trajectories, which are combined with the original ones during training, to
enhance generalization is described in [8]. In a similar manner, augmented and non-
augmented data are used concurrently to jointly optimize the state–action value function
based on a redefined objective [29]. Emphasizing the pixels’ correlation with the objective,
the authors in [30] propose a methodology for transforming only the less-task-relevant
pixels, in order to prevent training instability, and in [31] they employ an auxiliary image
reconstruction loss to improve sample efficiency.

Concerning the concept of predicting actions based on sequences of states (image
frames), this has been studied under the more general scope of computer vision, as well as in
reinforcement learning tasks, specifically through inverse dynamics models. In [32,33], the
authors proposed a two-stream CNN-based network to predict the transformation between
two images, as a methodology for feature learning. In a similar manner, a methodology
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has been presented in [34] for predicting the action between states on an RL task, where
the respective representations are images. The network is split into two different streams
(each for one of the two input images), which are then concatenated and followed by dense
layers in order to predict the final output. Each stream contains several convolutional
filters which follow the AlexNet [35] architecture and the weights are shared along the
two streams. The inverse dynamics model is then used and evaluated in conjunction with
imitation learning for a specific robotics tasks, achieving promising performance.

The idea of using an action-predicting model was further developed in [36], where
an inverse dynamics model was combined with a forward model, in order to produce an
intrinsic reward (independent of the reward provided by the environment) for boosting
exploration. Both the current and next states were firstly passed through an encoder for
extracting important features in a latent space before predicting the action. A similar
architecture is proposed in [37], where ResNet-based encoders are followed by LSTMs for
predicting sequences of consecutive actions, conditioned directly on carrying out a specific
task. In [38], a neural network is also employed for predicting actions, aiming to transfer
knowledge from simulation environments to real-world problems, in cases where this is
feasible in the physical properties of the real environment. The OpenAI’s MuJoCo [39]
environments were used as a testbed, where each state was represented by a feature vector.
Thus, in this case, the model’s input is a concatenation of several vectors of states and
actions (in order to represent a sequence of states and actions) and the model’s architecture
consists of several fully connected layers before the output layer.

The implementation of forward models producing the next state directly, given the
current state and an action, has also been examined. In this context, different architectures
have been proposed, based on convolutional neural networks as well, since the input
state representation is an image. A dynamics predictive model with deterministic and
stochastic transition components is introduced in [40] for online planning in the latent
space for model-based RL agents. A dynamics model is also trained in [41] to predict future
states at first and then a backwards model is used to generate pairs of previous states–
actions, forming a trajectory cycle. Inspired by the concept of curiosity, a forward model
is designed in [42] aiming to assist the image encoder in capturing temporal information
while providing intrinsic rewards to boost the agent’s exploration. A reverse approach
concerning the dynamics models and data augmentation is presented in [43]. In this case,
data augmentation is used in the initial phase of the algorithm to generate views of the
collected states, which are then used to train a consistent dynamics model in a latent space.

The authors in [44] designed an encoder–decoder-based architecture for predicting
the next state in Atari Gym environments. Two different variants were tested for the
intermediate transformation layer, a feedforward one and a recurrent one, producing
realistic state frames. An extended variant of the previous architecture is proposed in [45]
for predicting the immediate reward obtained. In this case, a second branch, consisting
of a fully connected layer, is connected to the transformation layer output and takes as
input the combined high-level information. The final model is able to jointly predict the
next frame and the reward very efficiently. A different approach, consisting of several
blocks (each containing convolutional layers) and a newly proposed block for pooling, is
presented in [46]. Here, the authors propose transforming the action in a one-hot encoded
form of stacked frames in the same dimensions as the state frame before feeding it to the
network, rather than processing it in a feedforward layer. The dynamics model is then used
to produce sequences of future states in a repetitive way.

4. Augmentation Framework

In the RL concept, the training samples are (s, a, r, s′) tuples, consisting of a state s,
an action a, an immediate reward r, and the resulting state s′. The process of generating
synthetic data is split into two phases; initially, a DDPM is used to generate the state s of
each sample, as well as the next state s′, by learning the distribution of states already seen
by the agent. Then, each newly generated pair (s, s′) is fed to a model trained to predict
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the action that led to a specific transition between the two states. In this way, triplets of
the form (s, a, s′) are produced by the two networks. An alternative would be to generate
only the state s using the DDPM and then train the second network to generate the next
state s′, given the current state and an action. However, we opted for the former solution,
as it is more efficient to produce both states using the DDPM and then predict the action
in between (as a classification task) rather than generating a state and training a model to
predict the next state (image) based on a specific action.

Concerning the reward, two different datasets have been created, based on states and
actions that led to either positive or negative rewards. In most environments, the majority
of actions do not provide immediate rewards, slowing down the training process. Under
this realm, the synthetic samples can provide more diversity in cases where the immediate
reward is non-zero and improve the model’s generalization capability. For this purpose,
two separate DDPMs have been trained (in the respective datasets) to produce states with
high and low rewards. In this way, for each synthetic sample, the reward is known a priori
depending on the model used to generate the states, and a complete sample of the form
(s, a, r, s′) is produced.

The proposed framework is tested on the Atari Learning Environment (ALE) [47]. The
preprocessing steps described in [48] are executed before training the models (Section 5.1),
similarly to most recent works in the literature. Thus, each state is represented by four
grayscale consecutive frames, which are cropped to 84× 84 pixels. Consecutive states are
overlapped, as the first three frames of a state are essentially the last three frames of the
previous one (e.g., if s1 = [ f 0, f 1, f 2, f 3], then the next state would be s2 = [ f 1, f 2, f 3, f 4]).
An example of real states obtained from the ALE boxing environment is depicted in Figure 1.

Figure 1. Preprocessed frames of the ALE boxing game.

4.1. Generative Model

For the generation of the states s and s′ of each sample, a denoising diffusion proba-
bilistic model is trained on states collected from the ALE environment. The model follows
the original implementation presented in [16]. As mentioned above, each state in our case
consists of four grayscale images. As the three last frames of the initial state overlap with
the first three frames of the next state, once the initial state is created only the last frame of
the next state is needed and the rest of them can be directly obtained from the previous state.
In this respect, the input (and the output) of the network is an 84× 84 image with five chan-
nels, which are then used to represent the two states, as shown in Figure 1. In order to adapt
to the dimensions of the specific images, the network’s architecture is slightly modified and
consists of two encoder and two decoder blocks (not including the middle block), so that
the image is downsampled two times (up to the shape of 21× 21× no_convolution_filters),
in order to be feasible to reconstruct it to the original size.

As already discussed, two different DDPMs have been trained to produce samples
with high and low rewards. In the ALE environment used in this work, all rewards
are clipped to {−1, 0, 1} after the preprocessing steps. Two datasets, each consisting of
2000 samples (with immediate rewards of 1 and −1) obtained from the agent’s interaction
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with the environment are created and used for training the models. Initially, all images
are scaled to the [−1, 1] range. The networks are trained for 140 epochs with the Adam
optimizer and a learning rate of 2× 10−4.

4.2. Action-Predicting Model

For the action prediction, a CNN-based model with several residual connections is
employed. The input of the model is an 84× 84× 5 image representing two consecutive
states of a game from the Atari 2600 framework, as described above. Initially, the image is
passed through a convolutional layer, which is followed by a batch normalization layer
and the ReLU activation function. Three residual blocks are employed, each consisting
of two mini-blocks of a separable convolutional layer and a batch normalization layer.
After the second batch normalization, max pooling is performed. The original input is
also passed through a convolutional layer before being added to the residual block output.
Another separable convolutional layer followed by batch normalization, ReLU, global
average pooling, and dropout is used after the residual blocks. The final output layer
employs softmax activation, depending on the specified action space of the game. A
detailed description of the layers and hyperparameters of the network is provided in
Appendix A (Table A1).

The model is compiled with the Adam optimizer using a learning rate of 10−5 and
categorical cross-entropy loss. Concerning the training process, the model was trained
on a dataset consisting of 100,000 samples of the form ([state, next_state], action) for
each game, which were obtained from a random agent’s interaction with the correspond-
ing environment.

4.3. Data Generation

The process of generating complete synthetic samples of the form (s, a, r, s′) is depicted
in Figure 2. Two DDPMs are trained on samples of two consecutive game states in order
to produce a state s and the next state s′. The goal is to generate samples with either very
high or very low rewards since the original dataset created by the agent’s observations is
very imbalanced in the sense that the immediate reward in most cases is zero. The training
dataset for the first model consists of pairs (s, s′) with a high reward, while the second
one contains pairs with a low reward. As each model is trained on a specific type of data,
we can assume that the states generated by the first model correspond to high rewards
while the states generated by the second model correspond to low rewards. In this way, the
reward for each synthetic sample is considered as known by the time of its generation.

DDPM
Synthetic States

Real States (s, s')
with high reward

Training

DDPM

Real States (s, s')
with low reward

Training

Rewards
(high)

Rewards
(low)

Action predicting
model

Action
Predictions

Real
Actions

Real States
(s, s')

Training
Synthetic Data (s, a, r, s')

Figure 2. Synthetic data generation.
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Since the executed action is not taken into consideration during DDPM training, each
generated pair (s, s′) could be the result of a different action. In order to produce functional
samples that can be used to train the agent, a separate model has been employed for action
prediction given two consecutive states. Thus, for each pair (s, s′) of synthetic states, the
action is predicted by this model and the reward is immediately set to either 1 or −1
depending on the DDPM used for the generation, resulting in a complete training sample.
The described process is presented step by step in Algorithm 1.

Algorithm 1: Synthetic data generation

1 Function GenerateSyntheticData():
2 action_predictor_bu f f er, ddpm_bu f f er_high, ddpm_bu f f er_low← [], [], []

while action_predictor_bu f f er.size() < max_size do
3 a← agent.select_action(s)
4 s′, r ← env.execute(a)
5 action_predictor_bu f f er.append(s, a, r, s′)
6 if r > 0 then
7 ddpm_bu f f er_high.append(s, a, r, s′)

8 if r < 0 then
9 ddpm_bu f f er_low.append(s, a, r, s′)

10 s← s′

11 action_predictor.train()
12 ddpm_high.train()
13 ddpm_low.train()
14 {sh, s′h} ← ddpm_high.generate_states()
15 {sl , s′l} ← ddpm_low.generate_states()
16 {apred} ← action_predictor.predict({sh, s′h}, {sl , s′l})
17 synthetic_data.append({sh, apred, r, s′h})
18 synthetic_data.append({sl , apred, r, s′l})
19 return synthetic_data

Figure 3 shows samples generated with the methodology described above for the ALE
boxing environment. Specifically, frames h0– h4 are generated with the diffusion model
trained on states that lead to high rewards, while frames l0–l4 are produced by the second
DDPM and represent two consecutive states with a low immediate reward. The synthetic
images are then fed to the action-predicting model in order to be paired with the most
suitable action.

Figure 3. Synthetically generated samples for the ALE boxing game.

It is evident that the generated images are quite similar to the real ones in terms of
quality. The generative models successfully produce consecutive frames while maintaining
the more general features of the image. As depicted, the two models are able to generate
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meaningful states in the sense that the transition between two consecutive frames is smooth,
but also capture the most crucial patterns that lead to either positive or negative rewards.
In this manner, the produced states are functional and there is no risk of misguiding the
training procedure by augmenting the dataset with irrelevant images.

4.4. RL Training with Synthetic Data

In order to improve the agent’s training and speed up the learning process, the
synthetic data are mixed with real samples at the batch level. Specifically, the generated
data are stored in a separate buffer and then samples are drawn from both the real and the
synthetic buffer to ensure that every batch contains samples from both categories. In this
way, there is full control over the training process, as the exact percentage of each category
in every batch can be determined explicitly, as opposed to randomly selecting samples
from a shared buffer. Therefore, it is possible to further optimize training by selecting the
most suitable ratio, as discussed in Section 5.

Another important part of the proposed framework is the use of the action-predicting
model. It is clear that the model’s accuracy can greatly affect the overall performance
of the agent, since predicting incorrect actions on sequences of states will misguide the
agent’s network. As the task of predicting the action executed between two states can be
quite complex and depends on the training environment and the action space, synthetic
samples may be used, based on the confidence of the predicted actions. For this purpose, a
threshold is set for the probability produced by the model on the predicted action. Samples
containing predicted actions with a probability higher than the aforementioned confidence
threshold are stored in the synthetic data buffer, while the rest are discarded. In this way,
the number of incorrect generated samples is reduced and the quality of the training data
is improved.

The training process of the introduced agent, Deceiver, is depicted in Figure 4 and
explained in Algorithm 2. Note that both the confidence threshold and the weight (ratio)
of synthetic samples in the batch (synthetic weight (sw)) are treated as hyperparameters
of the system (lines 1, 6). As shown, the data generation process is independent of the
training algorithm, meaning it can be applied to different agent network architectures.
In the current work, the proposed methodology is embedded into the DQN algorithm,
combining synthetic samples with real observations obtained from the environments of
the games.

Synthetic Data (s, a, r, s')

Confidence
Threshold

Check

Remaining Synthetic
Data

Agent

Environment

Real Data

Mixed Batch

Training

Figure 4. Training on synthetic and real samples.
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Algorithm 2: Training on augmented data

1 Function PreprocessData(con f idence_thres):
2 for (si, ai, ri, s′i) in synthetic_bu f f er do
3 if prob(ai) < con f idence_thres then
4 synthetic_bu f f er.remove(si, ai, ri, s′i)

5 return synthetic_bu f f er

6 Function TrainAgent(sw):
7 real_samples = real_bu f f er.sample_batch(batch_size× (1− sw))
8 synthetic_samples = synthetic_bu f f er.sample_batch(batch_size× sw)
9 batch = concatenate([real_samples, synthetic_samples]).shu f f le()

10 agent.train_on_batch()

11 Function ActAndTrain():
12 PreprocessData()
13 while timesteps < termination_thres do
14 a← agent.select_action(s)
15 s′, r ← env.execute(a)
16 real_bu f f er.append(s, a, r, s′)
17 if timesteps%train_ f req = 0 then
18 TrainAgent()

5. Experiments
5.1. Setup and Hyperparameter Tuning

The proposed algorithm is implemented in the Python programming language. Specif-
ically, the TensorFlow [49] (v2.11) library is employed for the development and training of
the models and the Gym [50] environment is used for the RL interaction process. The data
augmentation and the agent’s training are treated as independent tasks and are then com-
bined to form the complete agent. The experiments are carried out on three heterogeneous
games of the Gym’s Atari 2600 environment:

• Boxing: The agent controls a boxer in a fighting ring and is rewarded for hitting its
opponent while a negative reward is obtained for getting hit. There are 18 possible
actions in this game.

• Pong: The classic pong game, where the agent controls a paddle and tries to deflect
the ball away from its own goal and send it into its opponents goal. Points are scored
accordingly every time the ball ends up in one of the goals. In this game, the action
space size is six.

• Riverraid: the agent controls a jet over a river, aiming to avoid or destroy enemy
objects. The action space size is 18. Only positive rewards are available in this game.

The states fed to the augmentation and agent networks are subjected to several pre-
processing steps. Initially, every image is downsampled to 84× 84 pixels and converted
to grayscale. Frame skipping is also performed in a way that only every fourth frame is
taken into account, as the difference between two actually consecutive frames is very slight.
Afterwards, four consecutive frames (that remained after skipping) are concatenated to
form a state representation, so that the required information concerning the motion of
objects is provided. Finally, all rewards are clipped to {−1, 0, 1}. An example state of each
game before and after applying the preprocessing steps is depicted in Figure 5.

Several values are tested for the confidence threshold of the predicted actions, as well
as the weight (percentage) of each data category on the mixed batches. Regarding the
agent network, it consists of three convolutional layers, followed by a dense layer before
the output layer. The replay buffer’s size is 100,000 samples, while the synthetic buffer
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contains 20,000 generated samples. Complete implementation details of the agent model
are provided in Table A2.

(a) (b) (c) (d) (e) (f)

Figure 5. Game states before and after preprocessing. (a) Boxing original. (b) Boxing preprocessed.
(c) Pong original. (d) Pong preprocessed. (e) Riverraid original. (f) Riverraid preprocessed.

Figure 6 depicts the accuracy of the action-predicting model depending on the confi-
dence threshold for each game. As the selecting condition becomes more strict, the number
of samples that can be used for the agent’s training is reduced. This explains, to a certain
degree, the decrease in accuracy after a certain threshold (which is expected to increase
along with the confidence value), since in this case it is based on a small number of samples.
In this respect, there is a tradeoff between the accuracy of the model and the amount of
samples to be rejected, as a very small number of synthetic samples may cause overfitting
and negatively affect the agent’s training. Therefore, for each game several confidence
thresholds have been tested for the respective action-predicting model in order to determine
the best configuration.

0.0 0.2 0.4 0.6 0.8
confidence threshold

0.0

0.1

0.2
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0.4
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Pong
Riverraid

Figure 6. Action-predicting model’s accuracy for different confidence thresholds.

Figure 7 shows the average reward achieved by different configurations of the pro-
posed agent on the Boxing game. Specifically, Figure 7a summarizes the performance of
the agent for several confidence thresholds and synthetic data weight equal to 0.1, while
Figure 7b outlines the respective results for synthetic data weight value 0.2. The reward is
calculated every 50,000 timesteps and is averaged over 50 runs.

As expected, the confidence value greatly affects the agent’s learning. Higher thresh-
olds lead to a higher accuracy of the prediction model and a lower percentage of incorrect
synthetic samples. In this respect, the performance increase along with the increase in the
confidence, as highlighted in Figure 7a, seems quite natural. Nevertheless, as discussed
above, very high thresholds exclude a large number of samples from the synthetic buffer
that could result in the network being trained on the same samples with high frequency.
This phenomenon is depicted in Figure 7b, where the synthetic weight is larger, meaning
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that more synthetic samples are introduced in every batch. In this case, a very high con-
fidence value (specifically the 0.95 configuration) leads to slower learning, while lower
values (0.9 and 0.85) result in the agent’s top performance in terms of total reward and
timesteps needed to achieve it. Thus, the importance of a balance between the action
predictor’s accuracy and the size of the synthetic buffer is highlighted.
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(b)
Figure 7. Deceiver average reward (Boxing). (a) Synthetic data weight of 0.1. (b) Synthetic data
weight of 0.2.

In the case of Pong (Figure 8), the effect of the confidence parameter is more clear. For
very low values (up to 0.6), the agent learns very slowly or, in some cases, the agent is not
even able to learn, due to the low quality of the generated samples, as a high percentage of
the synthetic samples contain incorrect actions (in the sense that the actions determined by
the action predictor cannot actually produce the transitions between the states generated
by the DDPMs). Concerning the action-predicting model, even though it achieves higher
accuracy in this game overall (probably because of the smaller action space size), after a
certain confidence value, it cuts off the whole synthetic dataset (e.g., there is no synthetic
sample for which the model’s probability on the selected action is higher than 0.9, thus
setting the confidence threshold to 0.9 would result in an empty synthetic buffer). Therefore,
the highest confidence value taken into account for the Pong experiments is 0.8; for higher
values there are no remaining synthetic samples (as shown in Figure 6).
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(b)
Figure 8. Deceiver average reward (Pong). (a) Synthetic data weight of 0.1. (b) Synthetic data
weight of 0.2.

Similar conclusions can be drawn from the performance of the agent on the third
game, Riverraid (Figure 9). In this case as well, it is not capable of reaching high scores
in the setups with low confidence values. The highest threshold allowed by the model’s
accuracy for this game is 0.85. Regarding the synthetic data weight, the agents with the
higher value (0.2) seem to benefit from the larger percentage of synthetic samples per batch
and perform better than the others, in contrast with the previous environments, where the
most effective agents were the ones in the low synthetic weight (0.1) setup.



Appl. Sci. 2024, 14, 330 14 of 22

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
timesteps ×106

0

2

4

6

8

10

12

14

16

re
w

ar
d

confidence
0.0
0.5
0.7
0.75
0.8
0.85

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
timesteps ×106

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

re
w

ar
d

confidence
0.0
0.5
0.7
0.75
0.8
0.85

(b)
Figure 9. Deceiver average reward (Riverraid). (a) Synthetic data weight of 0.1. (b) Synthetic data
weight of 0.2.

5.2. Results

For the evaluation of the proposed algorithm, the best configuration of Deceiver for
each game (as determined in Section 5.1) is presented, along with several agents boosted
with traditional augmentation techniques. The following techniques are implemented and
tested on the three Atari environments showcased above:

• Rotation: Applies random rotation to the image either clockwise or anti-clockwise. In
this work each state image is rotated randomly in the [−7◦, 7◦] degree range.

• Translation: The image is randomly shifted horizontally and vertically by w and h
pixels, respectively. In our case both values are in the range [−0.1× img_height, 0.1×
img_height]. Pixels outside the image area are filled by mirroring the pixels on the
edge.

• Cutout: A small box area of the image is randomly selected and all its pixels are set to
0. The width and height of the box are in the [10, 20] pixel range.

• Flip: The image is randomly flipped vertically, horizontally, or over both axes.

An example of a game state before and after applying each augmentation technique
on the Riveraid game is presented in Figure 10.

(a) (b) (c) (d) (e)

Figure 10. Game states before and after augmentation. (a) No augmentation. (b) Rotation. (c) Transla-
tion. (d) Cutout. (e) Flip.

Figures 11–13 depict the performance of the agents on the Boxing, Pong, and River-
raid environments, respectively. The tested agents are the original DQN agent without
augmentation, the four agents enhanced with random rotation, translation, cutout, and flip,
as described above, and the proposed agent, Deceiver (the best hyperparameters’ values
are set as determined in Figures 7–9). As shown, the presented agent outperforms the rest
of the agents or achieves comparable results in all cases. Specifically, in the Boxing game
(Figure 11) Deceiver achieves a significantly higher reward than the original algorithm, as
well as all four augmentation variants. Especially in the second half of the training process
(after 1M timesteps), the agent seems to benefit in a high degree from the combination of
synthetic and real samples and demonstrates a faster learning curve.

Pong is a simpler game, which is confirmed by the fact that three agents achieve
the highest possible reward (the rewards shown in Figure 12 are averaged over 50 runs,
meaning an amount of variance is introduced, but after a certain point the scores are
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consistently very close to 21, which is the maximum achievable score for this game). Under
this scope, the performance comparison can be in terms of timesteps needed to reach this
score. In this respect, Deceiver first achieves a reward close to the maximum about 100k
timesteps earlier and seems to have a faster learning curve, in general, during training (up
to the point that all agents finally reach the high score).
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Figure 11. Augmentation methods’ average reward (Boxing).
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Figure 12. Augmentation methods’ average reward (Pong).

In the third game (Figure 13), the proposed algorithm does not seem to have a clear
advantage over the other techniques; however, it exhibits similar performance to the best
tested variants. This is most favorably assigned to the accuracy of the action predictor
which is lower in the case of Riverraid. As highlighted in Figures 7–9 the confidence value
and consequently the action predictor’s accuracy has a great impact on the learning process.
Additionally, a peculiarity of this game that probably led to this behavior is that there are no
negative rewards. As a result, in this case only one diffusion model was used for generation
of synthetic states with high reward, which could explain the lack of a significant increase
in Deceiver’s performance on this environment.

Table 1 presents the overall results (max reward, timesteps, action predictor’s accuracy)
of the implemented agents per game. The best variant of Deceiver for each synthetic weight
setup (0.1 and 0.2) is exhibited. As already discussed, the best confidence value is not the
same for the different synthetic weight in all cases, which explains the difference in the
accuracies of the action predictors in the first and third environments.
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Figure 13. Augmentation methods’ average reward (Riverraid).

Table 1. Different augmentation-based agents’ performance (the highest reward per game is indicated
in bold).

Max Reward Timesteps Predictor’s Accuracy Game

No augmentation 46.02 1.9 M -

Boxing

Rotation 44.38 1.55 M -
Translation 43.46 1.55 M -
Cutout 41.92 1.95 M -
Flip 17.94 1.75 M -
Deceiver (0.1) 60.42 2 M 0.438
Deceiver (0.2) 56.38 1.8 M 0.452

No augmentation 20.78 1.15 M -

Pong

Rotation −20.60 1.5 M -
Translation −20.60 1.2 M -
Cutout 20.80 1.5 M -
Flip 3.04 1.9 M -
Deceiver (0.1) 20.83 1.1 M 0.644
Deceiver (0.2) 20.72 1.7 M 0.644

No augmentation 18.88 1.95 M -

Riverraid

Rotation 19.60 1.85 M -
Translation 9.82 1.25 M -
Cutout 16.80 1.7 M -
Flip 11.90 1.5 M -
Deceiver (0.1) 16.28 1.65 M 0.257
Deceiver (0.2) 19.14 1.95 M 0.368

6. Discussion

The key observations of the aforementioned process are reviewed in this section. At
first, the experimental results confirm the instability of traditional image augmentation
methods in the RL domain. Specifically, random rotation, translation, cutout, and vertical
and horizontal flips have been implemented to augment states in the tested environment,
similarly to [7,12,21]. Random convolutions, color jitter, brightness contrast, and cutout-
color have also been examined in the literature but are not applicable to the current
environment, since the input images are grayscale (Section 5.1). As outlined in [25,26],
different augmentation types may have a different effect, depending on the environment,
and thus, lack generalization. In the examined Atari games, it is evident that their effect on
the agent’s learning depends highly on the characteristics of the environment. Rotation
and cutout are in general the most beneficial ones; however, none of them outperforms
the rest in all cases. For example, in the Pong game (Figure 12), the random rotation and
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translation methods have a negative impact on the performance of the agent, as it is unable
to achieve positive scores, which is quite reasonable since the paddles (and occasionally
the ball), which are the most informative parts of the state, are on the edges of the image,
meaning that after applying translations or rotations they could be cropped out of the
image. On the contrary, in the Riverraid game (Figure 13), where the most informative part
lies in the center of the image, rotation seems to provide more diversity and improve the
agent’s performance.

Concerning the proposed augmentation methodology, it is among the first to consider
generative augmentation directly on the original state space, to the best of our knowledge.
Recent works have emphasized projecting the states to a latent space and then processing
and augmenting the latter representations [11,28,43]. The presented algorithm is com-
pletely independent of embedding transformation models. Instead, a generative model is
trained on raw observations collected by the agent and produces states which can be used
directly for training. In this way, it overcomes the aforementioned generalization issues of
traditional augmentation techniques without the need to encode the initial information.
The boost in the learning process is not the same across all tested environments in our case
as well; however, the agent demonstrates a quite consistent performance. In the worst case,
it is comparable to the no-augmentation algorithm (Table 1), indicating that it is not highly
affected by the attributes of the images. This behavior can be ascribed to the generational
process followed, which leads to completely novel samples, instead of transforming real
observations (which may result in pivotal information loss).

A major aspect of our framework is the model predicting the action between consecu-
tive states. Most approaches in the literature employ forward dynamics models, which are
able to predict the next state given the current state and a specific action [40–42]. Although
the reported results are very promising, our attempts to implement a forward model on
the tested games showed that it is a very demanding task as, especially in cases of large
action space sizes, it is difficult to predict the exact state changes caused by a specific action.
Instead, an inverse dynamics model is used that, given two states, predicts the executed
action, as in [34,36,37]. The inverse problem proved to be significantly more simple, yet
suitable for the synthetic data generation, since both current and next states are produced
by DDPMs.

Regarding the parameters used, the confidence threshold of the action-predicting
model and the ratio of real and synthetic samples in every batch proved to be the most
important ones. Notably, an increase in the confidence threshold (and consequently the
accuracy of the model) led to a significant improvement in the agent’s training, even
though the accuracy of the model is lower than 50% in two out of the three examined
cases. This result highlights the benefits of the proposed augmentation as, despite the fact
that many samples do not contain the correct action, the overall effect in performance is
favorable. This probably indicates that the actions predicted in such cases are similar to
the ones that would actually lead to the specified state transition, and thus, training is not
misguided. Nevertheless, the contribution of the action prediction network to the agent is
crucial and its improvement could be a key factor for the proposed framework. Concerning
the samples ratio per batch, the experiments summed up that a percentage of 10–20% of
synthetic samples is optimal for adding diversity and speeding up training, whereas a
further increase starts to affect it in a negative way.

7. Conclusions

In this work, a framework for data augmentation in the context of reinforcement
learning is proposed. Particularly, two denoising diffusion probabilistic models and a
custom CNN-based inverse dynamics model have been employed for synthetic sample
generation: the first one is used to learn the distribution of real states and produce new
realistic states, while the latter is responsible for predicting the action taken between two
consecutive states. Depending on the dataset used for training, each DDPM produces pairs
of current and next states of either high or low reward. As a result, complete samples
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consisting of a state, an action, the obtained reward, and the next state are generated. In
this way, the samples are more diverse, as both the initial and the resulting states are
generated from scratch, rather than being variants of existing real samples as in traditional
augmentation techniques. The proposed augmentation method is integrated into the DQN
algorithm in order to enhance the agent with synthetic samples and boost its performance.
The augmentation models are trained and used to generate fake samples, which are stored
in a separate buffer. Then, during each training step, samples from both the real and the
fake buffer are selected to form batches in order to train the agent.

The enhanced agent, Deceiver, is implemented and tested on the ALE environment,
outperforming traditional augmentation-boosted agents in terms of accumulated reward
as well as timesteps of interaction with the environment, in most cases. Most of these
techniques seem to be highly affected by the environment they are applied to and the
properties of the state space. The proposed methodology, even though it does not boost the
agent in all cases, is more stable and performs at least comparably to the no-augmentation
algorithm on the tested games. Specifically, the maximum reward was reached by Deceiver
200k timesteps earlier and was increased up to 31.2% in the best case. The carried out
experiments also highlighted the effect of the action-predicting model on the learning
curve of the agent and consequently its overall performance. The quality of the synthetic
samples depends on the action prediction and greatly affects the agent’s behavior. In this
respect, a promising direction for further improving the current technique would be to
experiment with different architectures of the inverse dynamics model in order to achieve
higher accuracy and indirectly boost the agent.

On top of the aforementioned idea, we aim to integrate the augmentation framework
into different types of RL algorithms and test the performance of the enhanced agents
in terms of convergence speed, as well as the exploration of novel states, in order to
confirm their applicability to different setups. Additionally, the augmentation models
could be trained in parallel with the agent, in order to investigate the interaction between
them while interacting with the environment and a possible improvement on either the
augmentation models or the agent, directly. Expanding upon this concept, as the agent
collects new samples, a periodical retraining may also improve the precision and diversity
of the augmentation networks.
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LSTM Long short-term memory
ALE Atari Learning Environment
ReLU Rectified linear unit

Appendix A

Appendix A.1

The hyperparameters and the overall architecture schema of the model used for
predicting the actions between synthetic states generated by the DDPMs is presented in
Table A1 below.

Table A1. Action predictor model architecture.

Layer Output Size Input
Layer

Kernel/Pool
Size Activation

#1 Input 84× 84× 5 - - -
#2 Conv2D 42× 42× 128 #1 3× 3 -
#3 BatchNorm 42× 42× 128 #2 - ReLU

ResBlock 1

#4 SepConv2D 42× 42× 256 #3 3× 3 -
#5 BatchNorm 42× 42× 256 #4 - ReLU
#6 SepConv2D 42× 42× 256 #5 3× 3 -
#7 BatchNorm 42× 42× 256 #6 - -
#8 MaxPooling2D 21× 21× 256 #7 3× 3 -
#9 Conv2D 21× 21× 256 #3 1× 1 -
#10 Add 21× 21× 256 #8, #9 1× 1 ReLU

ResBlock 2

#11 SepConv2D 21× 21× 512 #10 3× 3 -
#12 BatchNorm 21× 21× 512 #11 - ReLU
#13 SepConv2D 21× 21× 512 #12 3× 3 -
#14 BatchNorm 21× 21× 512 #13 - -
#15 MaxPooling2D 11× 11× 512 #14 3× 3 -
#16 Conv2D 11× 11× 512 #10 1× 1 -
#17 Add 11× 11× 512 #10, #16 1× 1 ReLU

ResBlock 3

#18 SepConv2D 11× 11× 728 #17 3× 3 -
#19 BatchNorm 11× 11× 728 #18 - ReLU
#20 SepConv2D 11× 11× 728 #19 3× 3 -
#21 BatchNorm 11× 11× 728 #20 - -
#22 MaxPooling2D 6× 6× 728 #21 3× 3 -
#23 Conv2D 6× 6× 728 #22 1× 1 -
#24 Add 6× 6× 728 #17, #22 1× 1 ReLU

#25 SepConv2D 6× 6× 1024 #24 3× 3 -
#26 BatchNorm 6× 6× 1024 #25 - ReLU
#27 GlobalAvPooling2D 1024 #26 - -
#28 Dropout (0.5) 1024 #27 - -
#29 Dense actions #28 - Softmax

Appendix A.2

The architecture of the main agent’s network used in the experiments is described in
Table A2. The hyperparameters employed concerning the training process of the model are
presented in Table A3.
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Table A2. Agent model architecture.

Layer Output Size Input Layer Kernel/Pool Size Activation

#1 Input 84× 84× 4 - - -
#2 Conv2D 20× 20× 32 #1 8× 8 ReLU
#3 Conv2D 9× 9× 64 #2 4× 4 ReLU
#4 Conv2D 7× 7× 64 #3 3× 3 ReLU
#5 Dense 512 #4 - ReLU
#6 Dense actions #5 - Softmax

Table A3. Agent model hyperparameters.

Hyperparameter Value

Learning rate 1 × 10−4

Optimizer Adam
Batch size 32
Discount factor (γ) 0.99
Real buffer size 100,000
Synthetic buffer size 20,000
epsilonmax 1.0
epsilonmin 0.1
Initial random timesteps 30,000
Evaluation episodes 50
Train frequency (timesteps) 4
Update target network frequency (timesteps) 5000
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