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Abstract: Machine learning usually requires a large amount of training data to build useful models.
We exploit the mathematical structure of linear regression to develop a secure and privacy-preserving
method that allows multiple parties to collaboratively compute optimal model parameters without
requiring the parties to share their raw data. The new approach also allows for efficient deletion of
the data of users who want to leave the group and who wish to have their data deleted. Since the data
remain confidential during both the learning and unlearning processes, data owners are more inclined
to share the datasets they collect to improve the models, ultimately benefiting all participants. The
proposed collaborative computation of linear regression models does not require a trusted third party,
thereby avoiding the difficulty of building a robust trust system in the current Internet environment.
The proposed scheme does not require encryption to keep the data secret, nor does it require the
use of transformations to hide the real data. Instead, our scheme sends only the aggregated data
to build a collaborative learning scheme. This makes the scheme more computationally efficient.
Currently, almost all homomorphic encryption schemes that support both addition and multiplication
operations demand significant computational resources and can only offer computational security.
We prove that a malicious party lacks sufficient information to deduce the precise values of another
party’s original data, thereby preserving the privacy and security of the data exchanges. We also
show that the new linear regression learning scheme can be updated incrementally. New datasets can
be easily incorporated into the system, and specific data can be removed to refine the linear regression
model without the need to recompute from the beginning.

Keywords: linear regression; machine learning; collaborative learning; privacy preserving; incremental
computation; machine unlearning

1. Introduction

Machine learning attempts to build models based on training data to make predictions
or decisions without being explicitly programmed. It usually requires a large amount of
training data to build a useful model. In many practical applications, these data may not
belong to one organization but rather may be distributed across multiple sites. For example,
every hospital collects the medical data of its patients. The data collected in one hospital
are often insufficient to obtain a good model for developing new drugs or treatments for
some specific disease. Therefore, sharing data is very important in machine learning when
the data are distributed across many sites.

Like medical data, almost all data contain private and sensitive personal information.
The release of personal data in many countries in the world is restricted by laws and
regulations. For example, since 2018, the European Data Protection Regulation has been
applicable to all member states to harmonize data privacy laws across the European
Union [1]. When sharing these data, security and/or personal privacy concerns must be
properly addressed. Another reason for limiting data sharing is that collecting these data
usually requires a lot of time and effort. Data owners usually view the data they collect as
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an asset. They will be more willing to share the collected data with others only if it is legal
and mutually beneficial.

In this paper, we consider the security and privacy preservation of a specific machine
learning problem: linear regression. A linear regression models the relationship between
variables by fitting a line to the observed data [2,3]. It is the most basic model in machine
learning and has many applications [4]. We propose a simple yet effective method to
collaboratively build linear regression models without disclosing the underlying raw data.
Furthermore, our novel collaborative learning scheme enables the removal of a user’s
dataset without requiring access to the user’s original data, ensuring compliance with
privacy protection regulations.

Secure collaborative machine learning falls within the realm of secure multiparty
computation, a well-explored area in the field of cryptography. In secure multiparty
computing, no data can be sent directly to the other parties for security and privacy reasons.
There are many techniques to achieve secrecy in multiparty computation. General method
for secure multiparty computation, such as Yao’s garbled circuits, may not be efficiently
implementable. By exploiting the mathematical structure of linear regression, we achieve
efficient secure construction of linear regression models.

The primary objective in secure computation is to establish a rigorous framework that
ensures an absolute lack of knowledge concerning the private data of the other parties
involved. Although achieving this state of zero knowledge is highly desirable, it typically
necessitates extensive computational resources, as noted by Yang et al. [5]. Moreover, it is
important to note that zero-knowledge guarantees are valid only against polynomial-time
adversaries, meaning these schemes offer only computational security. The security of the
proposed scheme does not depend on computationally hard problems, such as factoring
large integers or solving discrete logarithms in a large group. We prove that the curious
party does not have enough information to deduce the exact values of the other party’s
data. Therefore, even if the curious party has infinite computing power, he cannot learn the
exact value of the other party’s data.

A scheme with a trusted third party can be advantageous, particularly when the
third party’s role in the protocol is minimal. However, in today’s Internet environment,
establishing and maintaining long-term trust among multiple parties can be challenging,
particularly as the number of participants grows. Such a system may lack robustness,
as a breach in security by the server or any participating party can disrupt the system’s
functionality. The method proposed in this paper for collaboratively constructing a linear
model operates without the need for trusted third parties. Our approach is based on
the assumption that all parties are semi-honest, meaning they adhere to the protocol but
maintain a curiosity about the data of other parties. This design ensures that the system
remains functional even in the absence of unwavering trust among participants.

Encryption can be used to protect sensitive information in machine learning. However,
in machine learning, data must be processed efficiently, and traditional encryption methods
are not suitable for this purpose. Fully homomorphic encryption, such as the Paillier
cryptosystem [6], has shown potential for computing model parameters in machine learning.
Nonetheless, homomorphic encryption often requires substantial computational resources
to achieve the required level of security. For example, the Halevi–Polyakov–Shoup fully
homomorphic encryption scheme takes 51 ms for 128-bit security implemented by using a
GPU [7]. Although this speed may be practical for cloud computing, the security of these
cryptosystems is often based on computationally hard problems, so they can only provide
computational security. The proposed scheme does not need encryption to protect users’
raw data. We show that our proposed scheme can achieve information-theoretic security.

A critical consideration is that in machine learning, data frequently consist of real num-
bers, necessitating their representation in a standard format like IEEE Standard 754 floating-
point numbers, which enables efficient computation using currently available computer
hardware. To mitigate rounding errors, the plaintext and ciphertext of a cryptographic
system is typically designed in finite groups, finite rings, or finite fields. Consequently,
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the majority of these cryptographic systems, even when fully homomorphic, may not align
seamlessly with the requirements of machine learning. To address this issue, recently,
Cheon et al. developed the CKKS cryptosystem [8], which is designed to accommodate a
specialized form of fixed-point arithmetic known as block floating-point arithmetic. While
fixed-point arithmetic can approximate floating-point numbers within a finite memory
size, it is worth noting that the current version of CKKS has limitations. Specifically, it
supports only a limited number of multiplications before necessitating a time-consuming
bootstrapping step. Another drawback of using the current version of CKKS is its lack of
direct support for floating-point division operations, which are essential for tasks such as
linear regression and for almost all machine learning models. Addressing this concern,
Barbenko et al. proposed a two-stage method for Euclidean division within the CKKS
scheme and conducted a study of its properties [9].

Datasets owned by a user may also be required to be efficiently deleted from computa-
tions. This is useful when a party leaves the group and wants to remove its information.
This is called machine unlearning. Machine unlearning is necessary in order to comply
with privacy protection laws and regulations, such as GDPR in European countries. In
our proposed scheme, both the addition and deletion of datasets can be done efficiently
without recomputing the model parameters from the beginning. However, our scheme
needs to invert a matrix of size (m + 1)× (m + 1), where m is the number of features used
in the linear regression model. This is not a problem in practice, since the value of m is
usually small compared to the amount of data n.

The main contributions of this research are summarized as follows.

1. We propose a secure and privacy-preserving machine learning scheme for linear
regression without the requirement of trusted servers or encryption: notably, homo-
morphic encryption.

2. The security of the proposed scheme does not depend on computationally hard
problems. We prove that even if an attacker has unlimited computing power, he does
not have enough information to compute the exact value of the other party’s data.

3. The proposed scheme is computationally efficient. It does not require encryption and
does not incur additional computation due to distribution of the datasets.

4. The proposed scheme is also communication efficient, as it only transmits aggregated
data to other parties. The size of the aggregated data correlates with the number of
features. In practical applications, whether data are encrypted or not, the number of
data typically far surpasses the number of features.

5. The proposed linear regression learning scheme supports incremental updates, allow-
ing for the seamless integration of new datasets into the system.

6. The proposed scheme also enables the removal of old datasets from the system, facili-
tating the refinement of the linear regression model without the need to recompute
the model parameters from the beginning.

Organization of the paper. The remainder of this paper is organized as follows. In
Section 2, we provide an overview of prior work in the field of federated learning; we
focus on linear regression. We also presents a comparison of our scheme with other related
schemes. In Section 3, we review linear regression, presenting it in matrix form and
emphasizing the mathematical model that is the foundation for our approach. Our main
results are described in Sections 4–6. In Section 4, we introduce our approach to privacy-
preserving federated learning for linear regression. Section 5 is dedicated to the security
analysis of our proposed scheme. Section 6 outlines techniques for implementing our
scheme involving the continuous collection of data. In Section 7, we conclude our research
work with key findings and contributions to the field of federated learning for linear
regression. Finally, we describe our experience in implementing our proposed scheme in
Appendix A. The results of these implementations are all consistent with our analysis.
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2. Related Work

In contrast to traditional centralized machine learning techniques, for which all local
datasets are uploaded to one server, the technique we study is known as federated learning
or collaborative learning. In federated learning, the primary objective is to develop a
method that enables parties to jointly compute the parameters of a machine learning model
based on their input data while protecting the privacy of their individual data. To meet
the security requirement, trusted servers can be used to protect the confidentiality of data
and perform computations efficiently. The security of many known secure computation
schemes for linear regression requires servers [10–15]. Some of the schemes use only one
server [10,11,13]. Some of the schemes use two servers: one for cryptography service
and the other for computation [12,14,15]. There are also different ways to use multiple
servers. For example, in Cock et al.’s scheme [11], a trusted server is only needed in the
pre-distribution phase to do initialization. On the other hand, in Chen et al.’s [10] and
Mandal et al.’s schemes [13], the server is required to do computational tasks, but the server
is only required to be semi-honest.

Federated learning can also be considered as secure multiparty computation or privacy-
preserving computation. Secure multiparty computation has been widely studied by many
cryptographers [16–18]. Recently, Ma et al. developed algorithms under secure multiparty
computation that enable pharmaceutical institutions to achieve high-quality models to
advance drug discovery without revealing private drug-related information [19].

The security of most existing secure multiparty computations depends on compu-
tationally hard problems, such as factoring large integers or solving discrete logarithms
in a large group. Some of the schemes are based on Yao’s garble circuit combined with
secure computation for computing inner products [12]. Some of the schemes are based on
homomorphic encryption to ensure the security of the data [14]. Kikuchi et al. proposed
a scheme that does not require trusted servers [20], but it need Paillier’s cryptosystem,
which is a public-key homomorphic cryptosystem. Recently, Han et al. proposed two
noninteractive federated learning schemes with privacy-preserving for IoMT [21], but they
need trusted authority and Paillier’s cryptosystem. These cryptosystems, including Yao’s
garbled circuits, are usually computationally intensive. Our proposed linear regression
scheme operates without encryption, allowing us to circumvent the above issues and
achieve efficient implementation.

Some of the known schemes do not use the closed form of the optimum solution for
linear regression [12,13]. While the authors claim that the advantage is that their scheme
does not require computing the matrix inverse, the disadvantage is that the result is only an
approximation. On top of that, this computational method has to send gradient descent or
other relevant data multiple times to make the model parameters accurate enough. It has
been shown that sending gradient descent data iteratively can reveal enough information
for the attacker to infer the values of the training data [22,23]. For each dataset, our scheme
only sends the aggregated data once, and we show that the information leaked is too small
for any unauthorized party to infer information about the other party’s data. Note that this
technique works well for linear regression problems. Other federated learning problems
may not be able to avoid iterative sending of gradient descent data and may require other
techniques to preserve privacy. For example, when using Deep Neural Networks (DNNs),
Xu et al. proposed a double-masking protocol to guarantee the confidentiality of users’
local gradients during federated learning [24].

Finally, we perform a comparative analysis of various federated learning schemes
designed for linear regression. These schemes includes Cock’s approach [11], Gascón’s
method [12], Kikuchi’s model [20], Mandal’s framework [13], Mohassel’s system [15], Qiu’s
strategy [14], and Han’s scheme [21]. These approaches, all relatively recent, are closely
related to the security aspects of federated learning in the context of linear regression. All
these schemes possess distinct characteristics that merit comparison, including whether
they rely on a trusted server. Additionally, the choice of security technologies, such as
homomorphic encryption or Yao’s garbled circuit, plays a crucial role. Some schemes do
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not employ closed-form solutions to attain optimal parameters but instead necessitate the
iterative transmission of gradient descent updates for parameter refinement. Lastly, we
evaluate the security levels of these schemes, with some achieving information-theoretic se-
curity while others rely on computational security. We take these factors into consideration
in our comparative analysis, and the results of this comparison are presented in Table 1.

Table 1. Comparison of related protocols.

Cock’s Gascón’s Kikuchi’s Mandal’s Mohassel’s Qiu’s Han’s Ours
[11] [12] [20] [13] [15] [14] [21]

TA Y Y N Y Y Y Y N

HE Y Y Y Y Y Y Y N

YG(SMC) N Y N N Y Y N N

CF Y N Y N N N N Y

Security C C C C C C C P
TA: needs trusted or semi-trusted authority. HE: uses homomorphic encryption. YG(SMC): uses Yao’s garbled
circuit for secure multiparty computation. CF uses closed-form formula to compute optimal parameters. Security:
C means computationally secure; P means perfectly secure.

Note that schemes relying on trusted authorities (TAs) are difficult to implement in
contemporary network environments due to trust issues. Homomorphic encryption (HE)
and Yao’s garbled circuit (YG(SMC)) are computationally intensive. When an iterative
gradient descent is used instead of a closed form (CF), not only does it only produce
approximate results, but it may also make the system vulnerable to data leakage. Finally,
when quantum computers emerge, schemes for which the security relies on computationally
hard problems may be easily broken.

3. A Brief Introduction to Linear Regression Model

In this section, we first briefly describe the computational procedure for linear regres-
sion. We then show a method to compute the optimal parameters of a linear model by
minimizing the sum of the square of errors. This classical method is called the least square
method [4,25].

Formally, linear regression is a linear approach to modeling the relationship between
a response y and a set of m independent variables x1, x2, . . . , xm in an experiment. It can be
expressed as

y = β0 + β1x1 + · · ·+ βmxm.

These independent variables x1, x2, . . . , xm are also called the features of the model.
Suppose n experiments have been performed, each with different settings for the

features x1, x2, . . . , xm. With a set of n observed data, we obtain n equations.

yi = β0 + β1xi
1 + β2xi

2 + · · ·+ βmxi
m, i = 1, 2, . . . , n,

where xi
j is the value of variable xj used in the i-th experiment. It is convenient to write

these n equations in matrix form. Let x⃗i = [xi
1, xi

2, . . . , xi
m], and let the model coefficients be:

β⃗ = [β0, β1, . . . , βm]. The model prediction would be

yi = β0 +
m

∑
j=1

β jxi
j.

If each x⃗i is extended to x⃗i = [1, xi
1, xi

2, . . . , xi
m], then

yi =
m

∑
j=0

β jxi
j = β⃗x⃗T

i .
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In constructing a linear model, the coefficients β0, β1, . . . , βm are unknowns. A set of n
experiments can be performed to determine possible values of these m + 1 unknowns.
These m + 1 unknowns β0, β1, . . . , βm are called parameters of the linear regression model.

If all the experiments have no errors and the setting of the variables x⃗i is independent,
then m+ 1 experiments are sufficient to determine the m+ 1 unknowns β0, β1, . . . , βm. How-
ever, almost all experiments cannot avoid errors. More than m + 1 experiments—usually
many more experiments—are needed to obtain “optimal” values of β0, β1, . . . , βm.

To define the optimal values for these parameters, we first define the loss function.
Given a set of values for β⃗ = [β0, β1, . . . , βm], we can compute the loss with respect to β⃗ as

L(β⃗) =
n

∑
i=1

(
β⃗x⃗T

i − yi

)2
.

In the least square setting, the optimum parameter is defined as the one that minimizes
the sum of the mean square loss:

⃗̂β = arg min L
(

β⃗
)
= arg min

n

∑
i=1

(
β⃗x⃗T

i − yi

)2
.

4. The Proposed Collaborative Learning Method

In this section, we first describe the theoretical basis on which our proposed collabora-
tive learning approach is based. We then describe new collaborative learning methods.

4.1. Theoretical Basis of the Collaborative Learning Method

First, we show how to compute the optimal parameters of a linear regression model
incrementally. Assume that the number of features is two. Thus,

y = β0 + β1x1 + β2x2.

The optimal values of each β j, j = 0, 1, 2 can be obtained by finding the minimum value of
the function L(β⃗). Let

L(β0, β1, β2) =
n

∑
i=1

(yi − β0 − β1xi
1 − β2xi

2)
2.

Solve
∂L
∂βi

= 0, i = 0, 1, 2. We obtain:

n

∑
i=1

(yi − β0 − β1xi
1 − β2xi

2) = 0

n

∑
i=1

xi
1(yi − β0 − β1xi

1 − β2xi
2) = 0

n

∑
i=1

xi
2(yi − β0 − β1xi

1 − β2xi
2) = 0

These equations are also called normal equations. They can be rewritten as:

n

∑
i=1

yi = β0n + β1

n

∑
i=1

xi
1 + β2

n

∑
i=1

xi
2

n

∑
i=1

xi
1yi = β0

n

∑
i=1

xi
1 + β1

n

∑
i=1

(xi
1)

2 + β2

n

∑
i=1

xi
1xi

2

n

∑
i=1

xi
2yi = β0

n

∑
i=1

xi
2 + β1

n

∑
i=1

xi
1xi

2 + β2

n

∑
i=1

(xi
2)

2

(1)
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The coefficients β0, β1, β2 can be computed by solving systems of linear Equations (1).
Now suppose another set of k data points are to be added:

(xn+1
1 , xn+1

2 , yn+1), . . . , (xn+k
1 , xn+k

2 , yn+k).

Equations (1) become

n+k

∑
i=1

xi
2 = β0(n + k) + β1

n+k

∑
i=1

xi
1 + β2

n+k

∑
i=1

xi
2

n+k

∑
i=1

xi
1xi

2 = β0

n+k

∑
i=1

xi
1 + β1

n+k

∑
i=1

(xi
1)

2 + β2

n+k

∑
i=1

xi
1xi

2

n+k

∑
i=1

xi
2xi

2 = β0

n+k

∑
i=1

xi
2 + β1

n+k

∑
i=1

xi
1xi

2 + β2

n+k

∑
i=1

(xi
2)

2

The new sum can be expressed as the old sum plus extra terms.

n+k

∑
i=1

xi
2 =

n

∑
i=1

yi +
n+k

∑
i=n+1

xi
2,

n+k

∑
i=1

xi
1xi

2 =
n

∑
i=1

xi
1xi

2 +
n+k

∑
i=n+1

xi
1xi

2,

n+k

∑
i=1

(xi
1)

2 =
n

∑
i=1

(xi
1)

2 +
n+k

∑
i=n+1

(xi
1)

2

and so on for the other summations.
To generalize the method described above, it is more convenient to rewrite these

equations by using matrices.
1 x1

1 x1
2 . . . x1

m
1 x2

1 x2
2 . . . x2

m
...

...
...

. . .
...

1 xn
1 xn

2 . . . xn
m




β0
β1
...

βm

 =


y1
y2
...

yn

.

The relationship between matrix X and vector y⃗ can also be written in matrix form as:

Xβ⃗ = y⃗. (2)

The loss function can then be rewritten as:

L(β⃗) = ||Xβ⃗ − y⃗||2

=
(

Xβ⃗ − y⃗
)T(

Xβ⃗ − y⃗
)

= y⃗T y⃗ − y⃗TXβ⃗ − β⃗TXT y⃗ + β⃗TXTXβ⃗.

The optimum solution is at gradient 0, and the gradient of the loss function is:

∂L(β⃗)

∂β⃗
=

∂
(

y⃗T y⃗ − y⃗TXβ⃗ − β⃗TXT y⃗ + β⃗TXTXβ⃗
)

∂β⃗

= −2XT y⃗ + 2XTXβ⃗.
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Setting the gradient to 0, we get the optimum coefficients:

− 2XT y⃗ + 2XTXβ⃗ = 0

⇒ XT y⃗ = XTXβ⃗

⇒ β⃗ =
(

XTX
)−1

XT y⃗.

Therefore, the optimum value for β⃗ is

β⃗ =
(

XTX
)−1

XT y⃗. (3)

Suppose that each user u has a set of
(

xi
1, xi

2, . . . , xi
m
)

and its response yi. They want to
collaboratively compute the optimal coefficients

β⃗ = (β0, β1, . . . , βm)

such that ||Xβ⃗ − y⃗||2 is minimized. Assume that there are two parties: A and B. A’s data
are in the upper part of X and B’s data are in the lower part of X. Matrix X can be written

as
[

X1
X2

]
. Similarly, vector y⃗ can be written as

[
y⃗1
y⃗2

]
. The system of Equation (2) can then be

written as: [
X1
X2

]
β⃗ =

[
y⃗1
y⃗2

]
Applying Equation (3), the value of β⃗ can be computed as

β⃗ =

([
X1
X2

]T[X1
X2

])−1[
X1
X2

]T[y⃗1
y⃗2

]

=

([
XT

1 XT
2

][X1
X2

])−1[
XT

1 y⃗1 + XT
2 y⃗2
]

=
([

XT
1 X1 + XT

2 X2

])−1[
XT

1 y⃗1 + XT
2 y⃗2
]

To compute the model parameter β⃗, the matrix needs to be inverted to become the (m+1) ×
(m + 1) matrix [

XT
1 X1 + XT

2 X2

]
.

In practical applications, the matrices that are to be maintained are

XTX and XT y⃗.

These matrices are initialized as zero matrices. Whenever a new dataset Xi and y⃗i are
obtained, the new matrices XT

i Xi and XT
i y⃗i are added to XTX and XT y⃗, respectively. This

enables the computation of a new set of model parameters for linear regression. It is also
possible to delete a particular dataset, such as Xj and y⃗j, by subtracting XT

j Xj and XT
j y⃗j

from XTX and XT y⃗, respectively.

4.2. Description of the Protocol

Suppose that A and B intend to utilize the least square method to construct a linear
model that comprises m features. Assume that A has the data X1 and the associated
vector y⃗1, and B has the data X2 and the associated vector y⃗2. Our secure collaborative
computation of the optimal parameter for linear regression is shown in Figure 1.
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1. A performs n1 experiments and collects the data into an n1 × (m + 1) matrix X1
and a n1 × 1 vector y⃗1.

2. B performs n2 experiments and collects the data into an n2 × (m + 1) matrix X2
and a n2 × 1 vector y⃗2.

3. A sends XT
1 X1 and XT

1 y⃗1 to B.
4. B sends XT

2 X2 and XT
2 y⃗2 to A.

5. A and B can then compute the optimal model parameter β⃗, which is an (m+ 1)× 1
vector:

β⃗ =
([

XT
1 X1 + XT

2 X2

])−1[
XT

1 y⃗1 + XT
2 y⃗2.

]

Figure 1. Secure collaborative learning of linear regression without encryption. In the protocol,
assume that A and B intend to utilize the least square method to construct a linear model that
comprises m features.

5. Analysis of the Protocol

In this section, we first analyze the performance of the proposed protocol and then
prove that our protocol is information-theoretically secure, assuming that all users are semi-
honest, i.e., they follow the protocol but are curious to learn about the other parties’ data.

5.1. Performance Analysis

Based on Section 4.1, it is easy to verify that our collaborative computation of the
optimal parameter for linear regression is correct. For the computational complexity of
the scheme, each party needs to compute XT

i Xi and XT
i y⃗i, i = 1, 2, respectively. This is

necessary even if computations are performed by only one party using all the data in one set.
The only possible extra work is that every party needs to invert the matrix XT

1 X1 + XT
2 X2

to obtain the solution of β⃗. The dimension of the matrix to be inverted is (m + 1)× (m + 1),
where m is the number of features used in the model, which is usually much smaller than
the number of data n.

This step can also be done by one party (i.e., the server) who then sends the solution β⃗
to the other parties (i.e., local users). In this way, the total computational work is the same
as the computational work required to be done when all the data are at one site.

For communication complexity, our proposed scheme sends only aggregated data to
the other party. The size of the aggregated data is only (m+ 1)2 +(m+ 1) = (m+ 1)(m+ 2)
numbers for each party having n records of data. The communication complexity is
proportional to the number of features m, which is independent of n. When n > (m + 1),
this is less than the size of the dataset, which is (n(m + 1) + n).

5.2. Security Analysis

In this section, we show that the security of the proposed scheme is information-
theoretically secure. This implies that even though a minor amount of information is in-
evitably divulged to establish a useful linear regression model, the attacker cannot compute
the exact values of the other party’s data, even if the attacker has infinite computing power.

We assume that all parties are semi-honest, i.e., the participants strictly follow the
protocol, but they may be interested in knowing additional information that they are not
explicitly permitted to know.

Theorem 1. Assume that each party collects more than m + 1 data. The proposed collaborative
learning method for the optimal parameters of a linear regression model is secure in the follow-
ing sense:

1. A does not have enough information to compute any elements in X2 and y⃗2;
2. B does not have enough information to compute any elements in X1 and y⃗1.
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Proof. Assume that some curious party attempts to calculate the values of the other party’s
data using the information he/she has collected in the protocol. We show that the number
of unknown variables is greater than the number of equations he/she can formulate. This
implies that the curious party cannot determine the exact value of the other party’s data,
even if they have infinite computing power.

Assume that A has a set of n1 data and B has a set of n2 data: n1 + n2 = n and
n1, n2 > m + 1, where m is the number of features in the system. First we show that A
cannot compute the data of B (i.e., elements of X2 and y⃗2) by using the information A
collects in the execution of the protocol.

The number of elements in X2 is n2 × (m + 1), but the first column of X2 is a constant.
Thus, there are n2m variables. The number of elements in y⃗2 is n2, and it contains n2
variables. Thus, A has a total of n2(m + 1) unknowns.

On the other hand, the number of elements in XT
2 X2 is (m + 1)2, and the number of

elements in XT
2 y⃗2 is m + 1. The first element in the first row of XT

2 y⃗2 is n2. Thus, A has
only (m + 1)2 + n2 − 1 quadratic equations. Since n2 > m + 1, A does not have enough
information to compute the values of the elements in X2 and y⃗2.

Similarly, we can show that B does not have enough information to compute the
values of the elements in X1 and y⃗1.

Theorem 1 shows that even if the parties or the server have infinite computational
power, there is not enough information to infer the values of the other party’s data. That is,
the security of the proposed linear regression scheme does not depend on computationally
hard problems, such as factoring large integers or solving discrete logarithm problems in a
large finite group. These computationally hard problems are solvable if the attacker has
sufficient computing power: for example, by using a quantum computer.

Although we have proved that the curious party cannot compute the values of the
dataset of the other party, even if they have infinite computing power, the curious party
does know some information about the dataset. For example, the amount of data and
the sum of the squares of the data, etc. For the information leakage in general, we note
that Dwork and Naor show that if a machine learning model is useful, it must reveal
some information about the data on which it was trained [26,27]. Our proof indicates that
the information disclosed to the other party through the proposed collaborative linear
regression scheme is minimal. As a result, none of the parties can leverage it to calculate
the exact values of each other’s data, even if the attacker has unlimited computing power.

As for how much information is lost, according to the proof of Theorem 1, user A only
has (m + 1)2 + n2 − 1 quadratic equations to solve n2(n + 1) unknowns. This means that
A will require

d = n2(m + 1)− (m + 1)2 + n2 − 1

= (m + 1)(n2 − (m + 1)) + (n2 − 1) > 0 if n2 > (m + 1)

additional equations to solve for the value of each variable. These d equations can be the
values of any subset of the d variables or of any system of d equations on the variables.
Without this additional information, there are d free variables that can take on any value,
and any possible values of these d valuables can be used to calculate the values of other
variables. Therefore, the information leaked is (m + 1)2 + n2 − 1 information units, where
1 information unit is equal to the value of the variable. Note that the total number of
information units of the system is n2(n + 1), which is the total number of unknowns for
the user A, or the uncertainty of A.

6. Practical Applications of the Scheme

The proposed collaborative learning method for linear regression can be viewed
as a peer-to-peer mode of collaborative learning, or decentralized federated learning.
In addition to the peer-to-peer model for collaborative learning, the proposed learning
scheme can also be used for the client–server mode of collaborative learning, or centralized
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federated learning. In the client–server mode of collaborative learning, the server may or
may not own any training data. Each party sends its data to the server in the aggregated
form. The server can then do all the computations for the users and can send the final
result, i.e., the value of β⃗, to each user.

Users’ new data can also be sent to the server many times. When sending their newly
collected data incrementally, care must be taken to avoid sending a batch of too few data.
For example, suppose that initially a user A has collected a set of n1 data. If n1 > m + 1,
then the user can send the corresponding matrix G1 = XT

1 X1 and h⃗1 = XT
1 y⃗1 to the server.

Assume that more data were collected by the same user A. If the number of new data
n2 > m + 1, then A can send another pair of matrices G2 = XT

2 X2 and h⃗2 = X2y⃗2 to the
server. In the case that the number of data n2 ≤ m + 1, user A may not want to send
G2 = XT

2 X2 and h⃗2 = XT
2 y⃗2 to the server for security and privacy reasons. This is because

the number of data in X2 and y⃗2 is too small, and a curious server can compute the matrix
X2 and y⃗2 from G2 and h⃗2.

This implies that our proposed collaborate learning method can easily be implemented
to compute optimal model parameters for linear regression incrementally. Suppose that k
datasets are collected over a period of time:

(X1, y⃗1), (X2, y⃗2), · · · , (Xk, y⃗k).

Define an (m + 1)× (m + 1) matrix

Gi = XT
i Xi

and an (m + 1)× 1 vector
h⃗i = XT

i y⃗i.

The optimal model parameters β⃗ can be computed by the equation

β⃗ = G−1⃗h,

where

G =
k

∑
i=1

Gi, and h⃗ =
k

∑
i=1

h⃗i.

These k sets of data (X1, y⃗1), (X2, y⃗2), · · · , (Xk, y⃗k) can be the data of k users collected
at different times. When some dataset (Xi, y⃗i) is available, it can be added into G and h⃗,
respectively. Better model parameters β⃗ can then be computed.

It is also possible to delete some specified datasets as long as the relevant aggregated
data are properly preserved. For example, if we want to delete all datasets associated with
a party, we need to know the aggregated data for that party. Aggregated data of that party
may also be held by that party. Once that party wants to delete his entire dataset, he can
send the aggregated data to the server, which can deduct his data from the system.

By Theorem 1, in applying our scheme, it is required that the number of data ni
must be greater than m + 1 for each user i. Otherwise, the curious party may be able to
compute the value of the data set of user i. This is not a serious limitation, because, in any
practical application, the number of features is usually small, and the amount of collected
data should be much larger than the number of features to built an accurate machine
learning model.

7. Conclusions and Discussion

We propose a simple and yet effective secure multiparty computation scheme for linear
regression in a distributed environment. Our approach leverages the inherent mathematical
properties of linear regression to allow participating parties to transmit only aggregated
data to the server or other parties. This strategic approach enhances security and privacy
protection without the need for encryption, especially homomorphic encryption. Security
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and privacy play important roles in collaborative learning. By allowing data owners to
protect their valuable data while still contributing to model improvement, our approach
encourages greater data sharing and collaboration among participants.

Our proposed scheme offers the flexibility of incremental dataset management within
the linear regression models. The seamless integration of new datasets into the system
facilitates the acquisition of updated and more precise model parameters, all without the
need for computation from the beginning. Additionally, the secure removal of user datasets
is supported, which is required by laws and regulations when a party departs from the
group and requests the deletion of his data.

The security of our proposed collaborated computation scheme for linear regression
does not depend on computationally hard problems, such as factoring large integer and
solving discrete logarithm in large finite group. These computationally hard problems
usually require heavy computation to achieve a certain level of security. Furthermore,
these computationally hard problems may be broken if the attacker has enough computing
power, such as by using quantum computers. Due to the lack of sufficient information, we
proved that the curious party cannot obtain exact values of the other party’s data, even
with unlimited computing power.

Our proposed method can also accommodate the inclusion of varying weights in col-
laborative learning. This feature holds particular promise in scenarios requiring customized
machine learning, where all parties share commonalities but possess unique characteristics.
A prime example is handwritten character recognition for smartphone input processing,
for which personalized models are imperative. Our approach provides a customization
process that enables users to build custom models by adding additional training datasets
of their own to the generic model.

In the design of our linear regression protocol, we make no assumptions about how
the dataset is collected and distributed within each site. In particular, the dataset collected
at each site may contain different features. When applying our protocol, users must agree
in advance on the features used in the model’s calculations. Our approach belongs to
horizontal federated learning as classified by Yang et al. citeYLCT19. In many applications,
such as medical applications, the medical data collected by each hospital must contain
a fixed set of common features that can be used to develop new drugs or treatments.
Therefore, this is not a serious limitation.
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Appendix A. Implementation of the Proposed Scheme

In this appendix, we describe our experience for the implementation of our proposed
privacy-preserving collaborative computing scheme for linear regression. We use the equation:

2 + x1 − 2x2 + 3x3 + 2x4 − x5 + 2x6 + 2.5x7
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as an example to show the correctness of our proposed scheme. The value of each feature
xi in the experiment is randomly and uniformly selected from [−50, 50]. A Gaussian-
distributed experimental error with mean µ = 0 and variance σ2 = 5 is added to xi in each
experiment. The implementation environment is a PC equipped with an Intel CORE i7
CPU and running a Linux operating system with the gcc compiler.

Appendix A.1. Incremental Computation for Linear Regression

In this sub-section, we show that the incremental computation of linear regression of
our scheme is correct.

Assume that a user A first collected a set of n1 data and then a set of n2 data. These
data are shown in Table A1:

Table A1. The fist dataset of user A with n1 = 20 experiments.

x0 x1 x2 x3 x4 x5 x6 x7 y

1 −16.26 18.44 −22.2 −46.48 −32.63 26.94 19.2 −73.2757

1 10.52 13.11 −38.91 35.94 38.39 3.54 −1.9 −94.2417

1 45.59 38.25 18.11 30.93 −39.72 −49.24 −26.39 −38.4952

1 −30.92 −38.65 −17.65 7.79 −33 −41.54 −3.74 −43.2171

1 11.72 0.15 16.01 8.98 −31.41 7.34 12.5 156.469

1 49.49 47.8 45.23 −26.47 10.91 −43.68 −40.52 −163.418

1 −0.69 9.86 −28.9 −5.1 −38.37 39.21 39.36 102.719

1 −28.09 3.5 −37.03 −9.01 14.85 −41.16 48.78 −137.248

1 −4.63 −32.7 −41.44 20.61 −19.03 −11.9 −20.41 −81.5211

1 −0.43 45.44 5.61 −37.42 43.24 0.84 −13.89 −223.777

1 4.15 −29.32 −40.89 16.98 −5.93 −19.78 25.41 9.71093

1 5.7 32.95 −21.71 27.62 −13.55 −8.74 −31.39 −153.078

1 14.82 0.1 30.92 23.71 −19.08 3 −5.68 171.14

1 11.9 41.1 −12.57 24.99 0.06 43.05 37.57 125.301

1 −6.7 −6.11 −26.32 10.98 14.58 46.32 41.48 130.289

1 −41.35 40.06 −19.59 14.35 23.01 8.7 −44.51 −266.432

1 22.99 49.96 37.63 −48.67 −36.42 −17.93 25.05 5.34962

1 −5.49 35.07 32.89 −43.59 −10.3 −29.67 31.4 −31.3214

1 39.76 −36.62 −17.51 46.59 −29.21 −30.31 −28.91 49.7131

1 −1.11 −33.99 −37.43 7.54 −43.93 −7.01 35.42 86.3319

In Table A1, as well as other data tables in this section, the last column is yi.
The solution obtained by using the least square method on these 20 data is listed as

follows. In the list of the solutions of the parameters, the number in the parentheses is the
theoretical value.
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β0 = 2.48223 (2)

β1 = 0.943394 (1)

β2 = −1.99831 (−2)

β3 = 3.04756 (3)

β4 = 2.01561 (2)

β5 = −1.00936 (−1)

β6 = 1.99996 (2)

β7 = 2.53073 (2.5)

Suppose that A collected another set of data A2 with n2 = 10 data as shown in
Table A2:

Table A2. The second dataset of user A with n2 = 10 experiments.

x0 x1 x2 x3 x4 x5 x6 x7 y

1 10.65 −47.49 9.25 12.57 9.24 35.2 −1.66 217.627

1 10.88 14.43 −2.51 45.02 −9.74 −19.05 −37.63 −56.4756

1 −49.31 13.31 −4.27 23.7 −33.26 35.17 −33.26 −15.32

1 −30.9 −19.26 11.48 25.9 41.91 −15.09 24.77 86.6076

1 47.06 0.63 24.81 7.71 −33.33 47.58 33.8 352.092

1 25.91 −3.7 −17.86 −49.69 −39.27 −6.85 8.85 −68.6693

1 −35.49 24.1 21.22 −34.79 −49.06 −33.04 2.43 −97.2314

1 31.2 15.65 19.18 13.82 46.4 −19.34 −10.27 −24.3336

1 1.83 −20.91 28.02 −37.59 −6.75 2.83 20.12 113.153

1 9.92 0.41 3.92 49.35 46.71 −0.42 13.18 107.252

The solutions obtained by using the least square method on these 10 data is:

β0 = 2.98339 (2)

β1 = 0.974087 (1)

β2 = −1.94836 (−2)

β3 = 2.92537 (3)

β4 = 2.01187 (2)

β5 = −1.00548 (−1)

β6 = 2.03572 (2)

β7 = 2.53478 (2.5)

It can be seen that the solutions for each dataset are not accurate enough. These two
datasets need to be combined to obtain a more accurate linear regression model. The two
datasets can be computed incrementally by using our proposed scheme. The solutions
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obtained by using the least square method on these two sets of n = 20 + 10 = 30 data
incrementally is:

β0 = 2.03899 (2)

β1 = 0.964677 (1)

β2 = −1.98436 (−2)

β3 = 3.01903 (3)

β4 = 2.01332 (2)

β5 = −1.01804 (−1)

β6 = 2.00631 (2)

β7 = 2.5225 (2.5)

The model parameters are more accurate with the two sets.

Appendix A.2. Collaborative Learning

In this subsection, we demonstrate the proposed collaborative learning scheme with
two users: A and B. We use the same equation:

2 + x1 − 2x2 + 3x3 + 2x4 − x5 + 2x6 + 2.5x7

Furthermore, the environment in which the experiments are performed is the same as in
the previous subsection.

Suppose that user B collected a dataset B with n = 20 data as given by Table A3:

Table A3. The dataset of B with n = 20 experiments.

x0 x1 x2 x3 x4 x5 x6 x7 y

1 −22.91 −34.13 23.94 10.73 −10.69 −25.65 28.18 168.728

1 −11.34 −28.94 −22.24 −48.16 42.03 −29.5 37.4 −123.46

1 −8.97 0.86 −5.81 −44.76 −4.32 −32.07 −28.12 −245.88

1 35.22 −29.15 −42.29 38.58 33.69 37.71 −18.32 37.3495

1 11.89 10.33 2.79 38.98 −10.28 −23.26 −36.77 −49.6949

1 29.03 −35.39 41.41 31.21 49.2 −30.82 −3.42 168.298

1 4.75 −46.8 −16.02 45.78 4.06 28.17 −48.98 75.8072

1 13.26 9.63 −27.1 −38 −6 44.13 −49.42 −193.578

1 41.22 −4.63 −17.74 3.11 19.22 −1.42 −44.39 −130.139

1 −41.05 −11.16 −31.16 1.5 −33.03 −39.74 −17.28 −190.617

1 −33.83 42.96 29.3 −15.56 46.16 −36.72 −19.78 −231.838

1 −36.26 4.98 44.76 27 28.13 31.19 39 274.162

1 −27.87 25.32 39.58 −36.65 34.21 35.37 −20.02 −44.4884

1 3.44 47.47 −14.41 −24.09 49.83 −32.04 27.41 −226.662

1 −33.2 −21.78 −39.87 −17.02 34.7 2.95 17.42 −127.486

1 30.86 −20.24 11.17 44.6 34.74 −30.55 −14.88 63.4341

1 12.87 −49.36 −25.88 −1.48 −10.51 27.22 −24.6 35.2042

1 −26.3 −23.89 5.38 −9.34 37.1 4.5 −19.91 −54.854

1 36.93 22.46 −42.49 −46.26 14.2 31.16 −13.28 −211.297

1 −1.1 47.64 17.66 43.28 −22.6 42.35 37.88 247.94
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The solution obtained by using the least square method only on B’s dataset is:

β0 = 1.70711 (2)

β1 = 0.959823 (1)

β2 = −1.99594 (−2)

β3 = 2.98714 (3)

β4 = 2.01443 (2)

β5 = −1.02221 (−1)

β6 = 1.98162 (2)

β7 = 2.48759 (2.5)

If we use the proposed scheme to combine the two datasets collected by A and B, we
can obtain better model parameters:

β0 = 2.01701 (2)

β1 = 0.970765 (1)

β2 = −1.9931 (−2)

β3 = 3.00359 (3)

β4 = 2.00549 (2)

β5 = −1.02131 (−1)

β6 = 1.99849 (2)

β7 = 2.50664 (2.5)

(A1)

To verify the correctness of our proposed collaborative learning scheme, we also try to
first combine the two datasets and then calculate the solutions. The results are:

β0 = 2.01701 (2)

β1 = 0.970765 (1)

β2 = −1.9931 (−2)

β3 = 3.00359 (3)

β4 = 2.00549 (2)

β5 = −1.02131 (−1)

β6 = 1.99849 (2)

β7 = 2.50664 (2.5)

(A2)

It can be seen that the solutions in Equations (A1) and (A2) are exactly the same.

Appendix A.3. Performances of the Scheme

First, we combine the A dataset (30 data) and the B dataset (20 data), and then we
calculate the parameters of the linear regression model. The average computational times
(in seconds) for each case executed 10 times are shown in Table A4:

Table A4. The computational times (in seconds). The two datasets are first combined.

m = 50 m = 75 m = 100

n = 10,000 0.133 s 0.284 s 0.511 s

n = 15,000 0.188 s 0.411 s 0.815 s

n = 20,000 0.300 s 0.766 s 1.467 s
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Then, we first compute the system parameters on the datasets of A and B separately
and then consolidate the results. The time required to perform the calculations is listed be-
low.

Table A5. The computational times (in seconds). The two datasets are not combined at first but are
computed by using the proposed scheme.

m = 50 m = 75 m = 100

n = 10,000 0.123 s 0.282 s 0.512 s

n = 15,000 0.188 s 0.442 s 0.815 s

n = 20,000 0.298 s 0.761 s 1.456 s

As can be seen from the above two tables, there is no obvious difference in the
computational time based on either implementing our proposed scheme or combining the
datasets first and then calculating the solutions. This is also consistent with our analysis
that our scheme incurs no additional computational cost.

The above experiments do not include the communication time. The communication
cost in our scheme is much lower because only (m + 1)(m + 2) aggregated data needs to
be exchanged, while the communication cost of those schemes that do not use aggregated
data require the exchange of n(m + 2) data whether the data are encrypted or not.
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