
Citation: Yan, P.; Liu, Y.; Jia, Y.; Zhao,

T. Deep Learning and Machine

Learning Applications in Biomedicine.

Appl. Sci. 2024, 14, 307. https://

doi.org/10.3390/app14010307

Received: 13 December 2023

Accepted: 28 December 2023

Published: 29 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Editorial

Deep Learning and Machine Learning Applications
in Biomedicine
Peiyi Yan 1, Yaojia Liu 1, Yuran Jia 1 and Tianyi Zhao 2,*

1 Institute for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology,
Harbin 150040, China; 23s136222@stu.hit.edu.cn (P.Y.); 120l021211@stu.hit.edu.cn (Y.L.);
23b903057@stu.hit.edu.cn (Y.J.)

2 School of Medicine and Health, Harbin Institute of Technology, Harbin 150040, China
* Correspondence: zty2009@hit.edu.cn

The rise of omics research, spanning genomics, transcriptomics, proteomics, and
epigenomics, has revolutionized our understanding of biological systems. While the
development of these technologies offers immense opportunities for exploring biological
complexity, the sheer volume and complexity of multi-omics data present significant
analytical challenges. In this context, Artificial Intelligence (AI), with its advantages in
data processing and learning capabilities, has become a key tool for multi-omics data
analysis. The applications of AI have expanded to include various fields such as disease
diagnosis, precision medicine, drug discovery, and elucidating pathogenic mechanisms.
This paper delves into the latest advancements of AI in the life sciences sector, with a
particular emphasis on its application in crucial areas such as genomics, transcriptomics,
and proteomics. By analyzing these successful cases, we aim to demonstrate the potential of
AI in handling and applying multi-omics data and provide valuable insights and guidance
to researchers.

Genomics, as a scientific field studying the genetic blueprint of organisms, is dedi-
cated to decoding the genomes of living entities. The core objectives of this field include
understanding genetic variations, gene functions within the genome, and their impact
on an organism’s morphology, physiology, and disease occurrence. Particularly, deep
learning (DL), a branch of Artificial Intelligence, has demonstrated significant potential in
deciphering gene regulation, exploring genome structure, and analyzing variation effects.
Tools like DeepVariant [1] and Clairvoyante [2] utilize deep learning to analyze DNA
sequence data for variation detection, including identifying single nucleotide polymor-
phisms (SNPs) and structural variations. Compared to traditional methods, deep learning
excels in capturing complex dependencies between sequencing reads, thereby enhancing
accuracy and efficiency and enabling more precise genetic analysis. In the realm of cancer
genomics, deep learning tools are instrumental in assessing the pathogenicity of variations,
elucidating the specific effects of particular variations and informing treatment strategies
and prognosis [3–5]. This application is particularly pivotal considering the unique genetic
landscapes presented by various cancers. The journey towards understanding gene func-
tion has often been hindered by the inefficiency of experimental annotation. Researchers are
increasingly employing Artificial Intelligence to develop computational tools in functional
genomics. This includes the prediction of gene functions [6] and regulatory elements like
enhancers and promoters [7,8]. Additionally, deep learning is utilized to mine and predict
the functional impact of non-coding variations from large-scale genomic data, aiding in un-
raveling the complexities of gene regulatory networks and the potential causal mechanisms
behind genetic variations [9–11]. Beyond these applications, deep learning also extends its
influence into the realm of epigenomics. For instance, tools like DeepCpG [12] and DeepHi-
stone [13] analyze DNA methylation and histone modification patterns, contributing to a
more profound understanding of how these epigenetic factors influence gene expression
and disease development.
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With advancements in high-throughput sequencing technologies, the field of transcrip-
tomics has broadened to include both single-cell and spatial resolution studies. The massive
scale and complexity of raw transcriptomic data necessitate sophisticated computational
algorithms and tools for preprocessing (quality control, dimensionality reduction, and
clustering) and downstream analysis. Various renowned software packages, including
Seurat [14] and Scanpy [15], offer comprehensive solutions for transcriptomic data analysis
and are adept at tasks like data dimensionality reduction, cell clustering, and differential ex-
pression analysis. DL efficiently extracts rich, compact features from noisy, heterogeneous,
and high-dimensional scRNA-seq data, thus enhancing downstream analysis. Unsuper-
vised learning, employed for data mining and pattern identification in unlabeled data,
is widely applied in scRNA-seq for dimensionality reduction and cell clustering [16–19].
In scRNA-seq, a low RNA capture rate frequently leads to dropout issues. Researchers
utilize neural network algorithms for data imputation in scRNA-seq, effectively mitigating
noise in gene expression profiles [20–22]. It is noteworthy that a significant advantage of
DL in scRNA-seq data analysis is its capacity to handle nonlinear relationships between
genes. In tasks like batch effect correction [23,24], cell type identification [25], and gene
regulatory network [26,27] analysis, DL methods outperform traditional ones in terms of
flexibility and efficiency. Deep learning also finds significant application in the field of
spatial transcriptomics. Owing to sequencing technology limitations, emerging spatial
transcriptomics has not yet achieved single-cell resolution in gene expression detection.
Deep learning can be employed to synergistically analyze single-cell and spatial transcrip-
tomic data, addressing this challenge [28,29]. Additionally, deep learning is utilized for
spatial domain identification [30], cell–cell communication [31], 3D reconstruction [32],
and detecting spatially variable genes [33]. Furthermore, the development of pre-training
models such as Genefomer [34] is paving the way for more sophisticated analyses of specific
downstream tasks.

Proteomics is one of the leading application domains for AI. Research includes predict-
ing proteins’ three-dimensional structures and functions from primary sequences, studying
protein interactions, and designing peptides [35]. Natural Language Processing (NLP)
and Computer Vision (CV) methods, such as Transformers and Convolutional Neural
Networks (CNNs), play a crucial role in the field of proteomics, particularly in protein
residue modeling. A notable example is AlphaFold [36], which uses CNNs and RNNs
to accurately predict protein spatial structures. DL also excels in identifying proteins’
biological functions based on amino acid sequences, aiding in both general and specific
protein recognition [37–44]. In peptide research, it has revolutionized traditional methods,
such as mass spectrometry, for peptide identification [45–47]. For protein sequence design,
the ProtGPT2 model by Ferruz et al. [48] demonstrates DL ‘s capability in generating
biologically consistent sequences. Analyzing post-translational modification (PTM) sites is
another critical area where DL, particularly Transformer-based models, effectively classifies
and predicts PTMs [49,50]. In the field of pharmacoinformatics, Artificial Intelligence has
shown potential in predicting drug targets and drug–protein affinity [51,52]. Lastly, DL has
significantly advanced single-cell proteomics analysis, improving proteome coverage and
aiding in cell type/state identification from bulk tissue profiles [53].

Advancements in computing and algorithmic technology are broadening the scope
of AI in life sciences. This evolution has drastically improved the processing and analysis
of biological data, uncovering complex nonlinear correlations within biological systems
and offering innovative approaches for disease research and drug development. AI’s role
in precision medicine is increasingly critical, especially in biomarker discovery, sample
classification, and interpreting disease processes. Despite these advances, DL in life sciences
faces challenges related to dataset type and size, which affect its effectiveness and present
uncertainties. Large-scale datasets demand greater computing power, while factors like
model interpretability, data availability, and quality are pivotal, especially in vital areas
like medical diagnosis and drug development, where understanding the influence of input
features on predictions is crucial for trust in decision making. Future research might focus
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on improving algorithm efficiency and model interpretability to overcome these challenges.
We are optimistic about the potential of DL in omics data analysis, anticipating that its
ongoing development will yield new insights to propel bioinformatics and life science
research forward. These advancements are anticipated to deepen our understanding of
disease mechanisms and lay essential biological and computational groundwork for the
development of future treatments and preventive measures.
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