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Abstract: For the problem that the fault states of parallel shaft gearboxes are difficult to identify, a
diagnostic method is proposed to optimize variational modal decomposition (VMD) and t-distributed
stochastic neighbor embedding (t-SNE) using an improved dung beetle optimization algorithm I have
checked and revised all. (IDBO). IDBO is obtained by amplifying dung beetle optimization (DBO)
using strategies such as chaos mapping, Levy flight policy, and dynamic adaptive weighting. IDBO is
employed to optimize VMD, extracting decomposed eigenvalues restructured into high-dimensional
feature vectors. Subsequently, we employ the t-SNE algorithm for dimensionality reduction to
eliminate redundancy, obtaining two-dimensional vectors. Finally, these vectors are input into a
support vector machine (SVM) for fault diagnosis. We apply IDBO, grey wolf optimization (GWO),
DBO, and the sparrow search algorithm (SSA) to both benchmark functions and VMD, conducting a
performance comparison. The results demonstrate that IDBO exhibits superior convergence speed
and global search capability, effectively suppressing modal aliasing issues in VMD, thereby enhancing
the algorithm’s robustness. Through experimental fault diagnosis on a gear transmission system, we
compare our proposed method with EMD + t-SNE and traditional VMD + t-SNE feature extraction
approaches. The experimental results indicate that the fault diagnosis accuracy reaches 100% after
processing the fault signals with IDBO-VMD + t-SNE. This method proves to be an effective fault
diagnosis approach specifically tailored for parallel-axis gearboxes, providing a reliable means to
enhance diagnostic accuracy.

Keywords: fault diagnosis; feature extraction; IDBO; t-SNE; VMD

1. Introduction

Parallel-axis gearboxes are one of the most common components in mechanical trans-
missions and are widely utilized in various rotating mechanical equipment, serving as
crucial transmission structures in several fields such as aerospace, metallurgy, chemical
engineering, shipping, and the automotive industry [1]. However, due to high loads and
severe operating conditions, gearboxes are prone to various issues including pitting, wear,
cracking, and even tooth breakage. Improper selection of surface coatings and lubricants
can also accelerate gear wear, potentially leading to accidents [2]. To prevent accidents, it
is crucial to conduct research on the durability, noise, and vibration of gears. Durability-
related studies primarily focus on dynamic tooth forces and dynamic stress coefficients,
while noise studies concentrate on dynamic transmission errors and gearbox vibration [3].
Vibration signals are easier to collect and utilize for fault diagnosis, providing an effective
means to prevent accidents.

Due to the structural characteristics and complex operating conditions of parallel-
axis gearboxes, gear meshing can result in impact or collision when gears experience
faults [4]. This non-steady force or torque input leads to the nonstationary nature of
vibration signals, which exhibit nonlinear and nonstationary properties [5]. Therefore,
preprocessing of raw signals is necessary before feature extraction. In 1998, Huang et al. [6]
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introduced the Hilbert–Huang transform (HHT) algorithm, incorporating the empirical
mode decomposition (EMD) algorithm, and successfully applied it to the decomposition
of mechanical vibration signals with certain effectiveness. However, EMD has drawbacks
such as mode mixing and endpoint effects [7,8]. Subsequently, Dragomiretskiy proposed
variational mode decomposition (VMD) [9], an adaptive signal processing method. This
method’s decomposition approach differs from EMD, using a non-recursive variational
mode that effectively addresses endpoint effects and mode mixing issues. Due to its ability
to determine the number of decomposed modes and having mathematical theoretical
support, VMD is widely applied in the field of fault diagnosis [10]. However, a drawback of
this method is that the decomposition quantity K and penalty factor α significantly impact
the decomposition results, necessitating further improvements to the VMD algorithm.
Tang et al. [11] explained VMD principles and optimized it using the particle swarm
optimization (PSO) algorithm, applying it to fault diagnosis. Test results indicate that this
method can identify faults more rapidly and accurately. However, the PSO algorithm is
sensitive to population initialization, and significant differences in the initial population
distribution may affect the quality of feature information extraction methods.

The effectiveness of feature extraction methods determines the success of fault diag-
nosis, especially in the process of extracting features from nonlinear and non-stationary
signals. Entropy, as a sensitive feature, is widely applied in the field of fault diagnosis [12].
Analyzing signals using entropy helps measure signal complexity [13]. Li Yuxing et al. [14]
extracted permutation entropy for four types of ship signals as a fusion feature vector,
inputting it into a support vector machine (SVM) model for classification and recognition.
Experimental results show that this method has a higher recognition rate compared to
existing methods. However, a single entropy characteristic may not fully reflect the feature
information of the signal. Therefore, it is necessary to extract different entropy features
and time–frequency domain features. However, when the extracted feature dimensions
are high, they may contain redundant information. Therefore, dimensionality reduction
methods are needed for secondary feature extraction to eliminate redundant features. Tra-
ditional dimensionality reduction methods such as principal component analysis (PCA)
do not perform well on nonlinear structural data, and local linear embedding (LLE) can
only preserve the original manifold structure of the data. On the other hand, t-distributed
stochastic neighbor embedding (t-SNE) not only has excellent dimensionality reduction
capabilities for nonlinear data but also helps separate and cluster fault types.

With the development of machine learning, population-based algorithms have been
widely applied to VMD due to their advantages in optimization algorithm effectiveness.
Compared to existing algorithms, the cockroach optimization algorithm (DBO) has stronger
optimization capabilities and faster convergence speed. However, its structure still needs
further improvement to meet practical needs. Therefore, addressing the gearbox fault
diagnosis problem in parallel-axis gearboxes, this paper proposes a diagnostic method
based on the improved cockroach optimization algorithm for optimizing VMD, feature
extraction, and combination with t-SNE. This algorithm optimizes VMD through IDBO to
determine the number of decomposed intrinsic mode functions (IMFs) and the optimal
penalty factor. It extracts features such as time–frequency domain, permutation entropy,
fuzzy entropy, and sample entropy as feature vectors. As gear fault signals are nonlinear
vibration signals, support vector machines (SVMs) excel in handling nonlinear problems,
aiding in capturing these complex features. Therefore, SVM is chosen as the fault classifier
to enhance the accuracy of fault diagnosis. Through experiments, the feasibility and
practicality of the proposed method are verified.

2. Algorithm Principle
2.1. Variational Mode Decomposition (VMD)

VMD is an adaptive, completely non-recursive signal processing method. Its adapt-
ability is evident in the iterative process used for decomposition. The decomposition
process can constantly update the center frequency and finite bandwidth of each mode,
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and, finally, the optimal modal component K [15,16] can be obtained. Therefore, VMD
essentially involves formulating a variational problem and solving the variational problem.

To address the variational problem, VMD decomposes the original signal into multiple
intrinsic mode functions, where the expression of the i-th mode function is:

vi(t) = Ai(t) cos[ϕi(t)] (1)

where i ∈ {1, . . ., K}; Ak(t) represents the envelope function; vi(t) is discrete time series with
limited bandwidth.

For each mode functions, its spectral expression is obtained using the Hilbert transform:(
δ(t) +

j
πt

)
· vi(t) (2)

The spectrum of each mode is shifted to the corresponding estimated center frequency,
denoted as: [(

δ(t) +
j

πt

)
· vi(t)

]
· e−jωit (3)

Through the computation of the square of the time gradient’s L2 norm for the demod-
ulated signal, the effective bandwidth of the modal functions is estimated. This involves
the introduction of constraint conditions, leading to the formulation of a constrained
variational problem:

min
{vi},{ωi}

{
∑
i

∥∥∥[∂t

(
δ(t) + j

πt

)
· vi(t)

]
· e−jωit

∥∥∥2

2

}
S.t.∑

i
vi(t) = f (t)

x − µ

σ
(4)

where {vi} represents the decomposed i-th modal components; {ωi} signifies the cen-
tral frequencies associated with each vi; δ(t) is the impulse function; f (t) denotes the
original signal.

The resolution of the variational problem is aimed at ensuring the precision of the
signal and the rigor of constraint conditions under Gaussian noise. This is achieved by in-
troducing quadratic penalty factor α and Lagrange multiplier factor λ(t). The incorporation
of factors α and λ(t) transforms the constrained variational problem into an unconstrained
variational problem, resulting in the augmented Lagrange multiplier L:

L({vi}, {ωi}, λ) = α∑
i

∥∥∥[∂t

(
δ(t) + j

πt

)
· vi(t)

]
· e−jωit

∥∥∥2

2

+

∥∥∥∥ f (t)− ∑
i

vi(t)
∥∥∥∥2

2
+

〈
λ(t), f (t)− ∑

i
vi(t)

〉 (5)

By applying the alternating direction method of multipliers (ADMM), the variational
problem mentioned above can be solved [17]. This is achieved by iteratively updating vn+1

i ,
ωn+1

i , λn+1 and seeking the “saddle point” of the augmented Lagrangian expression.
The values of vn+1

i and ωn+1
i can be obtained through the following equations:

∧
v

n+1

i (ω) =

∧
f (ω)− ∑

m<i

∧
v

n+1

i (ω)− ∑
m>i

∧
v

n
i (ω) +

∧
λ(ω)

2

1 + 2α(ω − ωi)
2 (6)

∧
ω

n+1

i =

∫ ∞
0 ω

∣∣∣∧vi(ω)
∣∣∣2dω∫ ∞

0

∣∣∣∧vi(ω)
∣∣∣2dω

(7)
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where
∧
v

n+1

i (ω),
∧
f (ω),

∧
λ(ω), respectively, represent the Fourier transforms of vn+1

i (t),
f (t), λ(t).

2.2. Dung Beetle Optimizer (DBO)

The dung beetle optimizer (DBO), which is inspired by the rolling, dancing, foraging,
reproducing, and stealing behaviors of dung beetles, is a relatively recent algorithm [18].
This algorithm exhibits advantages in terms of global exploration and local exploitation
compared to previous algorithms, with each behavior having its unique set of update rules.

2.2.1. Dung Beetle Ball Rolling

When a dung beetle discovers a source of dung, it employs a mechanical process
to form the dung into a spherical shape and preserves its linear rolling path by relying
on celestial cues. Consequently, the positional updates of a rolling dung beetle can be
expressed in mechanical terms as:

xi(t + 1) = xi + α · k · xi(t − 1) + b · ∆x
∆x = |xi(t)− xw| (8)

where t represents the current iteration number; xi(t) denotes the position of the i-th dung
beetle in the t-th iteration; k is a deviation coefficient in the range of (0, 0.2]; b is a constant
within the range of (0, 1); α is the natural coefficient; xw represents the global worst position;
∆x used to simulate changes in light intensity.

2.2.2. Foraging

Adult dung beetles excavate from the ground in search of food, a behavior commonly
observed in small dung beetles. The optimal foraging boundary for small dung beetles is
delineated as:

Lbb = max(Xb · (1 − R), Lb)
Ubb = min(Xb · (1 + R), Ub)

(9)

where Xb represents the global optimal solution; Lbb and Ubb are the lower and upper
bounds of the optimal foraging boundary; Lb and Ub are the lower and upper bounds of
the search space.

The positional changes during the foraging process of small dung beetles can be
expressed as:

xi(t + 1) = xi(t) + C1 · (xi(t)− Lbb) + C2 · (xi(t)− Ubb) (10)

where xi(t) represents the position of the i-th dung beetle in the t-th iteration; C1 is a random
number following a normal distribution; C2 is a random vector with values between 0 and 1.

2.2.3. Breed

Selecting a safe oviposition site is crucial for the development of offspring. Therefore,
a boundary selection strategy is proposed to simulate the oviposition area, defined as:

Lb∗ = max(X∗ · (1 − R), Lb)
Ub∗ = min(X∗ · (1 − R), Ub)

(11)

where X* represents the local optimal solution; Lb* and Ub* are the lower and upper bounds
of the oviposition area.

Assuming that in each iteration, a female dung beetle is capable of laying only one
egg, and the oviposition area dynamically adjusts with the value of R, the positions of the
eggs undergo the following changes:

Bi(t + 1) = X∗ + b1 · (Bi(t)− Lb∗) + b2 · (Bi(t)− Ub∗) (12)
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where Bi(t) represents the position of the i-th egg in the t-th iteration; b1 and b2 represent
two independent random vectors of different sizes.

2.2.4. Thief

In the context where some dung beetles engage in the act of stealing dung balls
from other dung beetles, these are referred to as kleptoparasitic dung beetles. As per
Equation (11), with Xb representing the optimal food source, and assuming the vicinity
around Xb constitutes the optimal food competition zone, the position iteration updates for
kleptoparasitic dung beetles can be articulated in mechanical terms:

xi(t + 1) = Xb + S × g × (|xi(t)− X∗|+
∣∣∣xi(t)− Xb

∣∣∣) (13)

where xi(t) represents the position of the i-th kleptoparasitic dung beetle in the t-th iteration;
g is a random vector following a normal distribution; S is a constant value.

2.3. t-Distributed Stochastic Neighbor Embedding (t-SNE)

The t-SNE algorithm is an information-theoretic, nonlinear, unsupervised manifold
learning method [19]. Its core concept involves replacing a high-dimensional space with
a low-dimensional space using probability. It aims to preserve the geometric shapes
of data points as much as possible in the low-dimensional space, thus achieving data
dimensionality reduction and visualization.

Assuming high-dimensional data Y = {y1, y2, . . . , yN}, we calculate the probability
distribution between high-dimensional data points xn and xk, and it does not include an
exponent term with Lyapunov parameters:

pk|n =
exp

(
−∥yn − yk∥2/2σ2

n

)
∑

m ̸=n
exp

(
−∥yn − ym∥2/2σ2

n

) (14)

where σn is the Gaussian variance in data points yn that is determined through a given
perplexity and binary search.

Calculate the joint probability pnk =
pk|n+pn|k

2N to obtain the initial solution
f (0) = { f1, f2, . . . , fN}.

Compute the joint probability qnk and the gradient ∂C
∂ fn

for the high-dimensional data
corresponding to the low-dimensional data.

qnk =

(
∥ fn − fk∥2 + 1

)−1

∑
m ̸=l

(
∥ fm − fl∥2 + 1

)−1 (15)

∂C
∂ fn

= 4∑
k
(pnk − qnk)( fn − fk)

(
∥ fn − fk∥2 + 1

)−1
(16)

Calculate the low-dimensional data output f (t).

f (t) = f (t−1) + µ
∂C
∂ f

+ ϕ(t)
(

f (t−1) − f (t−2)
)

(17)

where µ, ϕ(t), t represent the learning rate, momentum factor, and number of iterations,
respectively.

When the number of iterations reaches t, stop the iteration and output the obtained
low-dimensional feature data; otherwise, repeat the above steps.
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3. Improved Dung Beetle Optimization Algorithm (IDBO)

Compared to previous algorithms, the DBO algorithm exhibits strong optimization
capabilities and fast convergence. However, facing complex problems, it may suffer from
weak global search ability and local optimal solutions. Therefore, in order to address these
issues, this article proposes three strategies to enhance DBO.

3.1. Cubic Mapping

Chaos mapping is a stochastic and intricate method known for its ability to escape
local optima, and it has been applied in various optimization algorithms. Zhang et al. [20]
incorporated circle chaos mapping into the sparrow search algorithm (SSA), addressing the
slow convergence issue in SSA. However, compared to circle chaos mapping, cubic chaos
mapping demonstrates faster operation speed. Feng et al. [21] conducted a comparative
study on 16 different chaos mapping methods, demonstrating that cubic chaos mapping
exhibits fast operation speed and strong stability. Therefore, this study opts for cubic
chaos mapping to optimize the initial population, enhancing global search efficiency while
avoiding local optima. Cubic chaos mapping is represented by Formula (18), and its
sequence distribution is illustrated in Figure 1.

fn+1 = µ fn

(
1 − f 2

n

)
, fn ∈ (0, 1) (18)

where x0 is set to 0.3 and µ = 2.595, the cubic map exhibits good chaotic coverage.
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3.2. Levy Flight Strategy

The Levy flight strategy is a stochastic approach in which, during the individual
position updates of dung beetles in DBO, the algorithm may get stuck in local optima by
updating positions based on the current best individual value. Therefore, utilizing the Levy
flight strategy can enhance the diversity of the population and improve the algorithm’s
global optimization capability [22]. Its expression is given by Equation (19):

Levy(λ) = 0.01 × r1 × σ

|r2|(1/λ)
(19)

σ =

(
Γ(1 + λ)× sin(πλ/2)

Γ((1 + λ)/2 × λ × 2(λ−1)/2)

)(1/λ)

(20)

where r1 and r2 are random numbers sampled from a normal distribution within the range
[0, 1]; λ is set to 1.5; Γ represents the gamma function; Equation (21) provides an explanation
for σ.
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3.3. Dynamic Adaptive Weight

In the DBO theft behavior update phase, the algorithm starts seeking the global
optimum early in the iterations, resulting in a limited search range and the risk of falling into
local optima. To overcome this drawback, a dynamic weight coefficient ω is introduced [23].
This causes larger values to appear in the early iterations, thereby enhancing global search
capabilities. As the iterations progress, ω dynamically decreases, leading to improved
convergence speed. Its expression can be represented as:

ω =
e2(1−k/itermax) − e−2(1−k/itermax)

e−2(1−k/itermax) + e2(1−k/itermax)
(21)

Xk+1
n,m =

{(
Xk

n,m + ω
(

f k
m,g − Xk

n,m

))
· rand, R2 < ST

Xk
n,m + Q, R2 ≥ ST

(22)

where Q represents a random number from a normal distribution, R2 is a warning value in
the range of [0, 1], and ST is a safety value in the range of [0.5, 1].

By incorporating the Levy flight strategy and dynamic adaptive weighting into
Equation (13) to prevent the algorithm from getting trapped in local optima in the later
stages, we enhanced the formula, and the updated expression is given by (23):

xi(t + 1) = Levy(λ)× Xb + S × g × (|xi(t)− X∗|+
∣∣∣xi(t)− ωXb

∣∣∣) (23)

The specific flowchart for improving the dung beetle algorithm is shown in Figure 2.
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4. Fault Diagnosis Process for Parallel-Axis Gearboxes Based on WOA-VMD and t-SNE
4.1. Optimizing VMD with IDBO

The IDBO is utilized to optimize the number of modes (K) and penalty factor (α) in
variational mode decomposition (VMD). The value of K significantly affects the effective-
ness of the original data decomposition. A K value that is too large may lead to excessive
decomposition, generating some ineffective intrinsic mode functions (IMFs), while a K
value that is too small may result in insufficient decomposition of the original signal. The
penalty factor α, when too large, can cause loss of frequency band signals, and, conversely,
can introduce information redundancy. Therefore, an optimal combination of [K, α] is
essential. In this study, the IDBO algorithm is employed to optimize the parameters of
VMD. The optimization process aims to minimize the envelope entropy, which serves as
the fitness function. Envelope entropy reflects the sparsity characteristics of the original
signal. When there is more noise in the IMF and less feature information, the envelope
entropy value is larger, and vice versa. The optimization process is as follows:

1. Set the IDBO population size and the number of iterations, and define a suitable range
for [K, α] values for VMD decomposition. Ensure that the range is not too narrow to
avoid losing essential feature information in the modal components.

2. Use VMD to decompose the vibration signal from the gearbox, resulting in several
intrinsic mode functions (IMFs).

3. Calculate the fitness function value for each set of [K, α] values and continually update
the iterations to find the best fitness function value.

4. Determine if the iteration is completed, i.e., whether the maximum number of it-
erations has been reached. When the maximum number of iterations is reached,
terminate the iteration and save the optimal parameters [K, α].

4.2. Kurtosis-Based Signal Reconstruction

Kurtosis reflects the sharpness or peakedness of a signal waveform, and due to the
varying impulsive components contained in each IMF, their corresponding kurtosis values
are different [24]. When the kurtosis value K is 3, it corresponds to the normal kurtosis
value for a Gaussian distribution curve, indicating that the IMF contains more fault-related
information. Therefore, selecting kurtosis values greater than 3 implies a significant pres-
ence of signal impulses in the IMF, indicating that the vibration deviates from a normal
state. This feature is suitable for identifying signal anomalies when faults occur.

4.3. Feature Extraction

Time domain features of vibration signals can reflect the overall state of the gearbox
and can be used for fault detection and trend forecasting. Frequency domain features
are useful for identifying the location and cause of faults. The combination of time and
frequency domain feature information can effectively determine the current condition of
the gears. In this paper, a variety of time domain and frequency domain feature parameters
are selected to form the fault information feature matrix.

Information entropy describes the degree of uncertainty in a system and is used to
analyze the complexity of a signal. Single entropy characteristics may not fully reflect the
signal’s feature information. Therefore, multiple entropy values are extracted for each IMF
to ensure data completeness and diagnostic accuracy. This paper extracts permutation
entropy, fuzzy entropy, and sample entropy.

According to the above introduction, the specific steps for gear fault diagnosis based
on IDBO-VMD decomposition, selection of IMF features, and t-SNE are as follows:

1. Obtain vibration signals for various states using an accelerometer sensor.
2. Use the IDBO algorithm to search the optimal parameters of VMD for each state. After

parameter optimization, apply VMD to decompose the signals from various states,
resulting in K IMF components.

3. Apply the kurtosis criterion to filter the obtained IMF components, selecting the best IMF.
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4. Perform feature extraction on the chosen IMF, recombine the extracted 20 feature
values to create a new feature vector.

5. Utilize the t-SNE method for dimensionality reduction, obtaining a two-dimensional
feature vector.

6. Input the feature vectors of the training dataset into an SVM for training, creating an
SVM classification model.

7. Input the feature vectors of the testing dataset into the trained SVM model to perform
fault diagnosis.

5. Simulation Testing

For testing the effectiveness of the proposed algorithm improvements, grey wolf
optimization (GWO), DBO, the sparrow search algorithm (SSA), and IDBO were selected
for comparative optimization on test functions. The test functions are listed in Table 1,
where F1–F3 are single-peak functions, and F4–F6 are multipeak functions, all with a
dimensionality of 30. To ensure fair testing, each algorithm utilized a population size of 30,
a maximum iteration count of 500, and was independently tested on the six test functions
10 times to obtain average fitness convergence curves, evaluating their convergence speed.
The experimental results are presented in Table 1, using criteria such as the best value,
average value, and standard deviation for evaluation.

Table 1. Test functions.

Test Functions Dimension Range Optimal Value

F1(x) =
n
∑

i=1
x2

i
30 [−100, 100] 0

F2(x) =
n
∑

i=1

(
i

∑
j−1

xi

)2
30 [−100, 100] 0

F3(x) =
n
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

30 [−30, 30] 0

F4(x) =
n
∑

i=1
−xi sin

(√
|xi |
)

30 [−500, 500] 0

F5(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e 30 [−32, 32] 0

F6(x) = π
n

{
10 sin(πy1) +

n
∑

i=1
(y1 − 1)2[1 + 10 sin2(πy1+i)

]2}
+

n
∑

i=2
u(xi , 10, 100, 4)

yi = 1 + xi+1
4

u(xi , a, k, m) =

 k(xi − a)m, xi > a
0,−a < xi < a

k(−xi − a)m, xi < −a

30 [−50, 50] 0

From Figure 3, it can be observed that under the same parameter settings, IDBO
exhibits a faster convergence speed compared to DBO. In Figure 3c, the convergence speed
of IDBO is slightly lower than DBO in the early stages, but it shows improvement in
solution accuracy, and its average optimization capability is more stable. A comparison
with GWO and SSA also reveals that DBO has good convergence speed and optimization
capability. When comparing these four algorithms simultaneously, it is evident that IDBO’s
convergence speed is significantly higher than the other three. Moreover, it requires the
least number of iterations. As the iteration count increases, the convergence curves of
DBO, the SSA, and GWO gradually stabilize, and optimization accuracy starts to decrease.
This indicates that the three improvement strategies applied to IDBO result in a notice-
able enhancement in convergence speed and an improvement in global search capability,
showcasing the advantage in local optimization capability.
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Table 2 reveals that IDBO did not find the optimal solution only in the case of testing
the F6 function. Moreover, its performance in terms of average and standard deviation is
similar to DBO. However, as shown in Figure 3, IDBO demonstrates the fastest convergence
speed, swiftly locating the optimal values and exploring them in-depth, showcasing higher
optimization accuracy. For the F1–F5 tests, IDBO outperforms other algorithms, showing
significant improvements in average optimization capability, precision, and standard devi-
ation. In summary, in the convergence curves of most test functions, the IDBO algorithm
exhibits excellent performance. It maintains an absolute advantage in convergence speed
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while achieving high convergence accuracy, reflecting a reasonable balance between global
search capability and local development capability.

Table 2. Test results comparison.

IDBO DBO GWO SSA

F1
Optimal value 0 2.4081 × 10−176 5.5438 × 10−29 7.1886 × 10−100

Mean value 0 6.0809 × 10−107 6.7022 × 10−28 3.7487 × 10−60

Standard deviation 0 1.9229 × 10−106 1.3445 × 10−27 1.1854 × 10−59

F2
Optimal value 0 1.4802 × 10−76 4.9103 × 10−17 5.0108 × 10−81

Mean value 0 1.0308 × 10−58 8.2908 × 10−17 5.4129 × 10−32

Standard deviation 0 3.2597 × 10−58 2.9568 × 10−17 1.6937 × 10−31

F3
Optimal value 0 3.2393 × 10−76 2.2534 × 10−7 2.8709 × 10−93

Mean value 3.6372 × 10−90 1.8364 × 10−54 7.4764 × 10−7 7.0487 × 10−31

Standard deviation 1.1299 × 10−89 5.8014 × 10−54 5.1431 × 10−7 2.2202 × 10−30

F4
Optimal Value 0 4.3236 × 10−304 3.0912 × 10−53 5.4264 × 10−243

Mean Value 0 4.1335 × 10−210 1.7039 × 10−50 3.8374 × 10−124

Standard Deviation 0 0 3.7227 × 10−50 1.2135 × 10−123

F5
Optimal value 0 1.2767 × 10−162 7.9735 × 10−105 6.3863 × 10−119

Mean value 0 6.2664 × 10−114 3.5699 × 10−100 4.1615 × 10−44

Standard deviation 0 1.9816 × 10−113 9.4946 × 10−100 1.316 × 10−43

F6
Optimal value 4.4409 × 10−16 4.4409 × 10−16 7.5051 × 10−14 4.4409 × 10−16

Mean value 4.4409 × 10−16 4.4409 × 10−16 1.0134 × 10−13 4.4409 × 10−16

Standard deviation 0 0 3.8454 × 10−14 0

6. Experimental Verification
6.1. Description of Experimental Data

This experiment adopted the data of condition monitoring and the fault diagnosis
comprehensive test bench produced by Houde Company in Jiangsu, China for experimen-
tal verification, and the experimental equipment is shown in Figure 4. Four prevalent
fault states were selected, namely, normal gear state, tooth root fracture, tooth surface
wear, tooth surface pitting, and tooth surface cracking. Multiple sets of vibration signals
under different states were acquired using acceleration sensors. The gearbox features
oil-immersed lubrication, with the motor speed set to 1800 r/min, a sampling frequency
of 12 kHz, a sampling duration of 10 min, and a sample length set to 1024. This resulted
in 50 sample sets for each state, amounting to a total of 250 sample sets, with 200 sets
designated for training and 50 sets for testing.

6.2. The Extraction of Fault Signal Features

Using envelope entropy as the fitness value, we compared the fitness curves of the
IDBO, DBO, SSA, and GWO algorithms in optimizing VMD. To ensure fair testing, each
algorithm was configured with 30 individuals, a maximum iteration count of 50, and a
range of values for K set to [3, 10], all of which are integers. The penalty factor α had a
value range of [200, 5000]. In Figure 5, each curve represents the optimization iteration
process for VMD using the four algorithms.
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From Figure 5, it can be observed that GWO has the highest fitness values in the
signal decomposition of the four types of fault signals. This indicates that GWO has poor
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global search capability and is prone to becoming stuck in local optima. DBO, the SSA, and
IDBO have lower fitness values than GWO, indicating stronger global search capabilities.
However, with the increase in iteration count, GWO exhibits strong convergence ability.
Through comparison, it is evident that IDBO has lower fitness values, attributed to the
cubic chaos mapping’s ability to quickly locate global optimal solutions. With iterations,
IDBO can rapidly find the lowest fitness value. This is due to the inclusion of the Levy
flight strategy and adaptive weighting, which enhance global optimization capability and
convergence performance. The optimization facilitated by IDBO improves the robustness
of VMD, effectively suppresses modal aliasing, and rapidly identifies the optimal values for
parameters K and α. The fitness value used for testing is the minimum envelope entropy.
The smaller the value, the less noise contained in the IMFs obtained from VMD, allowing
for the extraction of more fault features. Therefore, IDBO enhances the robustness of VMD,
effectively suppressing modal aliasing, and rapidly determining the optimal values for
parameters K and α. This contributes to the improved ability to extract fault features by
minimizing noise interference in the VMD decomposition process.

Taking the surface crack fault signal as an example, the iteration curve of the VMD
parameter optimization process is shown in Figure 6. After 10 iterations, the global optimal
solution was found, resulting in the minimum envelope entropy of 4.2092. The optimal
solution corresponds to parameters α = 741 and K = 5. Subsequently, using VMD processing,
the signals and spectra corresponding to the five intrinsic mode functions (IMFs) of the
surface crack fault signal are shown in Figures 7 and 8.
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The optimal parameter combinations for VMD were determined for the five different
states, as shown in Table 3.

Table 3. Optimal parameter.

Gear Condition [K, α]

Normal condition [6, 2232]
Tooth root breakage [5, 648]

Surface pitting [4, 476]
Surface cracking [5, 741]

Surface wear [4, 2678]

Based on the parameter combinations [K, α] from Table 3, the VMD method was
configured with the appropriate values of K and α, and this was used to decompose the
samples into multiple intrinsic mode function (IMF) components. Table 4 presents the
kurtosis values for each IMF corresponding to each state. Larger kurtosis values indicate
greater impulsive characteristics in the components and, therefore, more distinctive features
within the fault signal. The four IMFs with the highest kurtosis values were selected for each
state, and 20 vibration features were extracted from each, resulting in a total of 80 features
for each segment of the vibration signal, forming high-dimensional feature vectors.

Table 4. Kurtosis values of five signal IMF components.

State IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

Normal 3.25 4.29 3.82 4.20 3.49 3.89
Breakage 2.44 2.95 3.20 2.89 4.26

Pitting 3.15 3.44 3.58 4.41
Cracking 2.66 4.13 3.25 4.84 5.22

Wear 2.89 13.95 15.22 8.79

6.3. t-SNE Dimensionality Reduction Effect

To validate the dimensionality reduction effect of t-SNE, this study selected the Iris
dataset provided by the SKLearn library for dimensionality reduction. The Iris dataset
consists of three different species of iris flowers, with 150 samples for each flower type
and four features for each sample. The PCA, LLE, and t-SNE algorithms were used for
dimensionality reduction, and the visualization results of each method are shown in
Figure 9.
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From Figure 9, it is evident that, through dimensionality reduction of the Iris flower
dataset, PCA exhibits a suboptimal intraclass clustering effect. LLE, while preserving
the inherent manifold structure, fails to separate different types effectively, resulting in
poor intraclass clustering. Conversely, after dimensionality reduction using t-SNE, there
is noticeable intraclass cohesion and interclass separation, rendering it the most visually
effective. Although t-SNE does not exhibit a significantly superior separation of different
types compared to PCA, it notably outperforms PCA in terms of intraclass cohesion.
Therefore, t-SNE was chosen for dimensionality reduction of the fault dataset.

6.4. Fault Feature Dimensionality Reduction

Feature information extraction is a crucial step in gearbox fault diagnosis. Using
permutation entropy, fuzzy entropy, and sample entropy, the entropy features and time–
frequency domain features of the main intrinsic mode functions (IMFs) were extracted
to construct the initial feature vector. However, the obtained initial feature vector may
have high dimensionality and could contain redundant features. Therefore, normalization
was applied to the extracted data, and the t-SNE algorithm was utilized to reduce the
dimensionality of high-dimensional feature vectors to obtain low-dimensional feature
vectors. Additionally, the PCA and LLE methods were employed for dimensionality
reduction, and the results of the dimensionality reduction are illustrated in Figure 10.



Appl. Sci. 2024, 14, 289 16 of 20

Appl. Sci. 2024, 14, 289 17 of 23 
 

From Figure 9, it is evident that, through dimensionality reduction of the Iris flower 
dataset, PCA exhibits a suboptimal intraclass clustering effect. LLE, while preserving the 
inherent manifold structure, fails to separate different types effectively, resulting in poor 
intraclass clustering. Conversely, after dimensionality reduction using t-SNE, there is no-
ticeable intraclass cohesion and interclass separation, rendering it the most visually effec-
tive. Although t-SNE does not exhibit a significantly superior separation of different types 
compared to PCA, it notably outperforms PCA in terms of intraclass cohesion. Therefore, 
t-SNE was chosen for dimensionality reduction of the fault dataset. 

6.4. Fault Feature Dimensionality Reduction 
Feature information extraction is a crucial step in gearbox fault diagnosis. Using per-

mutation entropy, fuzzy entropy, and sample entropy, the entropy features and time–
frequency domain features of the main intrinsic mode functions (IMFs) were extracted to 
construct the initial feature vector. However, the obtained initial feature vector may have 
high dimensionality and could contain redundant features. Therefore, normalization was 
applied to the extracted data, and the t-SNE algorithm was utilized to reduce the dimen-
sionality of high-dimensional feature vectors to obtain low-dimensional feature vectors. 
Additionally, the PCA and LLE methods were employed for dimensionality reduction, 
and the results of the dimensionality reduction are illustrated in Figure 10. 

  
(a) (b) 

 
(c) 

Figure 10. Comparison of three dimensionality reduction methods: (a) t-SNE dimensionality reduc-
tion effect; (b) dimensionality reduction effect; (c) PCA dimensionality reduction effect. 
Figure 10. Comparison of three dimensionality reduction methods: (a) t-SNE dimensionality reduc-
tion effect; (b) dimensionality reduction effect; (c) PCA dimensionality reduction effect.

From Figure 10, Figure 10b illustrates the dimensionality reduction effect of LLE,
showing poor performance as it fails to effectively separate different fault types. Although
PCA can separate the fault types, its clustering is poor, and it cannot perfectly isolate
the fault types. Through the comparison of the three dimensionality reduction methods,
t-SNE exhibits the best dimensionality reduction effect. It can completely separate the five
states, with the best clustering, distinct feature differentiation, and the ability to maximize
the preservation of the original matrix’s characteristics. Therefore, t-SNE was chosen for
dimensionality reduction, resulting in two-dimensional feature vectors.

6.5. Fault Classification

The feature vectors of the 200 training samples were input to the SVM classifier for
training, resulting in an SVM model for fault diagnosis. Subsequently, the 50 test samples
were input into the trained SVM model for classification. In the SVM training and testing,
numeric labels were used to represent the five gear operating states: normal state as label 0,
tooth root fracture as label 1, surface wear as label 2, surface cracking as label 3, and surface
pitting as label 4. The diagnostic accuracy for gear classification can reach 100% using the
IDBO-VMD and t-SNE dimensionality reduction feature extraction methods.

To demonstrate the accuracy of the proposed approach, the same collected data were
used, and signal decomposition was performed using three methods: EMD, traditional
VMD, and IDBO-VMD. For traditional VMD, the parameter selection was based on the
central frequency method, where the final value of K was determined by observing the
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central frequencies of IMF components for different K values [25]. K = 6 and α = 2000 were
confirmed through observation.

Then, feature extraction and t-SNE dimensionality reduction were carried out, and,
finally, the obtained low-dimensional feature distribution and SVM classification accuracy
are depicted in Figure 9 and presented in Table 5, respectively.

Table 5. SVM classification accuracy of three methods.

Method Classification Accuracy/%

EMD + t-SNE 95
VMD + t-SNE 98

IDBO-VMD + t-SNE 100

According to Figure 11 and Table 5, it is evident that the diagnostic accuracy using
the feature extraction method based on IDBO-VMD and t-SNE is slightly higher than the
other two methods. Furthermore, the fault features obtained through EMD decomposition
and t-SNE dimensionality reduction are effective in separating the four different states,
but the clustering effect is suboptimal. From Figure 12, it can be observed that both
EMD and traditional VMD exhibit diagnostic errors when diagnosing normal signals,
leading to a decrease in accuracy. Therefore, the proposed IDBO-VMD and t-SNE methods,
characterized by high accuracy and ease of operation, represent effective approaches for
fault diagnosis.
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7. Conclusions

In this paper, we proposed a novel approach for gearbox fault diagnosis. We enhanced
the DBO algorithm and compared it with DBO, the SSA, and GWO. The introduced IDBO
algorithm demonstrated excellent performance, whether applied to benchmark functions or
utilized in optimizing VMD. The algorithm exhibited strong global optimization capabilities
and convergence performance. Additionally, it boasts fast training speeds, straightforward
operations, and high optimization accuracy, showcasing its efficiency in the context of
mechanical applications.

Experimental results demonstrate that the VMD optimized using IDBO effectively
suppresses mode mixing. By employing the IDBO-VMD and t-SNE feature extraction
methods, the low-dimensional vectors obtained were input to an SVM for gearbox fault
diagnosis, achieving an accuracy rate of 100%. Compared to traditional methods, this
approach exhibits characteristics such as high fault recognition accuracy and stable per-
formance, making it an effective new method for gearbox fault diagnosis. Currently, the
proposed method has only been applied to gearbox diagnosis, and future work will involve
extending its application to diagnose faults in other rotating machinery, thus validating its
practicality and generality.
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Nomenclature

DBO dung beetle optimization
EMD empirical mode decomposition
GWO grey wolf optimization
IDBO improved dung beetle optimization
IMFs intrinsic mode functions
K decomposition quantity
LLE locally linear embedding
PCA principal component analysis
PSO particle swarm optimization
SSA sparrow search algorithm
SVM support vector machine
t-SNE t-distributed stochastic neighbor embedding
VMD variational modal decomposition
α penalty factor
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