
Appl. Sci. 2023, 1, 0. https://doi.org/10.3390/app1010000 S1 of S4

Supplementary Materials: Sparse Representations Optimization
with Coupled Bayesian Dictionary and Dictionary Classifier for
Efficient Classification

1. Introduction

This document is provided as a supplementary material for the paper titled "Sparse
Representations Optimization with Coupled Bayesian Dictionary and Dictionary Classifier
for Efficient Classification". We have demonstrated the complete derivation of one of the
conditional probabilities of our Bayesian approach as an example. This derivation can
be generalized for deriving other probability expressions. However, we have also briefly
explained how to derive p(zik|−)

2. Gibbs Sampling

To estimate posterior probabilities in our model, we follow Gibbs sampling infer-
ence. We derive the conditional probability of each posterior variable conditioned on other
posterior variables and the observed data and use this probability in Gibbs sampling for
iteratively drawing samples. The priors used in our approach are in the conjugate expo-
nential family. This facilitates deriving posterior conditional probabilities analytically. The
conditional probabilities of posteriors in the following sections have been derived from the
overall factorized joint distribution of our model (Figure S1), using the Bayes theorem. The
symbol "|−" in the following conditional probabilities of the posteriors means conditioned
on all variables except the variable of the mentioned probability. Here it is understood that
the probability is conditionally independent of all the variables absent in the expression i.e.,
the variables outside the Markov blanket. This can be inferred from Probabilistic Graphical
Model (PGM), Figure S1. The overall joint probability of the model is given below.
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The following example is presented to demonstrate how to derive the conditional
probability of a posterior variable, from the overall joint probability of the model, using the
Bayes theorem. In the following demonstration, "|−" means conditioned on all posterior
parameters, and the evidence except ϕk.
Bayes’s theorem, in general, is given as p(Θ|X) = p(Θ

⋂
X)

p(X)

or p(Θ|X) ∝ p(Θ
⋂

X) = p(X|Θ)p(Θ). Let us derive p(ϕk|−), applying Bayes theorem

i.e., p(ϕk|−) =
p(ϕ,B,A,H,Z,S,λs ,π,λy ,λh)
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Ignoring all expressions that are not dependent upon ϕk, we get
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Figure S1. Bayesian Network.

Let aj
iϕk

and ϕj
k represents jth components of aiϕk

and ϕk, then
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We can write the above equation as
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Now we can easily convert the uni-variate Gaussian distribution derived above to a
multivariate distribution expression. We can sample ϕk from N (ϕk|µk, λ−1
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In a similar fashion, the following are the expressions of conditional probabilities of
posterior variables derived from the overall joint probability of the model, using Bayes
theorem.

Sampling Dictionary Atoms ϕk:

The conditional distribution for taking samples of a dictionary atom may be expressed
as
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Where, aiϕk
= ai − Φ(zi ⊙ si) + ϕk(zik ⊙ sik), is re-construction error induced by all dictio-

nary atoms except kth atom in representing ai. Here dictionary atom does not carry class
label c with it, indicating that we are training a dictionary of the third category where all
the atoms are shared for the representation of a data example. ϕk can be sampled from
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ϕ IM), where

λϕ = λϕo + λa
N
∑

i=1
(zik.sik)

2, µk = λaλ−1
ϕ

N
∑
i=i

(zik.sik)aiϕk

Sampling Classifier Atoms bk:

Similarly, bk can be sampled from N (bk|µk, λ−1
b IC), where
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Here, hibk

is re-construction error

induced by all classifier atoms except kth atom in representing hi. It may be noted here that
we use the same weights, sik, for both the dictionary and the classifier learning.

Sampling zc
ik for assignment of atoms:

The conditional probability for the posterior parameter zc
ik can be expressed as
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putting zc
ik = 0 and zc

ik = 1 alternatively in the above equation, we can calculate the
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ik as below p(zc
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Sampling Sparse Weights sc
ik:

The conditional distribution for sc
ik is
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Here the weights, sc
ik, are learned jointly for the representation of both the training examples

and the training labels. This behavior of our approach makes it distinct from others.

Sampling atoms selection probabilities and pruning atoms πc
k:
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tion of Gibbs sampling according to whether
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Sampling of Precision parameters for Weights λc
s:
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Sampling of Precision Parameter for Data λa:
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Sampling of Precision Parameter for Labels λh:
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