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Abstract: In the additive manufacturing laser powder bed fusion (L-PBF) process, the optimization
of the print process parameters and the development of conduction zones in the laser power (P) and
scanning speed (V) parameter spaces are critical to meeting production quality, productivity, and
volume goals. In this paper, we propose the use of a machine learning approach during the process
parameter development to predict the melt pool dimensions as a function of the P/V combination.
This approach turns out to be useful in speeding up the identification of the printability map of the
material and defining the conduction zone during the development phase. Moreover, a machine
learning method allows for an accurate investigation of the most promising configurations in the
P-V space, facilitating the optimization and identification of the P-V set with the highest productivity.
This approach is validated by an experimental campaign carried out on samples of Inconel 718,
and the effects of some additional parameters, such as the layer thickness (in the range of 30 to
90 microns) and the preheating temperature of the building platform, are evaluated. More specifically,
the experimental data have been used to train supervised machine learning models for regression
using the KNIME Analytics Platform (version 4.7.7). An AutoML (node for regression) tool is used to
identify the most appropriate model based on the evaluation of R2 and MAE scores. The gradient
boosted tree model also performs best compared to Rosenthal’s analytical model.

Keywords: laser powder bed fusion; melt pool morphology; powder bed fusion–laser melting;
PBF–LM; Inconel 718; design for additive manufacturing; single track; nickel-based alloy;
machine learning

1. Introduction

The introduction of direct metal laser sintering (DMLS) technology by EOS in 1994
was a consistent technological development that progressively evolved into laser powder
bed fusion (L-PBF) technology referred to as powder bed fusion–laser melting (PBF-LM)
in ISO/ASTM 52900 [1] as OEMs successfully adapted their selective laser sintering (SLS)
technologies to take advantage of the high-power fiber lasers available in the late 1990s.

The ability to melt metal alloys of interest and create custom parts with a high degree
of geometrical complexity that otherwise could not have been produced through traditional
means led to many technological advancements. A host of technological advancements
were made, not just in printing technology and the associated hardware but also in the
equally important ecosystem of software tools supporting the manufacturing of viable
industry-grade parts [2–4].

For the early commercial adopters of the L-PBF technology, primarily in medical
applications, the focus was predominantly on printing novel organic designs of relatively
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smaller sizes and a simpler geometric complexity [5]. Success was achieved in most cases
in an iterative experimental manner. The applications were selected such that the increased
performance and the benefits of the new additively made product over traditional variants
would justify the higher development and production costs.

Subsequently, within the last five to ten years, technological advances in metal print-
ing have facilitated the exponential growth of L-PBF AM in numerous sectors, including
medicine, aviation, energy, oil and gas, and energy. Industry has made substantial invest-
ments in the development of industrial applications where the printed components were
progressively more complex, large, and required to adhere to more rigorous quality and
functionality standards. Following that, it became imperative to incorporate design for
additive manufacturing (DfAM) principles into the product design process flow. This was
further supported by the utilization of multiphysics simulation software for performance
validation and shape and topology optimization, in order to attain product differentiation
at a competitive price.

In addition to the main design and printer loading considerations, the cost structure
on the production side is significantly influenced by the ability to perform a high-resolution
optimization of the print process parameter set for a specific type of machine and material.
This optimization process aims to identify a set of optimal parameters that maximize the
production throughput while delivering a product with a microstructure, density, defect
density, and surface finish that require minimal post-processing.

To achieve that, primarily, a robust and stable production process needs to be es-
tablished by determining the limits of the L-BPF printability zone in the laser power
(P)–scanning speed (V) variable space for a particular material and printer type [3,6–10].
This is necessary to avoid the formation of defects, primarily a lack of fusion and
balling [11–13] and keyhole phenomena associated with higher energy inputs [14,15]. Once
the limits have been determined without conservatively over-restricting the usable print-
ability region, the second step is developing a set of optimal parameters within this space.
This identification of the printability region [16] turns out to be a process that requires a
traditionally laborious, time-consuming, and expensive experimental effort. Furthermore,
time and cost constraints frequently limit the resolution with which the variable space is
surveyed [17,18] (i.e., the number of specimens used to evaluate the quality of the print-
ing process). Notwithstanding this, the growing demand for L-PBF to enhance process
productivity has resulted in a heightened frequency of parameter developments and the
determination of the printability region of the material. In order to alter the laser beam
profile or spot size, many techniques have been implemented, including ring mode or laser
defocusing [19–22], as well as the utilization of a multilaser machine [23].

Thus, a model that allows for the prediction of melt pool morphology and formation
is significantly needed to speed up and optimize the identification of the printability map
in the L-PBF process. The possibility of obtaining preliminary information on melt pool
shapes as a function of the laser power and scanning speed combination without any
printing could significantly reduce the number of physical experiments, thereby strongly
reducing the number of microstructural analyses on the material, which are expensive and
time-consuming. Moreover, the model could improve the choice of the best laser power
and scanning speed, allowing for a very accurate investigation of the P-V space.

This work aims to use a supervised machine learning (ML) model for regression to
identify the best model able to synthesize the experimental data on melt pool shapes. The
application of ML models to predict several phenomena in the L-PBF process has been
carried out by researchers in the last few years [23–25]. For instance, in previous literary
studies, the employment of ML models allowed for the evaluation of the keyhole and
balling phenomena [13], which are difficult to predict using the conventional FEA methods.
Moreover, the surrogate model [26] enabled the prediction of melt pool geometry as a
function of the laser power, scanning speed, and beam spot size for a 316 L stainless steel
case study. In addition, some researchers [27–32] have implemented machine learning-
based monitoring of the L-PBF process based on in situ laser single-track videos, allowing
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for the possibility to predict track widths with a high accuracy (R2 of 0.93). In [30], the
goodness of several machine learning models were evaluated to predict the melt pool
behavior on a wide range of metal alloys and consider different AM processes, such
as L-PBF and direct energy deposition (DED). Despite all these promising results, the
effect of some parameters, such as the layer thickness and building platform temperature,
needs to be investigated more deeply. The layer thickness turns out to be one of the most
important parameters to be increased to enhance the low productivity of this process [2,33]
and to optimize the application of some printing strategies such as hull bulk [34]. Thus,
the possibility to predict the melt pool formation and consequently the identification of
the printability window (usually narrower as the thickness increases [35]) for high layer
thickness parameters through an ML model results fundamentally in matching the major
L-PBF needs. In addition, the effect of the preheating temperature is a very important
parameter to be analyzed and investigated [36–39]. This parameter’s results are necessary
to reduce part distortions and material residual stresses, minimize heat loss, and improve
adhesion between the first deposed powder layers between the part and the building
platform for melt pool formation. Thus, this work aims to evaluate, using KNIME Analytic
Software Version 4.7.7 through the AutoML Regression tool, the most appropriate model
able to synthesize the experimental data on melt pool shapes. Moreover, in order to provide
an accurate and large enough dataset to properly train the ML models evaluated in this
case study, numerous experimental campaigns on Inconel 718 alloy specimens were carried
out, considering the effects of the variations in laser power, scanning speed, layer thickness,
and building platform temperature.

The structure of this paper is organized as follows: Section 2 describes the experimen-
tal test settings and the models evaluated and analyzed using the AutoML Regression tool.
Section 3 shows the results achieved for each case study in terms of physical results, pre-
dicted results as a function of the regression model evaluated (by AutoML), and Rosenthal
solution results. The experimental outcomes and the assessed precision of the regression
models are detailed in Section 4. In Section 5, the conclusion and suggested advancements
for subsequent and ongoing inquiries are outlined.

2. Materials and Methods
2.1. Experimental Test Settings

The experimental campaign is conducted on specimens manufactured of Inconel 718,
which is a nickel-based alloy widely utilized in the L-PBF process for component fabrication.
The mechanical–thermal properties and chemical composition of Inconel 718 are evaluated
in accordance with information from prior studies [16,22,36].

All experiments are conducted using a Renishaw AM500Q machine (Renishaw Ltd.,
Gloucestershire, UK) equipped with four ytterbium fiber lasers. These lasers have a
minimum spot size of 82 µm and a beam wavelength of 1070 nm. A maximum of 500 W of
laser power is available for each independent laser.

In every case study, the specimens utilized for the analysis are modeled according to the
following specification (Figure 1). In more detail, the specimens are modeled as parallelepipeds
of size 10 × 10 × 2 mm, which is suitable to print ten single tracks [2,4,18,40–50] on a stable
consolidated material [36]. The distance between the tracks is established in order to
prevent the adjacent melt pool from overlapping, whereas the track length is maintained at
7 mm to provide a steady-state melt pool.

The specimens are positioned on the building platform using Materials Magics 25.1
(Materialise NV, Leuven, Belgium). The process parameters and laser assignment are
carried out using Renishaw Quantam Software Version 5.3.0.7015.
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Figure 1. Specimen geometry with an indication of the single track position and cutting plane distance
from the edge of the specimen.

Following the printing, the specimens are removed off the building platform using
a wire EDM machine (ECUT EU MS Genesi). Then, each specimen is prepared for micro-
graphic analyses following the procedure explained in [36], performing the following steps:

• To acquire an appropriate portion for analysis, each specimen is sectioned using a
Struers Secotom-20 machine at a distance of 4 mm from the border of the lateral surface
(Figure 1). This operation is essential for analyzing the melt pool in its steady state,
excluding edge effects.

• Using a Struers CitoPress-30 machine, the specimen segment is embedded in conduc-
tive resin.

• The specimen’s surface is polished with a Struers Tegramin-30 machine.

The specimens are prepared for the melt pool analysis following the procedure de-
scribed in [16], while the analyses are carried out using an Optical Microscope Leica Leitz
DMRME (Leica Microsystems GmbH, Wetzlar, Germany). The complete procedure used to
perform the melt pool analysis is described in [16,22,36]. Basically, in order to calculate the
powder melting regime, the melt pool depth and width are measured [5,13]. In particular,
for each specimen, the melt pool depth and width are measured for five random single
tracks in a section obtained at a 4 mm distance from the lateral edge to analyze a melt pool
in its steady-state condition. Tables 1–3 show the process parameters tested for each case
study carried out in this work. Thus, the process parameters taken into account in this
work to predict the melt pool shape are the scanning speed, laser power, layer thickness,
and building platform temperature.

2.2. Machine Learning Workflow

The whole machine learning cycle is carried out using the open-source software KN-
IME Analytics Platform. The workflow is described in Figure 2, and it consists of different
phases: data preparation, partitioning, parameter optimization with cross-validation, the
selection of the best model, the execution of the prediction, final scoring, and the evaluation
of the model. A subworkflow named “AutoML (Regression)” is used to carry out the
parameter optimization with cross-validation and the best model selection.
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Table 1. Process parameters tested as a function of samples (layer thickness: 30 µm).

Sample Scanning Speed (mm/s) Laser Power (W) Building Platform Temperature (◦C)

1.1 760 190 170

1.2 960 190 170

1.3 1160 190 170

1.4 1360 190 170

1.5 1560 190 170

1.6 760 235 170

1.7 960 235 170

1.8 1160 235 170

1.9 1360 235 170

1.10 1560 235 170

1.11 760 280 170

1.12 960 280 170

1.13 1160 280 170

1.14 1360 280 170

1.15 1560 280 170

1.16 760 325 170

1.17 960 325 170

1.18 1160 325 170

1.19 1360 325 170

1.20 1560 325 170

1.21 760 370 170

1.22 960 370 170

1.23 1160 370 170

1.24 1360 370 170

1.25 1560 370 170

Table 2. Process parameters tested as a function of samples. The numeration 2.1 to 2.9 refers to the
samples printed with a building platform temperature of 170 ◦C, while the numeration 2.10 to 2.18
refers to the samples printed with a building platform temperature of 80 ◦C (layer thickness: 60 µm).

Sample Scanning Speed (mm/s) Laser Power (W) Building Platform Temperature (◦C)

2.1, 2.10 1000 280 170, 80

2.2, 2.11 850 319 170, 80

2.3, 2.12 1150 319 170, 80

2.4, 2.13 748 375 170, 80

2.5, 2.14 1000 375 170, 80

2.6, 2.15 1252 375 170, 80

2.7, 2.16 850 431 170, 80

2.8, 2.17 1150 431 170, 80

2.9, 2.18 1000 469 170, 80
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Table 3. Process parameters tested as a function of samples (layer thickness: 90 µm).

Sample Scanning Speed (mm/s) Laser Power (W) Building Platform Temperature (◦C)

3.1 950 310 170

3.2 1100 310 170

3.3 1250 310 170

3.4 1400 310 170

3.5 1550 310 170

3.6 950 344 170

3.7 1100 344 170

3.8 1250 344 170

3.9 1400 344 170

3.10 1550 344 170

3.11 950 378 170

3.12 1100 378 170

3.13 1250 378 170

3.14 1400 378 170

3.15 1550 378 170

3.16 950 412 170

3.17 1100 412 170

3.18 1250 412 170

3.19 1400 412 170

3.20 1550 412 170

3.21 950 446 170

3.22 1100 446 170

3.23 1250 446 170

3.24 1400 446 170

3.25 1550 446 170
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To evaluate the goodness of the model, we first divide the data into two partitions,
using one set as a verification comparison in the final phase. We split the data into 80% for
the training phase and 20% for verifying and evaluating the prediction accuracy. The
division of the data into the two partitions, “Train” and “Test”, is based on a stratified
sampling technique for the target class and 80%.

This workflow includes the Auto ML component (Regression), a complete encapsu-
lated workflow designed to identify the best model for the subsample of data sent to the
node. This workflow uses the first partition of the data (the individual measurements are
provided to the Auto ML component as input data) as a subsample to split into learner and
predictor splits. The first subset (80% of the data) is, in fact, partitioned once again into 80%
and 20% to learn and (therefore) train the model within the Auto ML Regression component.

After the data preprocessing operations phase, the data subsample is cleaned by
replacing missing values, prepared, and normalized using Z-score normalization. Then, the
data subsample is split into two parts using the stratified sampling method on the target
class, with 80% of the data going to the learner partition and the other 20% going to the
predictor partition. Finally, machine learning models for regression are compared using
cross-validation to tune a set of parameters and the R2 metric on the train data.

The KNIME system is based on a no-code language (or low-code language, with
minimal corrections); each node represents a function. It is possible to join and automate
node systems through aggregates called “components”. This specific component is based on
the automatic training of supervised machine learning models. In this case, it is an AutoML
component specifically designed for regression. It derives from the nodes AUTOML
originally designed for classification. The component is a complete workflow capable of
automating the entire ML selection cycle. It performs complete data preparation, detailed
parameter optimization with cross-validation for each ML model, detailed scoring, and an
automatic evaluation and selection.

These are the detailed steps inside the AutoML (Regression) component:

• Data preparation: Before training the models, the data are corrected by replacing
the missing values with the most frequent ones in the categorical column or with
the average for the columns that present numerical data. All numeric features are
then converted to doubles. Next, we normalize them using Z-score normalization
and automatically divide them into the two training and test partitions, as previously
mentioned (80% and 20%).

• Model training: Each ML model has a set of parameters that can be tuned and set
within the component using previously user-defined evaluation metrics on train data
and cross-validation. The practice of cross-validation is to take a dataset and randomly
divide it into an even number of segments. These segments are called folds. The
machine learning algorithm is trained on all folds except one, and each fold is tested
against a model trained on all other folds. This process means that all trained models
are tested on sectors they have not seen before. The process is repeated until testing is
conducted on all folds at least once.

• Model scoring and selection: Once all the models are trained, the system applies
the model to the test set. The predictions are then compared with real data, and it
is thus possible to calculate the actual performance of the created model. The best
model is finally selected based on user-defined scores and metrics (e.g., R2 or mean
absolute errors).

The component returns a set of models with the best parameters with which it is
possible to obtain the best results. To learn more, it is possible to deeply “enter” inside
the component and manually modify the various automations to find the optimal set of
parameters. In the present case, the “Keras Deep Learning” nodes were started by hand for
better optimization of the required Python environment (function otherwise not available).

The results, which can later be used for operational end-to-end workflows, allow us
to focus attention on specific models that are the most suitable. It is advisable, however,
to reiterate the use of AutoML Regression over time since the same data are integrated by
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the new ones in time, which can change the model better. The machine learning models
evaluated through AutoML Regression are the following:

• Regression tree;
• Linear regression;
• Polynomial regression;
• XGBoost linear ensemble;
• XGBoost tree ensemble;
• Gradient boosted trees;
• Random forest;
• Deep learning (Keras).

After that, the specified models are properly trained and stored on a single table, and
the model is applied to the test set by the system. Then, the predictions from all models are
compared with experimental data, and performance metrics are calculated. At the end of
the workflow, the system selects the best model. It is applied to the test set by the system
through the node Workflow Executor, which automatically predicts the first 20% of the
subset of the test set using the best model obtained by the component AutoML (Regression).
At this point, it is also possible to automatically build a workflow already optimized with
the best model and the correct parameter to directly obtain the results’ previsioning to the
new set of data.

2.3. Models Considered by AutoML for Regression
2.3.1. Regression Tree

Regression trees are decision trees in which the target variables can assume continuous
values instead of class labels in leaves. In this model, split selection criteria and stopping
criteria are modified. This model uses nodes, branches, and leaves to divide and organize
the data into subsets. Regression trees work like a decision tree, selecting splits that reduce
the dispersion of the target attribute value more. So, it is possible to predict the target
attribute from its mean value in the leaves. The high human readability of these algorithms
facilitates their proliferation and widespread use. Moreover, the regression trees model
not only performs a prediction of attribute values for the targets but also provides an
explanation of which attributes are used and how these are used to realize the prediction.
This model is trained in KNIME with the optimized parameter “Minimum number of
records per node”.

2.3.2. Linear Regression

In linear regression, the relationship between two variables is modeled through the
fitting of a linear equation to observed and measured data, considering one variable as an
explanatory variable and the other one as a dependent variable. Firstly, before attempting
to fit a linear model to observed data, it is necessary to determine whether or not there
is a relationship between the investigated variables. In particular, a linear regression and
its derived plot, a scatterplot, could be powerful tools to determine the strength of the
relationship between two variables. It is important to highlight that if there is no remarkable
association between the two variables to be correlated, the explanatory and dependent
variables, fitting a linear regression model to the observed data will not provide a reliable
and useful model. The strength level of the relationship between the two variables is
measured through a correlation coefficient, which is a value between −1 and 1. Linear
regression is trained in KNIME with the default parameters.

2.3.3. Polynomial Regression

In polynomial regression, the relationship between two variables, the explanatory and
dependent variables, is expressed through an nth-degree polynomial. The use of polyno-
mial regression allows for the fitting of a nonlinear relationship between the explanatory
variable and the conditional mean of the dependent variable, generally corresponding
to the least-square method. In particular, this approach (least-square method) minimizes
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the coefficient variance according to the Guass–Markov Theorem. A polynomial regres-
sion is a type of linear regression where the relationship between the explanatory and
dependent variables is curvilinear; in this case, a polynomial equation is fitted to the ob-
served data. Polynomial regression is trained in KNIME with the optimized parameter
“Polynomial degree”.

2.3.4. XGBoost (Tree and Linear Ensemble)

XGBoost [51] is an open-source, optimized distributed gradient boosting library. It
provides an effective implementation of the gradient boosting algorithm, using a minimal
amount of resources. XGBoost is commonly used for supervised learning problems to
predict a target variable. In more detail, it examines the distribution of features at all points
considered and uses this information to reduce the search space of possible feature splits,
allowing many hyperparameters to be set and performing additive optimization on the
gradient boosting model. XGBoost is used in different configurations in KNIME, based
on the default booster type. In the AutoML (Regression) component, it can be set to the
following configurations:

- XGBoost tree ensemble: This is the default configuration for XGBoost (booster = gbtree).
The parameters for the training are the “eta” (step size shrinkage used in the update
to prevent overfitting) and “max depth” (increasing the value makes the model more
likely to overfit).

- XGBoost linear ensemble: This is the “linear” configuration for XGBoost (booster =
gblinear). The parameters for the training in this case are “alpha” and “lambda” (both
are regularization terms on weights).

2.3.5. Gradient Boosted Trees

Gradient boosting is a methodology applied on top of another machine learning
algorithm. In this algorithm, two types of models are involved, a “weak” machine learning
model (typically a decision tree) and a “strong” machine learning model (composed of
multiple weak models). In order to predict the error of the current strong model (pseudo-
response), in this methodology, at each step, the training of a new weak model is carried
out. Then, the weak model (considered to be the error) is added to the strong model with
a negative sign in order to reduce the error of the strong model. Gradient boosting is an
iterative method, and each iteration invokes the formula Fi+1 = Fi − fi, where Fi is the
strong model and fi is the weak model at step “i”.

This operation is repeated until a stopping criterion is met, as in the case of achieving
a maximum number of iterations or if the strong model begins to overfit as measured on
a separate validation dataset. The gradient boosted tree is trained in KNIME with the
optimized parameter “Number of trees”.

2.3.6. Random Forest

The random forest is a technique for supervised machine learning derived from the
decision tree algorithm, and it is commonly used to solve regression and classification
problems. The ensemble learning technique, which combines many classifiers to provide
solutions to complex problems, is used in this algorithm. In more detail, a random forest
algorithm consists of many decision trees, and the forest generated by this algorithm is
trained through bagging and bootstrap aggregating. In a random forest algorithm, the
result or outcome is established based on the prediction obtained through the decision
trees. The average of the output obtained from various trees is evaluated and considered to
realize the prediction; while as the number of trees increases, the level of accuracy of the
predictions increases.

The drawbacks of decision tree algorithms can be eliminated by using a random forest
approach, which minimizes dataset overfitting and produces predictions without requiring
a lot of package configurations.
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This algorithm in KNIME is trained with the optimized parameters “Tree Depth”,
“Number of models”, and “Minimum child node size”.

2.3.7. Deep Learning (Keras)

On the TensorFlow platform, Keras turns out to be the high-level application pro-
gram interface (API), providing an approachable, highly productive interface to solve ML
problems, specifically focusing on modern deep learning.

Every step of the machine learning workflow is covered using this high-level API,
from data processing to hyperparameter tuning to deployment. The development of
Keras is mainly focused on the possibility of enabling fast experimentation and saving
computational time.

Moreover, this interface is designed with the scope of reducing the cognitive load by
achieving goals such as a simple and consistent interface, reducing the number of steps
needed for typical use cases, giving clear and useful error messages, and helping the user
to write concise and readable code. The core data structures of Keras are composed of
components and layers, with a layer being a simple input/output transformation, while a
component is a directed acyclic graph of layers.

This high-level API is trained with KNIME Deep Learning—Keras Integration with no
parameter optimization and two simple architectures for binary and multiclass classification
determined by a few simple heuristics.

3. Results
3.1. Melt Pool Analyses Results

Tables 4–6 show the melt pool analysis results for each case study investigated in
this work. The melt pool shape is measured in terms of the melt pool depth and width
in terms of the average and standard deviation of the five single tracks analyzed for each
sample. Table 6 reports the experimental data obtained for a layer thickness of 30 µm,
Table 7 reports those for a layer thickness of 60 µm, and Table 8 reports those for a layer
thickness of 90 µm.

Table 4. Melt pool depth and width tracking table (layer thickness: 30 µm).

Sample Scanning Speed (mm/s) Laser Power (W)
Depth (µm) Width (µm)

Avg. SD Avg. SD

1.1 760 190 69.6 5.5 152.4 5.2

1.2 960 190 41.8 7.4 123.4 4.8

1.3 1160 190 29.4 6.3 107.2 6.5

1.4 1360 190 15.2 4.1 83.6 15.0

1.5 1560 190 10.2 9.5 49.6 46.9

1.6 760 235 122.2 5.2 187.8 15.1

1.7 960 235 78.4 9.8 135.4 9.2

1.8 1160 235 61.6 10.9 116.4 6.1

1.9 1360 235 51.2 4.7 108.0 2.4

1.10 1560 235 35.2 6.1 100.8 6.9

1.11 760 280 145.8 10.9 200.0 4.8

1.12 960 280 112.6 5.7 171.8 4.1

1.13 1160 280 74.8 7.9 133.0 5.6

1.14 1360 280 54.8 8.0 108.6 1.7

1.15 1560 280 43.0 5.0 111.2 8.7

1.16 760 325 199.0 17.0 196.0 15.2
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Table 4. Cont.

Sample Scanning Speed (mm/s) Laser Power (W)
Depth (µm) Width (µm)

Avg. SD Avg. SD

1.17 960 325 135.0 10.4 182.4 9.4

1.18 1160 325 101.2 2.9 156.5 9.0

1.19 1360 325 81.2 4.1 133.6 9.3

1.20 1560 325 69.2 3.2 126.8 7.9

1.21 760 370 214.6 9.9 207.8 15.2

1.22 960 370 154.0 6.4 200.8 8.5

1.23 1160 370 115.0 7.2 162.8 6.4

1.24 1360 370 71.7 3.8 132.0 11.2

1.25 1560 370 75.0 6.3 130.0 9.5

Table 5. Melt pool depth and width tracking table (layer thickness: 60 µm). The numeration 2.1 to
2.9 refers to the samples printed with a building platform temperature of 170 ◦C, while the numeration
2.10 to 2.18 refers to the samples printed with a building platform temperature of 80 ◦C.

Sample Scanning Speed (mm/s) Laser Power (W)
Depth (µm) Width (µm)

Avg. SD Avg. SD

2.1 1000 280 74.8 5.5 142.1 5.7

2.2 850 319 114.2 11.1 152 12.1

2.3 1150 319 75.1 5.1 141.0 7.3

2.4 748 375 192.8 3.1 166.0 12.2

2.5 1000 375 118.2 6.6 151.7 6.8

2.6 1252 375 93.8 8.7 151.6 7.1

2.7 850 431 193.0 8.3 167.3 14.9

2.8 1150 431 133.4 12.7 160.2 5.8

2.9 1000 469 153.4 8.6 177.7 7.4

2.10 1000 280 71.4 7.6 142.6 4.1

2.11 850 319 118.8 9.0 153.4 5.3

2.12 1150 319 66.1 18.6 128.4 12.0

2.13 748 375 175.6 5.7 165.2 8.1

2.14 1000 375 122.6 13.4 155.5 5.3

2.15 1252 375 83.4 14.1 138.7 12.8

2.16 850 431 189.5 3.6 165.8 9.1

2.17 1150 431 110.3 9.0 146.3 4.1

2.18 1000 469 164.3 7.3 165.0 12.4

Table 6. Melt pool depth and width tracking table (layer thickness: 90 µm).

Sample Scanning Speed (mm/s) Laser Power (W)
Depth (µm) Width (µm)

Avg. SD Avg. SD

3.1 950 310 89.0 3.6 161.3 6.4

3.2 1100 310 68.0 7.9 126.7 4.2

3.3 1250 310 45.3 9.0 113.0 8.5
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Table 6. Cont.

Sample Scanning Speed (mm/s) Laser Power (W)
Depth (µm) Width (µm)

Avg. SD Avg. SD

3.4 1400 310 23.0 9.5 96.3 13.6

3.5 1550 310 9.7 7.6 57.7 49.4

3.6 950 344 120.7 5.0 160.7 9.7

3.7 1100 344 87.0 5.3 145.7 9.1

3.8 1250 344 77.2 8.8 120.7 6.0

3.9 1400 344 50.2 7.3 111.3 11.6

3.10 1550 344 17.7 4.9 91.3 13.4

3.11 950 378 134.7 10.1 163.7 4.6

3.12 1100 378 97.0 9.0 146.3 9.1

3.13 1250 378 88.0 5.6 119.0 3.6

3.14 1400 378 57.7 8.5 110.0 9.2

3.15 1550 378 48.3 2.5 112.7 5.8

3.16 950 412 153.7 14.6 165.7 7.8

3.17 1100 412 110.3 19.6 147.7 6.8

3.18 1250 412 98.7 17.8 136.7 14.6

3.19 1400 412 66.0 13.0 117.3 4.5

3.20 1550 412 50.0 15.4 106.3 9.0

3.21 950 446 159.2 19.3 165.4 17.3

3.22 1100 446 115.3 11.1 148.0 14.8

3.23 1250 446 102.6 17.9 148.8 19.8

3.24 1400 446 84.7 12.6 115.3 16.7

3.25 1550 446 73.0 19.5 115.3 13.2

3.2. Machine Learning Model for Regression Results

The performance of the models analyzed by AutoML is evaluated in terms of the R2

for correlation and mean absolute error (MAE) for model errors versus experimental data.
The results obtained for each model for melt pool depth and width prediction are listed in
Tables 7 and 8 with respect to the depth and width, respectively.

Table 7. Results in terms of R2 and MAE of the different ML models tested considering the melt
pool depth.

Model R2 MAE

Gradient boosted trees 0.953 9.382

Deep learning (Keras) 0.941 10.403

Regression tree 0.749 11.454

Polynomial regression 0.706 13.167

XGBoost tree ensemble 0.667 13.219

Random forest 0.649 13.905

Linear regression 0.472 19.103

XGBoost linear ensemble 0.125 26.319
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Table 8. Results in terms of R2 and MAE of the different ML models tested considering the melt
pool width.

Model R2 MAE

Gradient boosted trees 0.751 10.59

Deep learning (Keras) 0.749 11.454

Regression tree 0.746 11.392

Polynomial regression 0.706 13.167

XGBoost tree ensemble 0.667 13.219

Random forest 0.649 13.905

Linear regression 0.472 19.103

XGBoost linear ensemble 0.125 26.319

The best model identified for melt pool depth and width prediction is the gradient
boosted trees with an optimized number of trees equal to 90 and 70. In Figures 3 and 4
are shown, through a line plot, the comparison between the gradient boosted trees model
prediction and the experimental results for the melt pool depth and width.
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3.3. Results of Rosenthal Analytical Model

The results achievable with Rosenthal’s analytical model [2] were calculated and
compared with the experimental data obtained in the case study (Section 3.1). In this way,
they can be used as a term of comparison for the model developed in this work through the
ML model. In Table 9, the R2 and MAE calculated for the Rosenthal solution for the melt
pool depth and width, respectively, are obtained, providing as input the process parameters
investigated in these case studies, including the layer thickness, in the range of 30 to 90 µm,
and the building platform temperature variation from 80 to 170 ◦C.
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Table 9. Rosenthal model statistical evaluation in the investigated case studies.

Model R2 MAE

Depth 0.82 37.71

Width 0.54 108.9

4. Discussion

The experimental results obtained for each case study, as shown in Tables 6–8, are
aligned with those obtained in the previous literature [36], thus confirming the robustness
of the physical tests carried out and the methodology applied to measure the melt pool
dimensions. Furthermore, from the evaluation of the melt pool morphology and analysis
of the printability maps derived for each case study, it is possible to observe that the
printability region becomes narrower as the layer thickness is increased, emphasizing the
criticality of printing high-layer-thickness parts in the L-PBF process [33–35].

The evaluation of the physical and ML model results is shown in Figures 3 and 4; it
is possible to highlight a good match for both the melt pool depth and width. From the
comparison of the predictions for the melt pool depth made by the best ML regression
model, the gradient boost tree, and the Rosenthal solution side by side, we can see that
both models are good at correlating and being reliable, with R2 values of 0.95 and 0.82,
respectively. In contrast, in terms of MAE, the gradient boosted tree, with a calculated MAE
of 9.38, turns out to be significantly better than the Rosenthal solution, with a calculated
MAE of 37.71. The gradient boosted tree is confirmed to be significantly more accurate
and reliable for melt pool width prediction, with an R2 score of 0.75 higher than the
calculated score for Rosenthal solution of 0.54. More specifically, the ML model exhibits a
considerable improvement, with a 10-fold reduction in MAE compared to the Rosenthal
solution (10.86 against 108.9). The shown (achieved) results are of particular interest due to
the possibility of predicting the melt pool shape over a wide range of layer thickness values.
This can speed up the development of high-productivity process parameters or facilitate the
application of a printing strategy such as hull bulk. In addition, this ML model’s ability to
predict how the shape of the melt pool will change as the preheating temperature changes
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in the 80 ◦C to 170 ◦C range that most commercial L-PBF machines are used in is essential
for fully understanding how melt pools form. In this sense, it is important to emphasize
that the highest preheating temperature is usually set for the machines with multiple lasers
to minimize the greater heat loss due to the presence of multiple lasers.

5. Conclusions

In the additive manufacturing L-PBF process, optimizing the print process parameters
and developing conduction zones in the laser power vs. scanning speed parameter space
are critical to meeting production quality, productivity, and volume goals. In this work, we
propose using an ML approach during the process parameters development to predict the
melt pool dimensions as a function of some parameters less studied in the literature (i.e.,
layer thickness and building platform temperature). Using a supervised machine learning
model for regression with the KNIME Analytics Platform permits the identification of
the most appropriate model able to synthesize the experimental data on melt pool shape
obtained with a large campaign on a Inconel 718 superalloy. This makes it possible to
speed up the development of the process parameters for Inconel 718 alloy in the large layer
thickness range of 30 to 90 microns. This is an aspect that results in remarkable interest
because it could make the L-PBF process more productive and make it easier to use some
printing strategies, like the hull bulk one. Furthermore, this ML regression model turns out
to have good predictability for keyhole melting regimes and those that lack fusion powder,
allowing for a very accurate definition of the Inconel 718 printability map as a function of
layer thickness and building platform temperature variation. This model can predict with
a high accuracy the melt pool depth and the configuration in which melt pool formation is
governed by the keyhole melting regime, which is difficult to model physically. All these
advantages permit the improvement of the accuracy and efficiency of the printability map
definition for a material printed using the L-PBF technique. Further research activities
could be useful to investigate multiple levels of preheating temperatures and evaluate
other superalloys. In future works, it could also be interesting to evaluate the robustness of
the proposed approach with different superalloys and different machines, as well as other
process parameters not evaluated in this paper, to develop a more generalized ML model.
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6. Ökten, K.; Biyikŏglu, A. Development of thermal model for the determination of SLM process parameters. Opt. Laser Technol.
2021, 137, 106825. [CrossRef]

7. Koutiri, I.; Pessard, E.; Peyre, P.; Amlou, O.; Terris, D.T. Influence of SLM process parameters on the surface finish, porosity rate
and fatigue behavior of as-built Inconel 625 parts. J. Mater. Process. Technol. 2018, 255, 536–546. [CrossRef]

8. Wang, Z.; Xiao, Z.; Tse, Y.; Huang, C.; Zhang, W. Optimization of processing parameters and establishment of a relationship
between microstructure and mechanical properties of SLM titanium alloy. Opt. Laser Technol. 2019, 112, 159–167. [CrossRef]

9. Khorasani, A.M.; Gibson, I.; Awan, U.S.; Ghaderi, A. The effect of SLM process parameters on density, hardness, tensile strength
and surface quality of Ti-6Al-4V. Addit. Manuf. 2019, 25, 176–186. [CrossRef]

10. Tian, Y.; Tomus, D.; Rometsch, P.; Wu, X. Influences of processing parameters on surface roughness of Hastelloy X produced by
selective laser melting. Addit. Manuf. 2017, 13, 103–112. [CrossRef]

11. Ning, J.; Wang, W.; Zamorano, B.; Liang, S.Y. Analytical modeling of lack-of-fusion porosity in metal additive manufacturing.
Appl. Phys. 2019, 125, 797. [CrossRef]

12. Mukherjee, T.; DebRoy, T. Mitigation of lack of fusion defects in powder bed fusion additive manufacturing. J. Manuf. Process.
2018, 36, 442–449. [CrossRef]

13. Johnson, L.; Mahmoudi, M.; Zhang, B.; Seede, R.; Huang, X.; Maier, J.T.; Maier, H.J.; Karaman, I.; Elwany, A.; Arróyave, R.
Assessing printability maps in additive manufacturing of metal alloys. Acta Mater. 2019, 176, 199–210. [CrossRef]

14. Tenbrock, C.; Fischer, F.G.; Wissenbach, K.; Schleifenbaum, J.H.; Wagenblast, P.; Meiners, W.; Wagner, J. Influence of key-hole and
conduction mode melting for top-hat shaped beam profiles in laser powder bed fusion. J. Mater. Process. Technol. 2020, 278, 116514.
[CrossRef]

15. King, W.A.; Barth, H.D.; Castillo, V.M.; Gallegos, G.F.; Gibbs, J.W.; Hahn, D.E.; Kamath, C.; Rubenchik, A.M. Observation of
keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 2014, 214, 2915–2925.
[CrossRef]

16. Giorgetti, A.; Baldi, N.; Palladino, M.; Ceccanti, F.; Arcidiacono, G.; Citti, P. A Method to Optimize Parameters Development in
L-PBF Based on Single and Multitracks Analysis: A Case Study on Inconel 718 Alloy. Metals 2023, 13, 306. [CrossRef]

17. Oliveira, J.P.; Santos, T.G.; Miranda, R.M. Revisiting fundamental welding concepts to improve additive manufacturing: From
theory to practice. Prog. Mater. Sci. 2020, 107, 100590. [CrossRef]

18. Mukherjee, T.; Zuback, J.S.; De, A.; DebRoy, T. Printability of alloys for additive manufacturing. Sci. Rep. 2016, 6, 19717. [CrossRef]
19. Sow, M.C.; De Terris, T.; Castelnau, O.; Hamouche, Z.; Coste, F.; Fabbro, R.; Peyre, P. Influence of beam diameter on Laser Powder

Bed Fusion (L-PBF) process. Addit. Manuf. 2020, 36, 101532. [CrossRef]
20. Grünewald, J.; Gehringer, F.; Schmöller, M.; Wudy, K. Influence of ring-shaped beam profiles on process stability and productivity

in laser-based powder bed fusion of AISI 316L. Metals 2021, 11, 1989. [CrossRef]
21. Rasch, M.; Roider, C.; Kohl, S.; Strauß, J.; Maurer, N.; Nagulin, K.Y.; Schmidt, M. Shaped laser beam profiles for heat conduction

welding of aluminium-copper alloys. Opt. Lasers Eng. 2019, 115, 179–189. [CrossRef]
22. Baldi, N.; Giorgetti, A.; Palladino, M.; Giovannetti, I.; Arcidiacono, G.; Citti, P. Study on the Effect of Inter-Layer Cooling Time on

Porosity and Melt Pool in Inconel 718 Components Processed by Laser Powder Bed Fusion. Materials 2023, 16, 3920. [CrossRef]
[PubMed]

23. Zhang, Z.; Liu, Z.; Wu, D. Prediction of melt pool temperature in directed energy deposition using machine learning. Addit.
Manuf. 2021, 37, 101692. [CrossRef]

24. Lee, S.; Peng, J.; Shin, D.; Choi, Y.S. Data analytics approach for melt-pool geometries in metal additive manufacturing. Sci.
Technol. Adv. Mater. 2019, 20, 972–978. [CrossRef] [PubMed]

25. Ogoke, F.; Farimani, A.B. Thermal control of laser powder bed fusion using deep reinforcement learning. Addit. Manuf. 2021,
46, 102033. [CrossRef]

26. Tapia, G.; Khairallah, S.; Matthews, M.; King, W.E.; Elwany, A. Gaussian process based surrogate modeling framework for
process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel. Int. J. Adv. Manuf. Technol. 2018, 94,
3591–3603. [CrossRef]

27. Scime, L.; Beuth, J. Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder
bed fusion additive manufacturing process. Addit. Manuf. 2019, 25, 151–165. [CrossRef]

28. Yuan, B.; Guss, G.M.; Wilson, A.C.; Hau-Riege, S.P.; DePond, P.J.; McMains, S.; Matthews, M.J.; Giera, B. Machine-learning-based
monitoring of laser powder bed fusion. Sci. Technol. Adv. Mater. 2018, 3, 1800136. [CrossRef]

29. Akbari, P.; Ogoke, F.; Kao, N.Y.; Meidani, K.; Yeh, C.Y.; Lee, W.; Farimani, A.B. MeltpoolNet: Melt pool characteristic prediction in
Metal Additive Manufacturing using machine learning. Addit. Manuf. 2022, 55, 102817. [CrossRef]

30. Childs, T.H.C.; Hauser, C.; Badrossamay, M. Mapping and Modelling Single Scan Track Formation in Direct Metal Selective Laser
Melting. CIRP Ann. 2004, 53, 191–194. [CrossRef]

https://doi.org/10.1016/j.addma.2018.08.006
https://doi.org/10.7166/27-3-1668
https://doi.org/10.1016/j.matdes.2020.108762
https://doi.org/10.1016/j.optlastec.2020.106825
https://doi.org/10.1016/j.jmatprotec.2017.12.043
https://doi.org/10.1016/j.optlastec.2018.11.014
https://doi.org/10.1016/j.addma.2018.09.002
https://doi.org/10.1016/j.addma.2016.10.010
https://doi.org/10.1007/s00339-019-3092-9
https://doi.org/10.1016/j.jmapro.2018.10.028
https://doi.org/10.1016/j.actamat.2019.07.005
https://doi.org/10.1016/j.jmatprotec.2019.116514
https://doi.org/10.1016/j.jmatprotec.2014.06.005
https://doi.org/10.3390/met13020306
https://doi.org/10.1016/j.pmatsci.2019.100590
https://doi.org/10.1038/srep19717
https://doi.org/10.1016/j.addma.2020.101532
https://doi.org/10.3390/met11121989
https://doi.org/10.1016/j.optlaseng.2018.11.025
https://doi.org/10.3390/ma16113920
https://www.ncbi.nlm.nih.gov/pubmed/37297054
https://doi.org/10.1016/j.addma.2020.101692
https://doi.org/10.1080/14686996.2019.1671140
https://www.ncbi.nlm.nih.gov/pubmed/31692926
https://doi.org/10.1016/j.addma.2021.102033
https://doi.org/10.1007/s00170-017-1045-z
https://doi.org/10.1016/j.addma.2018.11.010
https://doi.org/10.1002/admt.201800136
https://doi.org/10.1016/j.addma.2022.102817
https://doi.org/10.1016/S0007-8506(07)60676-3


Appl. Sci. 2024, 14, 328 17 of 17

31. Kappes, B.; Moorthy, S.; Drake, D.; Geerlings, H.; Stebner, A. Machine learning to optimize additive manufacturing parameters for
laser powder bed fusion of Inconel 718. In Proceedings of the 9th International Symposium on Superalloy 718 Derivatives: Energy,
Aerospace, and Industrial Applications, Pittsburgh, PA, USA, 3–6 June 2018; Springer International Publishing: Berlin/Heidelberg,
Germany, 2018; pp. 595–610.

32. Mahmoud, D.; Magolon, M.; Boer, J.; Elbestawi, M.A.; Mohammadi, M.G. Applications of machine learning in process monitoring
and controls of L-PBF additive manufacturing: A review. Appl. Sci. 2021, 11, 11910. [CrossRef]

33. Leicht, A.; Fischer, M.; Klement, U.; Nyborg, L.; Hryha, E. Increasing the Productivity of Laser Powder Bed Fusion for Stainless
Steel 316L through Increased Layer Thickness. J. Mater. Eng. Perform. 2021, 30, 575–584. [CrossRef]

34. De Formanoir, C.; Paggi, U.; Colebrants, T.; Thijs, L.; Li, G.; Vanmeensel, K.; Van Hooreweder, B. Increasing the productivity
of laser powder bed fusion: Influence of the hull-bulk strategy on part quality, microstructure and mechanical performance of
Ti-6Al-4V. Addit. Manuf. 2020, 33, 101129. [CrossRef]

35. Shoukr, D.; Morcos, P.; Sundermann, T.; Dobrowolski, T.; Yates, C.; Jain, J.R.; Arróyave, R.; Karaman, I.; Elwany, A. Influence
of layer thickness on the printability of nickel alloy 718: A systematic process optimization framework. Addit. Manuf. 2023,
73, 103646. [CrossRef]

36. Baldi, N.; Giorgetti, A.; Palladino, M.; Giovannetti, I.; Arcidiacono, G.; Citti, P. Study on the Effect of Preheating Temperatures on
Melt Pool Stability in Inconel 718 Components Processed by Laser Powder Bed Fusion. Metals 2023, 13, 1792. [CrossRef]

37. Chen, Q.; Zhao, Y.; Strayer, S.; Zhao, Y.; Aoyagi, K.; Koizumi, Y.; Chiba, A.; Xiong, W.; To, A.C. Elucidating the effect of preheating
temperature on melt pool morphology variation in Inconel 718 laser powder bed fusion via simulation and experiment. Addit.
Manuf. 2021, 37, 101642. [CrossRef]

38. Panahi, N.; Åsberg, M.; Oikonomou, C.; Krakhmalev, P. Effect of preheating temperature on the porosity and micro-structure of
martensitic hot work tool steel manufactured with L-PBF. Procedia CIRP 2022, 111, 166–170. [CrossRef]

39. Polozov, I.; Sufiiarov, V.; Kantyukov, A.; Razumov, N.; Goncharov, I.; Makhmutov, T.; Silin, A.; Kim, A.; Starikov, K.; Shamshurin,
A.; et al. Microstructure, densification, and mechanical properties of titanium intermetallic alloy manufactured by laser powder
bed fusion additive manufacturing with high-temperature preheating using gas atomized and mechanically alloyed plasma
spheroidized powders. Addit. Manuf. 2020, 34, 101374. [CrossRef]

40. Li, S.; Xiao, H.; Liu, K.; Xiao, W.; Li, Y.; Han, X.; Song, J.M.L. Melt-pool motion, temperature variation and dendritic morphology
of Inconel 718 during pulsed- and continuous-wave laser additive manufacturing: A comparative study. Mater. Des. 2017, 119,
351–360. [CrossRef]

41. Makona, N.W.; Yadroitsava, I.; Moller, H.; Yadroitsev, I. Characterization of 17-4PH single tracks produced at different parametric
conditions towards increased productivity of LPBF systems—The effect of laser power and spot size upscaling. Metals 2018,
8, 475. [CrossRef]

42. Guo, Y.; Jia, L.; Kong, B.; Wang, N.; Zhang, H. Single track and single layer formation in selective laser melting of niobium solid
solution alloy. Chin. J. Aeronaut. 2018, 31, 860–866. [CrossRef]

43. Shrestha, S.; Chou, K. Single track scanning experiment in laser powder bed fusion process. Procedia Manuf. 2018, 26, 857–864.
[CrossRef]

44. Balbaa, M.; Mekhiel, S.; Elbestawi, M.; McIsaac, J. On Selective laser melting of Inconel 718: Densification, surface roughness, and
residual stresses. Mater. Des. 2020, 193, 108818. [CrossRef]

45. Yadroitsava, I.; Els, J.; Booysen, G.; Yadroitsev, I. Peculiarities of single track formation from Ti6AL4V alloy at different laser
power densities by selective laser melting. S. Afr. J. Ind. Eng. 2015, 26, 86–95. [CrossRef]

46. Zheng, H.; Wang, Y.; Xie, Y.; Yang, S.; Hou, R.; Ge, Y.; Lang, L.; Gong, S.; Li, H. Observation of Vapor Plume Behavior and Process
Stability at Single-Track and Multi-Track Levels in Laser Powder Bed Fusion Regime. Metals 2021, 11, 937. [CrossRef]

47. Dong, Z.; Liu, Y.; Wen, W.; Ge, J.; Liang, J. Effect of Hatch Spacing on Melt Pool and As-built Quality During Selective Laser
Melting of Stainless Steel: Modeling and Experimental Approaches. Materials 2019, 12, 50. [CrossRef]

48. Caiazzo, F.; Alfieri, V.; Casalino, G. On the Relevance of Volumetric Energy Density in the Investigation of Inconel 718 Laser
Powder Bed Fusion. Materials 2020, 13, 538. [CrossRef]

49. Li, Y.; Založnik, M.; Zollinger, J.; Dembinski, L.; Mathieu, M. Effects of the powder, laser parameters and surface conditions on
the molten pool formation in the selective laser melting of IN718. J. Mater. Process. Technol. 2021, 289, 116930. [CrossRef]

50. Coen, V.; Goossens, L.; Van Hooreweder, B. Methodology and experimental validation of analytical melt pool models for laser
powder bed fusion. J. Mater. Process. Technol. 2022, 304, 117547. [CrossRef]

51. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app112411910
https://doi.org/10.1007/s11665-020-05334-3
https://doi.org/10.1016/j.addma.2020.101129
https://doi.org/10.1016/j.addma.2023.103646
https://doi.org/10.3390/met13101792
https://doi.org/10.1016/j.addma.2020.101642
https://doi.org/10.1016/j.procir.2022.08.142
https://doi.org/10.1016/j.addma.2020.101374
https://doi.org/10.1016/j.matdes.2017.01.065
https://doi.org/10.3390/met8070475
https://doi.org/10.1016/j.cja.2017.08.019
https://doi.org/10.1016/j.promfg.2018.07.110
https://doi.org/10.1016/j.matdes.2020.108818
https://doi.org/10.7166/26-3-1185
https://doi.org/10.3390/met11060937
https://doi.org/10.3390/ma12010050
https://doi.org/10.3390/ma13030538
https://doi.org/10.1016/j.jmatprotec.2020.116930
https://doi.org/10.1016/j.jmatprotec.2022.117547

	Introduction 
	Materials and Methods 
	Experimental Test Settings 
	Machine Learning Workflow 
	Models Considered by AutoML for Regression 
	Regression Tree 
	Linear Regression 
	Polynomial Regression 
	XGBoost (Tree and Linear Ensemble) 
	Gradient Boosted Trees 
	Random Forest 
	Deep Learning (Keras) 


	Results 
	Melt Pool Analyses Results 
	Machine Learning Model for Regression Results 
	Results of Rosenthal Analytical Model 

	Discussion 
	Conclusions 
	References

