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Abstract: Cloud brokers and service providers are concerned with utilizing available resources to
maximize their profits. On the other hand, customers seek the best service provider/resource to
provide them with maximum satisfaction. One of the main concerns is the variability of available
service providers on the cloud, their capabilities, and the availability of their resources. Furthermore,
various criteria influence the effective assignment of a task to a virtual machine (VM) before it
is, in turn, submitted to the physical machine (PM). To bring cloud service providers (CSPs) and
customers together, this study proposes a broker-based mechanism that measures the tendency
of each customer’s task. Then, the proposed mechanism assigns all tasks—in prioritized order of
importance—to the best available service provider/resource. The model acquires the importance
of each task, CSP, or resource by extracting and manipulating the evaluations provided by decision
makers and by adopting a multi-criteria decision-making (MCDM) method. Thus, a partial result
of the proposed mechanism is a defined and prioritized pool for each of the tasks, CSPs, and
resources. Various MCDM methods are examined and compared to validate the proposed model,
and experiments show the applicability of the various methods within the model. Furthermore, the
results of the experiments verify the suitability and applicability of the proposed model within the
cloud environment.

Keywords: task scheduling; multi-criteria decision making; task tendency; cloud computing;
cloud broker

1. Introduction

The cloud computing environment allows consumers to access and utilize various
resources without owning the infrastructure. The cloud environment consists of various
features, such as service types, cloud protocols, and activities, as well as cloud deployment
models that include public, private, community, and hybrid models. In addition, it contains
three service models: software as a service (SaaS), infrastructure as a service (IaaS), and
platform as a service (PaaS). Cloud consumers are given access to the resources in accor-
dance with the service level agreement (SLA). Cloud technology enables consumers to gain
several benefits, such as minimizing operating costs, improving flexibility, and increasing
mobility. However, to ensure a high level of consumer satisfaction, both consumers and
cloud service providers (CSPs) should consider the quality of service (QoS). Consumers
pay for cloud services, whereas CSPs provide on-demand services. In general, the service
contract (or SLA) specifies the cloud service’s cost based on the quantity and quality of ser-
vice. According to SLA standards, identifying an effective solution for handling consumers’
requests is required even as the number of cloud consumers grows [1]. Service providers
such as Amazon and Google have introduced a variety of cloud services in response to
the rapid development of cloud computing, enabling users to manage enormous datasets
operating on remote servers without having to install and execute on local devices [2].
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Management of the resources required to fulfill consumer needs falls under the
purview of the service provider. CSPs schedule consumer tasks and efficiently allocate
computing resources by using a variety of scheduling techniques. Various kinds of pre-
configured virtual machines (VMs) are used to provide these computing resources. The
VM instances can be selected by consumers depending on their application needs and
concerns related to cost. In a cloud environment, task-scheduling algorithms aim to support
the scheduling of tasks to suitable cloud resources so that optimal performance can be
attained. The execution of tasks in a particular order and how resources are allocated
to tasks affect the performance of cloud systems. Through effective task scheduling and
resource management, service providers seek to boost revenues and fully utilize resources.

Scheduling techniques, such as particle swarm optimization (PSO) [3], the genetic
algorithm (GA) [4], and game theory [5], are commonly used to schedule consumers’ tasks
in a cloud environment. These tasks are managed while considering various criteria, such
as the load and size of the task, the execution time, and the availability of resources [6]. To
effectively handle the resources, a resource management system that can vigorously sched-
ule and allocate resources is required [7]. For a specific task that will boost performance and
must be finished on time, cloud consumers search for the most resources possible. Cloud
services provided by different service providers differ in terms of their performance. Due
to the various data centers and technologies applied, services provided by the exact service
provider can also vary in terms of performance. Globally, data center capacity in different
forms is quickly rising. Inadequate load balancing against available resource allocation is
the primary cause of rising server interruption rates. The most commonly used criteria
for evaluating cloud service performance are the QoS attributes. To address the issue of
measuring cloud-based services, the Cloud Services Measurement Initiative Consortium
(CSMIC) has suggested a hierarchical Standard Measurement Index (SMI) [8]. Usability,
accountability, assurance, agility, security and privacy, financial aspects, and performance
are the seven categories that the framework uses to measure cloud-based services. In
addition, three or more attributes are included in each category, resulting in a total of
51 sub-attributes. For instance, criteria such as accessibility, suitability, operability, learn-
ability, client personnel requirements, installability, transparency, and understandability
are used to further enhance usability.

The consumers of today encounter difficulties when trying to select the most appro-
priate service provider with respect to various considerations, such as available budgets,
operational needs, and performance duration, due to the rapid rise of online cloud services
and providers. The most suitable service provider should be determined by a consumer’s
evaluation of various QoS attributes, such as dependability, security, cost, and perfor-
mance. The consumer’s requirements must be matched with the features of the cloud
services provided by different service providers to determine which CSP is most suitable.
A thorough investigation and a reliable ranking methodology are needed to select an
appropriate CSP. Since this incorporates the inherent linkages among several QoS crite-
ria, this can be classified as a multi-criteria decision-making (MCDM) problem. Recent
years have seen a tremendous increase in investigations of CSP selection while relying on
the MCDM method. For example, Al-Faifi et al. [9] applied K-means algorithms with a
DEMATEL–analytic network process (ANP) to rank CSPs with respect to the interdepen-
dence among the performance measurements. Furthermore, Hussain et al. [10] applied a
hybrid method by integrating the analytic hierarchy process (AHP) with the Induced OWA
(IOWA) operator to assist cloud consumers with selecting the optimal service provider.
The Conditional Preference Networks (CP-nets) framework was proposed by Alashaikh
and Alanazi [11] to select the optimal CSP while considering a group of attributes with
complex interdependencies.

This study explains how to evaluate all parties (CSP, resources, and tasks) by using
the MCDM method. Then, the tendencies of tasks based on upper and lower thresholds
are defined, and these are calculated based on the results of applying the MCDM method.
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Finally, a simple mechanism for optimizing the process of assigning customers’ tasks to the
best available CSP/resource is adopted.

2. Related Work

In a cloud environment, different stakeholders have different interests, which presents
a major challenge [12]. Adopting techniques such as the MCDM method can help de-
cision makers overcome these challenges. Additionally, the effectiveness and efficiency
of job offloading can be enhanced by adopting MCDM methods, such as AHP [13,14].
Krishankumar et al. [15] stated that the Technique for Order of Preference by Similarity to
the Ideal Solution (TOPSIS) and the AHP are the most commonly adopted MCDM tech-
niques in cloud environments. The problem of cloud task scheduling was investigated by
Rafieyan et al. [16] based on the integration of an MCDM method—namely, the Best Worst
Method (BWM)—and the VIekriterijumsko KOmpromisno Rangiranje (VIKOR) (or Multi-
criteria Optimization and Compromise Solution) method. Task priorities were specified by
implementing the VIKOR method and by considering various levels of priorities, such as
the resource, scheduling, and task levels. The authors argued that the integration of the
BWM and VIKOR enhanced factors such as the waiting time, throughput, and the utiliza-
tion of VMs. Lai et al. [17] integrated the double-normalization-based multiple aggregation
(DNMA) approach into the Z-number environment to overcome limitations in the existing
MCDM method for CSP selection. The presented method considered various qualitative
and quantitative factors, such as cost and target types, for sustainable service provider de-
velopment. Lai et al. [18] ranked different CSPs based on a combined compromise solution
(CoCoSo) method. The authors introduced a maximum variance optimization framework
to ensure consistent results. Neeraj et al. [19] compared different MCDM techniques, such
as TOPSIS, the AHP, VIKOR, and the Preference Ranking Organization Method for Enrich-
ment of Evaluations (PROMETHEE) II, to find the most efficient method in terms of time
consumption and robustness in a cloud environment. The results showed that the AHP
and TOPSIS were equivalent in terms of robustness. Kumar et al. [20] proposed a workflow
scheduling algorithm for a cloud environment based on the integration of TOPSIS with
the entropy weight method (EWM). The proposed method considered various significant
criteria, such as reliability, time, cost, and energy consumption. The main objective of their
study was to reduce costs, energy consumption, and execution time. Based on the VIKOR
approach, Radi et al. [21] provided a service broker policy for choosing the optimal data
center in cloud computing. Through consideration of variables including cost, response
time, and data center processing time, the policy sought to maximize user priorities.

A multi-criteria-based resource score heuristic for cloud workflow scheduling was
introduced by Chitra [22]. The heuristic was created with the aim of lowering the makespan
while taking the probability of the physical resources’ temporal availability for the VMs
into consideration. Following the creation of an initial schedule based on a priority list
of tasks, the task-to-VM mapping was refined in real time to adapt to dynamic changes
in the availability of cloud resources. A comparative investigation of MCDM techniques
in the backfilling process for executing tasks with deadlines in a cloud environment was
proposed by Nayak et al. [23]. In the backfilling algorithm, proper resources were supplied
by the backfill tasks. When there were similar tasks, some of the tasks were classified as
backfill tasks, resulting in a difficult problem. The backfilling algorithm was simulated
alongside the AHP, VIKOR, and TOPSIS to prevent scheduling conflicts among identical
tasks. Meesariganda and Ishizaka [24] presented a mapping/scaling technique based on
the AHP to solve strategic decision problems in a cloud environment. The proposed model
considered six criteria, including risk, financial benefits, core competency, and customer sat-
isfaction. These criteria were weighted to evaluate three alternatives, which were integrated,
hardware, and no entry. Achieving a QoS that met customers’ requirements within a certain
cost range by using the GA was addressed by Devarasetty and Reddy [4]. SELCLOUD is
a framework proposed by Jatoth et al. [25] to help with selecting the best CSP based on
the integration of the AHP with Grey TOPSIS. An uncertainty-based approach for edge
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computing with balanced resource provision and cost regarding energy utilization was
developed by Xu et al. [26]. In order to accomplish cost- and energy-effective dynamic
resource allocation, multi-objective dynamic allocation with balanced scheduling methods
were adopted. Youssef [27] presented a model for selecting the best CSP based on the inte-
gration of the BWM with TOPSIS. Various significant criteria, such as response time, security,
maintainability, reliability, sustainability, usability, cost, and scalability, were evaluated by
using BWM–TOPSIS. Kumar et al. [28] introduced a model for selecting a suitable CSP
based on the AHP integrated with TOPSIS. The authors used an AHP importance scale
ranging from one to nine to determine the weight of each service provider while considering
a number of attributes, such as data privacy, accuracy, assurance of data integrity, and relia-
bility. Sun et al. [29] evaluated the interdependence of criteria with regard to cloud service
selection with criterion interactions. The interdependencies of the criteria were evaluated
based on a fuzzy measure and the Choquet integral, and the importance of the criteria was
determined by using pairwise comparisons. A Fuzzy–Euclidean–Taxicab-distance-based
method was proposed by Garg [30] to select the suitable cloud deployment model. The
introduced model consisted of four cloud deployment models as alternatives, as well as
three decision parameters that included 17 sub-parameters.

Nawaz et al. [31] proposed a cloud broker architecture for selecting the best service
provider while considering changes in cloud consumers’ preferences. The authors adopted
the BWM to rank the available services, and the findings showed that better performance
could be achieved when using the BWM rather than other MCDM techniques, such as the
AHP. Alhubaishy and Aljuhani [32] proposed a framework for prioritizing cloud tasks
while considering consumers’ preferences by using the BWM. The proposed framework
allowed consumers to evaluate a broad range of criteria with more flexibility in terms of
adding or altering criteria to meet their preferences. Nazeri and Khorsand [33] studied the
management of energy consumption in a cloud environment when executing applications.
The authors integrated the fuzzy AHP with TOPSIS to prioritize various cloud solutions
with respect to consumers’ requirements. Malhotra et al. [34] introduced the integer
multiplication (IM) method based on the AHP as a simplified and effective prioritization
technique. IM assisted cloud consumers with making quick decisions with respect to their
preferences when selecting a suitable CSP. In addition, the IM method was used to evaluate
important decision-making criteria, such as performance, safety, memory, and cost, as well
as several sub-criteria, such as availability, reliability, throughput, power consumption,
response time, and bandwidth. The authors compared the IM method’s results with those
of the existing geometric mean (GM) method to prove the power of the IM method over
the GM method. Saha et al. [35] used the ANP integrated with VIKOR to determine the
best CSP. The ANP is a general version of the AHP, and it allows decision makers to
model decision elements in different clusters. The authors used the ANP to rank local
service providers and used VIKOR for the global ranking. The ANP network contained
criteria such as accountability, agility, flexibility, adaptability, security, performance, and
serviceability. These criteria were evaluated with respect to different goals, such as benefits
and opportunities, to rank three service providers and select the most suitable one.

Table 1 presents a comparison of several algorithms based on task rankings and when
they should be used, including the GA, Ant Colony Optimization (ACO) algorithms, First
Come First Service (FCFS), Short Job First Scheduling (SJF), and the BWM.

Table 1. Comparison of various algorithms based on how tasks are ranked and when the algorithms
should be adopted [36].

Priority of Tasks When the Algorithm Is the Best Choice

GA

The advantage of the chromosomal form is
that it preserves the sequence in which

tasks are to be completed on the
designated nodes.

This is a feasible alternative in a large
solution search space, but it requires more

processing time than other methods.



Appl. Sci. 2024, 14, 302 5 of 17

Table 1. Cont.

Priority of Tasks When the Algorithm Is the Best Choice

ACO

The virtual machine is chosen for the
subsequent task based on the ant iteration
after tasks are arranged in either ascending
or descending order. After each iteration,

the number of solutions is equal to the
number of ants.

For task scheduling, it is the optimum
option in soft real-time systems.

SJF
Tasks are prioritized by starting with the

least and working up to the greatest based
on their durations.

This is suitable in situations in which
shorter tasks are more crucial than

longer ones.

FCFS According to the time of their arrival, the
tasks are listed in the task list.

This method works well when the solution
search space is small.

BWM The proportional relevance of the tasks
determines their order of priority.

This is a suitable option when the focus is
on the weight of the tasks.

3. Framework

The proposed mechanism seeks to effectively prioritize tasks and efficiently assign
them to a VM before the actual allocation of the VM to a PM. Therefore, the proposed
mechanism is considered a task scheduling mechanism [37]. Figure 1 shows the proposed
multi-criteria task scheduling mechanism. The first component of the framework consists
of three sets of inputs to initiate the evaluation and assignment of tasks to the best-matched
resources. The first set contains all available service providers (SPs) in the cloud, along with
the set of important criteria used to evaluate the SPs. The second set contains all available
tasks that the model needs to efficiently assign to the best-matched resources along with
the criteria that the customer will use to evaluate the tasks. The last set of inputs contains
all available resources in the cloud along with the criteria for evaluating these resources.

Figure 1. Framework for multi-criteria task scheduling.
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The second component of the framework acquires the preferences of the SPs and
customers to initiate the prioritization process. These preferences are fed to the MCDM
method in the next component of the framework. “Preference” refers what is more impor-
tant to the SP (or customer) in order to help the framework find the best assignment. For
example, one SP is more concerned with reputation than other criteria, while another SP
prefers executing tasks with a high price, and so on. Similarly, one customer might prefer
the execution of tasks with a low price over those requiring a short time, while another
customer is more concerned with the availability of the service than the price, and so on.
In the third component of the framework, the actual prioritization process takes place to
provide the prioritized list of SPs, customers, and resources.

As mentioned in the literature review, various MCDM methods, such as the
AHP ([37,38]), the ANP [35], and the BWM [16], have proven their ability in cloud task
scheduling. Each MCDM method has its advantages and disadvantages. Regardless of the
underlying MCDM, which can certainly influence the effectiveness of the framework, we
consider the selection of a suitable MCDM method that occurs during the implementation
phase of the proposed framework. When implementing the framework, it is important
to select the MCDM method during the early stages. However, differences regarding the
type of information needed from the decision maker, SP, or customer should be considered
when selecting the MCDM method. For example, the AHP and ANP require the decision
maker to give pairwise comparisons between each pair of criteria, while the BWM requires
the decision maker to select the best criterion and the worst criterion and give pairwise
comparisons between only the best and worst criteria and all other criteria. Applying an
MCDM method results in prioritized sets of SPs, tasks, and resources. The main reason
to have separately prioritized SPs and prioritized resources is to enable task execution
based on their tendency. “Task tendency” means that if the customer’s preference shows
more of a tendency toward the execution of his/her tasks, the tasks will be assigned to
the best available resources among the prioritized resources, regardless of the SPs that the
resources belong to. On the other hand, if the customer is more concerned with criteria
related to the overall evaluation of SPs, his/her tasks will be assigned to the resources of
the best available SPs. To illustrate the task tendency, suppose that the framework has
three criteria for evaluating tasks: completion time, availability, and reputation. Suppose
that the customer’s evaluation shows that reputation is the most important criterion (80%),
followed by availability (15%) and completion time (5%). In this case, we say that the
task tends to the SPs more than the resources; therefore, we assign it to the best available
SPs. Suppose that the results show the completion time (70%) to be the most important,
followed by reputation (20%) and availability (10%). In this case, we say that the task
tends to the resources more than the SPs; therefore, we assign it to the best available re-
source. We propose that the threshold for measuring the tendency of the tasks be based on
(1) the number of SP-based/resource-based criteria and (2) the overall weight of the criteria
resulting from the MCDM method. Finally, it is important to have a suitable mechanism for
managing the load among the available resources; many mechanisms have been provided,
as mentioned in the literature. However, the load fairness assignment is beyond the scope
of this study; therefore, we examine the proposed method without considering this issue.
Algorithms 1 and 2 show the steps of prioritizing and scheduling tasks.
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Algorithm 1: Prioritization of Tasks, Service Providers, and Resources

Input: 1. Sets of SPs, tasks, and resources.

2. Sets of criteria for SPs, tasks, and resources.

Output: Prioritized SPs, tasks, and resources

1. Select the MCDM method.

2. Each SP evaluates its overall capability, and preferences are acquired.

3. Each SP evaluates tasks, and preferences are acquired.

4. Each SP evaluates the capability/performance of its resources, and

preferences are acquired.

5. Apply the selected MCDM method to each evaluation.

6. Calculate the overall weight of each set of criteria.

7. Prioritize SPs.

8. Prioritize tasks.

9. Prioritize resources.

Algorithm 2: Scheduling of Tasks Based on Their Tendencies

Input: Prioritized SPs, tasks, and resources.

Output: Assignment of tasks to the best available resources.

1. Calculate the tendency of each task based on a certain threshold.

2. Based on the task tendency, store each task in either the “Ts-tendency-to-SPs” list

or “Ts-tendency-to-resources” list.

3. Calculate the overall ranking of tasks for the “Ts-tendency-to-SPs” list.

4. Calculate the overall ranking of tasks for the “Ts-tendency-to-resources” list.

5. Assign each task in the “Ts-tendency-to-SPs” list to a resource in the best

available SPs.

6. Assign each task in the “Ts-tendency-to- resources” list to the resource in the

best available resources regardless of its SPs.

4. Experimental Results and Discussion

In the beginning, the criteria for evaluating SPs, cloud resources, and tasks should be
determined. As stated in the introduction, the hierarchical SMI framework proposed by
the CSMIC includes seven categories, and each category consists of several sub-attributes.
Based on the SMI framework, criteria such as provider business stability, provider certi-
fications, provider personnel requirements, profit or cost sharing, reputation, and trust
can be used to evaluate various CSPs. In addition, criteria such as adaptability, portability,
recoverability, reliability, performance, and cost can be used to evaluate cloud resources.
However, in this study, four criteria were selected to measure the tendency of each task.
These criteria were reputation, trust, performance, and cost.

In experiment 1 and 2, the AHP was applied to rank a set of SPs, resources, and
tasks. The AHP method was introduced by Saaty [39] as a theory of measurement to solve
complex decision problems. A pairwise comparison matrix was used to derive the ratio
scale in the AHP approach. The structure of the AHP consists of three levels, which are the
goal, criterion, and alternative levels. At the goal level, the objective of applying the AHP
or the decision problem that needs to be solved is identified. The criterion level contains all
possible criteria related to the decision problem, and this affects the alternatives. In addition,
the criterion level may include sub-criteria if they are needed during the structuring of the
decision problem. The alternative level includes all possible solutions that are evaluated
with respect to the selected criteria to find the optimal solution. However, in order to
maintain consistency of judgment, the number of alternatives should be reasonably small;
therefore, the AHP was adopted in Experiments 1 and 2 to consider a suitable number of
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alternatives. After structuring the decision problem, consumers provide their preferences
for each AHP level and assess each element in the model. The preferences are entered into
the pairwise comparisons in the AHP using the fundamental scale of comparisons. The
Super Decision software (Version 2.10) [40] was used to count the aggregation judgments
for the AHP and ANP.

In Experiment 3, the ANP was applied; this is a generalized version of the AHP. The
ANP’s structure is based on a network that contains several nodes or clusters. Each node
consists of several elements that are needed for the decision problem. These nodes represent
various criteria and their sub-criteria. In addition, the ANP network should include an
alternative node that contains the proposed solutions. The main difference between the
ANP and the AHP is that in the ANP, the interdependence among the network elements is
taken into consideration and feedback is allowed within the network structure. In the ANP,
feedback means that high-node elements can be evaluated with respect to the low-node
elements, and this cannot be achieved in a hierarchical structure. Similarly to the AHP,
consumers’ preferences are entered into the pairwise comparisons of the ANP using the
fundamental scale of comparisons. The ANP allows decision makers to maintain more
consistency with a large number of elements in the network with respect to its structure;
therefore, it was adopted with large numbers in Experiment 3; however, the ANP method
consumes more time than the AHP due to its complicated structure.

The BWM was applied in Experiment 4 to rank several SPs, resources, and tasks.
The BWM was introduced by Rezaei [41] to overcome the heavy calculations of the AHP,
which makes the BWM a light pairwise decision method. The BWM proved its power
and reliability in structuring decision problems and achieving consistent results when
compared with other MCDM techniques. In comparison with the AHP and ANP, the BWM
allows decision makers to include large numbers of decision elements while maintaining
consistency and simplicity by reducing the number of computations needed. Therefore,
the BWM was adopted in Experiment 4 with a larger number of elements than in the other
experiments, and the Solver Linear BWM was used to calculate the judgments for the BWM
adoption. The idea of the BWM is to compare the best attribute with all other attributes
and to compare the worst attribute with all other attributes. Thus, the decision makers
should determine the best and worst attributes at the beginning. The optimal weights of all
attributes, including the best and worst attributes, are calculated based on the preferences
that were entered by using the fundamental scale.

4.1. Experiment 1

In the first experiment, eight tasks were prioritized and assigned to the best-matched
of two SPs and four resources. SPs and resources were prioritized based on the preferences
of SPs, while tasks were prioritized based on the customers’ preferences. The underlying
method for prioritization was the AHP. Table 2 shows all prioritized SPs and their resources
along with their weights and ranks.

Table 2. Preference-based ranking of SPs and their resources (Experiment 1).

SP Weight Rank R Weight Rank

1 0.67 1 1 0.09 4
2 0.33 1

2 0.33 2 3 0.34 2
4 0.24 3

The four criteria were then prioritized and ranked based on the customers’ preferences
to prioritize all of the customers’ tasks. The overall results of prioritizing the criteria were
found to be: reputation (0.32%), trust (0.44%), performance (0.15%), and cost (0.09%). Thus,
Table 3 shows all customers’ tasks, along with their weights and ranks.
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Table 3. Preference-based ranking of tasks (Experiment 1).

T Weight Rank

1 0.10 6

2 0.16 2

3 0.08 7

4 0.07 8

5 0.12 4

6 0.13 5

7 0.18 1

8 0.15 3

To assign each task to either an SP or a resource in the cloud, we first needed to
compute the thresholds to identify the tendency of each task. The upper threshold was
considered to be the sum of all SP-based criteria weights, and the lower threshold was
considered to be the sum of all R-based criteria weights. The sum of all SP-based criteria
weights was 0.76 (the sum of reputation weights was 0.32, and that of trust weights was
0.44), and the sum of all R-based criteria weights was 0.24 (the sum of performance weights
was 0.15, and the sum of cost weights was 0.09). Therefore, we determined all tasks for
which the sum of the weights was less than the upper threshold, and we identified their
tendency toward SPs. The weights of the rest of the tasks were greater than or equal to the
lower threshold; therefore, their tendency was set toward resources. Note that the sum of
weights considers the sum of the prioritized tasks; therefore, the rank and the threshold
play important roles in determining which task tends to an SP and which does not. The
results of the assignment are shown in Table 4.

Table 4. Categorization and assignment of tasks (Experiment 1).

Tendency T SP/Resource

2 SP1
5 SP2

SP-Tendency 6 SP2
7 SP1
8 SP1
1 R3

R-Tendency 3 R2
4 R4

After classifying all tasks’ tendencies as either an SP-tendency or an R-tendency, we
assigned each task to the best match with either the prioritized SPs or the prioritized
resources. Any of the techniques mentioned earlier could be used for this assignment
process. For simplicity, we assigned each task as follows.

For each SP,
NTs =

∣∣∣NSP-tendency ∗ SPw

∣∣∣ (1)

where NTs is the number of tasks assigned to each SP, NSP-tendency is the number of tasks in
the SP tendency category, and SPw is the weight of the SP.

By applying Equation (1), we calculated the number of tasks for each SP. It is important
to mention that the assignment process should start from the pool of the prioritized SPs, i.e.,
the highest-ranked SP down to the lowest-ranked SP, in order to obtain efficient assignment.
Similarly, tasks with the highest ranks should have the priority to be assigned to the best
match among the available SPs.
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The assignment process for the second category—concerning the R-tendency—was
conducted in a similar manner but by considering the pool of prioritized resources instead.
Thus, we assigned each task to a resource as follows.

For each R,
NTs =

∣∣∣NR-tendency ∗ Rw

∣∣∣ (2)

where NTs is the number of tasks assigned to each R, NR-tendency is the number of tasks in
the R-tendency category, and Rw is the weight of the R.

By applying Equation (2), we calculated the number of tasks for each R until we
assigned all of the remaining tasks. Table 4 shows the results, where each task was classified
and assigned to a resource of a certain SP or any other resource that could accommodate
the customer’s preferences.

4.2. Experiment 2

The second experiment adopted the same underlying prioritization method, the AHP,
but the difference was the increased number of SPs, resources, and tasks. The main
reason for this experiment was to assess the applicability of the proposed model with a
larger number of resources and tasks. An experiment was conducted to assign 12 tasks to
8 resources belonging to 5 SPs (see Table 5).

Table 5. Preference-based ranking of SPs and their resources (Experiment 2).

SP Weight Rank R Weight Rank

1 0.28 1 1 0.03 8

2 0.24 3 2 0.07 6

3 0.26 2 3 0.22 1
4 0.14 5

4 0.002 5 5 0.22 2
6 0.14 4
7 0.04 7

5 0.21 4 8 0.15 3

The prioritization of tasks was acquired after prioritizing the four criteria. The results
in this experiment differed and showed the following weights: reputation, 0.25%; trust,
0.40%; performance, 0.20%; cost, 0.15%. Table 6 shows the final weights and prioritization
of the 12 tasks.

Table 6. Preference-based ranking of tasks (Experiment 2).

T Weight Rank

1 0.13 3

2 0.06 8

3 0.11 4

4 0.03 12

5 0.13 2

6 0.15 1

7 0.05 9

8 0.03 11

9 0.10 6

10 0.04 10

11 0.08 7

12 0.10 5
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The upper threshold was 0.65 and the lower threshold was 0.35, which resulted in
the first five tasks tending to the SP-tendency category and seven tasks tending to the
R-tendency category. Similarly, Equations (1) and (2) were adopted for the prioritized tasks,
and they were matched with the best option in either the pool of prioritized SPs or the pool
of prioritized resources based on each task’s tendency. Table 7 shows the final assignment
of each task with the best match.

Table 7. Categorization and assignment of tasks (Experiment 2).

Tendency T SP/Resource

6 SP1
5 SP1

SP-Tendency 1 SP1
3 SP3

12 SP3

9 R5
11 R4
2 R5

R-Tendency 7 R6
10 R3
8 R8
4 R3

4.3. Experiment 3

In the third experiment, we proposed the ANP as the underlying prioritization
method to prioritize SPs, resources, and tasks. The experiment was conducted on 8 SPs,
12 resources, and 16 tasks. Table 8 depicts the weights and ranks after conducting the
prioritization process for the SPs’ preferences.

Table 8. Preference-based ranking of SPs and their resources (Experiment 3).

SP Weight Rank R Weight Rank

1 0.23 1 0.16 1
1 2 0.08 7

2 0.05 2 3 0.12 4
3 0.20 4 0.02 11

2 5 0.11 5
4 0.17 3 6 0.06 10
5 0.11 5 7 0.14 2

8 0.00 12

6 0.06 9 0.13 3
7 10 0.06 9

7 0.06 6 11 0.07 8

8 0.12 4 12 0.10 6

The calculated weights of the four prioritized criteria based on customers’ preferences
were as follows: reputation, 0.51%; trust, 0.32%; performance, 0.12%; cost, 0.05%. Table 9
shows the final weights and prioritization of the 16 tasks.

Table 9. Preference-based ranking of tasks (Experiment 3).

T Weight Rank

1 0.08 5

2 0.12 2

3 0.12 1

4 0.03 14

5 0.04 11
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Table 9. Cont.

T Weight Rank

6 0.04 13

7 0.09 4

8 0.01 16

9 0.06 9

10 0.07 8

11 0.01 15

12 0.08 7

13 0.09 3

14 0.05 10

15 0.08 6

16 0.04 12

The upper threshold in this experiment was 0.83 and the lower threshold was 0.12,
which, as expected, allowed more tasks to be assigned to an SP regardless of the character-
istics of its resources. The results shown in Table 10 illustrate the final assignment of all
16 tasks after applying Equations (1) and (2) to the prioritized SPs and resources.

Table 10. Categorization and assignment of tasks (Experiment 3).

Tendency T SP/Resource

3 SP1
2 SP1

13 SP3
7 SP3

SP-Tendency 1 SP4
15 SP4
12 SP8
10 SP5
9 SP7

14 R1
5 R7

16 R9
R-Tendency 6 R3

4 R5
11 R12
8 R2

4.4. Experiment 4

In the last experiment, we used the BWM as the underlying prioritization method
to acquire the SPs’ and customers’ preferences and to prioritize 10 SPs, 16 resources, and
20 tasks. The results of adopting the BWM are shown in Table 11.

Table 11. Preference-based ranking of SPs and their resources (Experiment 4).

SP Weight Rank R Weight Rank

1 0.06 7 1 0.10 1

2 0.14 4 2 0.09 3

3 0.17 3 3 0.04 13
4 0.18 3 4 0.08 7

5 0.07 8

5 0.10 5 6 0.05 11
7 0.08 6

6 0.01 10 8 0.09 2
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Table 11. Cont.

SP Weight Rank R Weight Rank

9 0.06 10

7 0.05 8 10 0.04 14
11 0.08 5

8 0.17 2 12 0.02 15

9 0.04 9 13 0.04 12
14 0.08 4

10 0.07 6 15 0.07 9
16 0.02 16

Similarly to the previous experiments, we calculated the weights of the four criteria to
prioritize the tasks accordingly. However, the result of this experiment showed different
weights, which affected each task’s tendency. The weights were as follows: reputation,
0.11%; trust, 0.23%; performance, 0.38%; cost, 0.28%. Table 12 shows the final weights and
prioritization of the 20 tasks.

Table 12. Preference-based ranking of tasks (Experiment 4).

T Weight Rank

1 0.01 16

2 0.05 11

3 0.025 13

4 0.10 1

5 0.02 14

6 0.09 3

7 0.00 17

8 0.00 18

9 0.01 15

10 0.09 4

11 0.00 19

12 0.09 9

13 0.06 10

14 0.10 2

15 0.08 7

16 0.08 6

17 0.08 8

18 0.00 20

19 0.04 12

20 0.09 5

The upper threshold in this experiment was 0.34 and the lower threshold was 0.66,
which, as expected, allowed more tasks to be assigned to a resource regardless of its SP’s
characteristics. The results in Table 13 illustrate the final assignment of all 16 tasks after
applying Equations (1) and (2) to the prioritized SPs and resources.



Appl. Sci. 2024, 14, 302 14 of 17

Table 13. Categorization and assignment of tasks (Experiment 4).

Tendency T SP/Resource

3 SP4
SP-Tendency 2 SP8

13 SP3

7 R1
1 R1

15 R8
12 R8
10 R2
9 R2

14 R14
5 R11

R-Tendency 16 R7
6 R4
4 R5

11 R15
11 R9
11 R6
11 R13
11 R3
8 R10

4.5. Discussion

The results of the four experiments showed that the two algorithms were effective and
correct. Regardless of the various numbers of inputs in each experiment, the main influence
in the model was the underlying MCDM. Based on the conducted experiments, it is evident
that each selected underlying prioritization method had a different structure for ranking
and evaluating the SP and resource criteria. The AHP used in Experiments 1 and 2 used a
hierarchical structure with fewer pairwise comparisons than the ANP, which was used in
Experiment 3. However, the ANP allowed decision makers to represent more real problems
by considering the interdependence among network elements. The time consumed by
the ANP due to its complex calculations makes it less commonly used than the AHP and
other ranking MCDM methods. The Super Decision software is an automated tool that
can be used to facilitate calculations in both the AHP and ANP. In Experiment 4, the BWM
was used as an underlying prioritization method, and the main concept of this method
is to overcome the limitations of both the AHP and ANP by allowing decision makers to
solve decision problems with less time and effort. The BWM depends on determining the
best and worst criteria and then comparing these two over the other criteria within the
decision problem with no need to evaluate each criterion with respect to all others. The
maximum number of pairwise comparisons needed in the BWM is 2n − 3 comparisons,
while the AHP, for example, requires n(n − 1)/2 comparisons. In this way, the number of
pairwise comparisons is minimized, which makes the BWM more suitable for use with
large numbers of criteria and alternatives.

It is important to mention that the model lacks the ability to infer useful information
and prioritize the SPs, customers, and tasks based on historical data. Instead, the model
was only tested and validated by creating sets of inputs; this could be the main threat to its
validity. Therefore, validating the model with more real datasets that incorporate historical
data and enabling the model to process these data to prioritize SPs, customers, and tasks
can lead to an enhancement of the efficiency and the effectiveness of the model.

5. Conclusions and Future Work

This study proposed a task scheduling mechanism for properly prioritizing tasks
and assigning them to various VMs before allocating them to PMs. The evaluation and
task assignment process in the framework begins with three sets of inputs. All of the
cloud-based SPs are included in the first set, along with a list of crucial attributes for
assessing SP quality. Furthermore, the second set includes all available tasks and the
criteria according to which the tasks should be evaluated by a cloud consumer. The final set
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of inputs includes all available cloud resources as well as the attributes used to assess them.
Moreover, the proposed framework adopts an MCDM technique to prioritize different
preferences and provide a prioritized list of SPs, tasks, and resources. Different MCDM
techniques can be adopted in the presented framework. For example, in Experiments 1
and 2, the AHP was adopted as an MCDM, while the ANP and BWM were adopted in
Experiments 3 and 4, respectively. The AHP allows decision makers to use a top-to-bottom
structure, while the ANP structure depends on a network consisting of several nodes while
considering elements’ interdependencies. On the other hand, the BWM structure depends
on identifying the most-desired criterion and the least-desired criterion and then making a
pairwise comparison with respect to these two criteria with no need to compare all of the
model’s items. This reduces the time needed to evaluate each SP, resource, and task when
using the BWM. The primary objective of having separately prioritized SPs and prioritized
resources is to make it possible to execute tasks in accordance with their tendencies.

Future work can be carried out to extend the current model so that it includes var-
ious types of inputs. For example, a broker can accommodate historical data about the
performance and other criteria of SPs and their resources to give a realistic evaluation
and prioritization of all available SPs. Furthermore, the model can utilize/combine other
MCDM methods to expedite the task scheduling mechanism. Finally, the model should be
supplemented with a robust mechanism that assures fairness when assigning tasks, and
validating this supplement with real data is important.
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