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Featured Application: The introduced control protocol was integrated on a swarm of five
commercial quadrotors to address the formation control problem.

Abstract: A decentralized robust control protocol addressing leader-follower formation control of
unknown nonlinear input-constrained multi-agent systems with adaptive performance specifications
is proposed in this paper. The performance characteristics predefined by the user are adaptively
modified in order to comply with the actuation constraints of the agents regarding both the magnitude
and the rate of the control signals, ensuring closed-loop stability. The proposed control protocol is
characterized by easy gain tuning and low structural complexity which simplifies the integration to
real systems. A thorough experiment involving a system of multiple quadrotors was conducted to
clarify and verify the theoretical findings.
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1. Introduction
1.1. Motivation

In light of the remarkable technological progress in recent decades, a substantial
amount of research effort has been dedicated to the control of multi-agent systems (MAS),
owing to their practical potential across diverse applications and the theoretical complexity
in coordinating and controlling them [1–3]. The primary theoretical challenge involves
controlling a multi-agent system using only the local information available to each agent
and employing decentralized control laws for swarm coordination [4].

As part of cooperative control, formation control addresses the development of efficient
controllers aiming to guide a fleet of agents to maintain a desired formation configuration
while tracking a reference trajectory or following a designated path. Employing distributed
formation control schemes for MAS becomes crucial for executing intricate cooperative
missions. The aforementioned task becomes even more challenging when practical issues
including actuator nonlinearities, unknown system dynamics and environmental distur-
bances are taken into account. Moreover, in real-time applications, there is a need for
control protocols that prioritize time efficiency while avoiding excessive computational
complexity. Such complexity could adversely impact system performance and even lead
to instability. Despite the urge for low computational complexity algorithms, standard
performance specifications have to be provided by the control laws so that the desired sys-
tem response is guaranteed. Hence, the fundamental motivation for this work arises both
from the practical as well as theoretical challenges outlined in this paragraph and concerns
the development of a robust decentralized control strategy, capable of addressing internal
and external nonlinearities and imposing performance specifications while avoiding the
explosion of computational complexity.
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1.2. State of the Art and Contributions

The literature on formation control of MAS demonstrates a rich amount of method-
ologies facilitating coordinated navigation and adaptive configurations among multiple
autonomous agents. Strategies like behavior-based schemes [5–7], virtual structures [8,9]
and leader-follower approaches [10–15] have significantly influenced the shaping of forma-
tions and the interaction control among agents. In region-based algorithms the agents move
within a dynamic area, defining the desired formation shape via potential functions [16]. In
ref. [17] the authors address the challenge of elliptical coverage by employing an elliptical
potential function to achieve area coverage. An adaptive leader-follower formation tracking
protocol for spacecraft formation was recently proposed in ref. [18], addressing limited
sensing and external disturbances. This study introduces an adaptive leader-following
technique for spacecraft, guaranteeing stability, connectivity maintenance, collision avoid-
ance, and disturbance rejection within a settled time. In ref. [19] the appointed-time
formation control for multiple spacecrafts under resource constraints was investigated
by introducing an event-triggered protocol. Using a sliding mode manifold and output
performance constraints, the authors devise a controller ensuring desired convergence and
performance guarantees. Additionally, the fixed-time fault-tolerant formation control for
a leader-follower heterogeneous MAS, considering actuator faults and disturbances was
investigated into ref. [20]. Specifically, a finite-time performance function was introduced
to ensure the convergence of formation errors within a specified time frame in combination
with a distributed formation control algorithm using sliding mode control. Utilizing the dig-
ital twin framework authors in refs. [21,22] focus on a decentralized adaptive attack-resilient
control scheme designed to address unbounded actuation attacks within heterogeneous
MAS, ensuring the system’s resilience and stability despite adversarial disruptions.

Despite these advancements, a critical challenge persists in ensuring robust perfor-
mance when confronted with input constraints. While these control strategies excel in
shaping formations, they often struggle to maintain stability, convergence, and perfor-
mance guarantees under real-world circumstances and limitations. In particular, actuation
constraints, frequently lead to degraded tracking accuracy, stability issues, and reduced
convergence rates, affecting the performance and safe operation of the MAS in practical
applications. Extensive research efforts have focused on addressing these challenges within
the MAS control framework. Adaptive sliding-mode control methods [23,24] and optimal
control algorithms [25,26] aimed to both maintain formations and address uncertainties
present in agent dynamics. Robust adaptive controllers [27], have also been introduced to
counteract external disturbances, parameter uncertainties, and input nonlinearities within
the control loop. Nevertheless, complex MAS, (e.g., swarms of quadrotors), often exhibit
highly nonlinear behavior influenced by both internal uncertainties and external distur-
bances. Consequently, achieving high-performance formation tracking in such nonlinear
MAS remains a fundamental challenge for researchers.

Recent advances in control methodologies have leveraged approximation techniques,
driven by advancements in computational capabilities. In [28] the authors propose an
adaptive fuzzy backstepping controller for the formation control of under-actuated space-
craft teams, addressing unknown nonlinearities and actuator saturation. They introduce a
path-following mechanism for the leader and a follower control design based on Lyapunov
theory to maintain the desired formation. Furthermore, ref. [29] proposes a neuro-adaptive
leader-follower formation control scheme for autonomous surface vehicles, ensuring scal-
able formation sizes, while addressing uncertainties and input saturation. However, such
approaches reveal certain limitations. For instance, while neuro/fuzzy approximating struc-
tures have been utilized to compensate for model uncertainties, they escalate complexity by
necessitating additional adaptive parameters and computational overhead. Furthermore,
the shaping of the transient and steady-state response in systems under model uncertain-
ties and input saturation lacks systematic methods that: (i) guarantee the best achievable
performance specifications, (ii) facilitate the control parameter selection and (iii) predict the
steady-state behavior when input saturation is inactive.
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Thus, while existing research demonstrates progress in confronting input limitations
and uncertainties in MAS formation control, the challenges of ensuring robust performance
and stability under actuation constraints still remain open. This highlights the need
for further exploration into methodologies that offer stronger performance guarantees
against input constraints, emphasizing on a more comprehensive approach to address these
nonlinearities in practical scenarios. Driven by this, we build on our previous work [30]
aiming at designing a novel robust scheme for controlling nonlinear MAS, considering
input constraints while ensuring adaptive performance attributes. The main contributions
of our work can be outlined as follows:

• In contrast to existing literature regarding MAS framework [15,17–20,23–29], the
proposed methodology considers the conflict between output performance and input
constraints both on the amplitude and rate of the control signal.

• The controller does not exploit either knowledge of the system dynamics or any disturbance
observer leading to a lower complexity control scheme compared to [15,18–20,26–29].

• The control protocol is decentralized with easy gain tuning, which facilitates its
integration on a real robotic swarm, as illustrated in Figure 1.

Figure 1. The agents perform the desired pentagon formation in our lab’s arena.

The paper is structured as follows: Section 2 introduces the problem addressed in
this work. Subsequently, Section 2.1 provides essential preliminary information about the
PPC methodology. In Section 3.1, we formulate the neighborhood error, incorporating the
system’s formation characteristics. Section 3.2 presents the design of the proposed control
scheme and provides theoretical analysis for the SISO case, while Section 3.3 elaborates on
the extension of the proposed controller to MIMO MAS. Section 4 presents comparative
simulation results, demonstrating the superior performance of our approach compared
to a well-established proportional control scheme. Moving to Section 5, we showcase
experimental results highlighting the effectiveness of the proposed scenario within a real
MAS setup. Finally, in Section 6, we draw conclusions from our findings.

2. Problem Formulation and Preliminaries

The system considered consists of N following agents and a leading virtual agent that
generates a reference trajectory for the MAS. We assume that the agents obey the following
first-order nonlinear dynamical model:
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ẋi = fi(xi) + gi(xi)ui + di(t) (1)

u̇i = satri

(
ai(t)

)
, i = 1, . . . , N (2)

where xi ∈ R, i = 1, . . . , N denotes the state of each agent, fi, gi : R→ R, i = 1, . . . , N
are unknown locally Lipschitz functions and di : R+ → R, i = 1, . . . , N models the
piecewise continuous and bounded external disturbances. The dynamic control input
ui, i = 1, . . . , N will be generated through (2), which utilizes nested saturation functions
to impose magnitude and rate constraints on the control signals. Hence, by properly
designing the control commands ai(t), i = 1, . . . , N the control input of each agent may
satisfy |ui| ≤ mi, |u̇i| ≤ ri, i = 1, . . . , N for some mi, ri > 0 denoting the symmetrical
magnitude and rate saturation levels, respectively. It should be noted that the results of the
paper are extendable to arbitrary dimensions as dictated in Section 3.3.

The communication architecture of the wireless network is denoted by an undirected
graph G = (V , E), where V = (v1, v2, . . . , vN) represents the vertices, and E ⊆ V × V
symbolizes the edges. Each edge indicates bidirectional information exchange between
neighboring agents in the group. The neighborhood of agent i is denoted by Ni and the
graph’s adjacency matrix A = [Aij] ∈ RN×N assumes Aij = 1 if j ∈ Ni, or Aij = 0
otherwise. Furthermore, let the degree matrix D = diag([Di]) ∈ RN×N be the diagonal
matrix with elements that satisfy Di = ∑j∈Ni

Aij. Consequently, the graph’s Laplacian
is obtained by L = D − A ∈ RN×N . Moreover, the state of the leader node, denoted
by v0, is given by x0 : R+ → R and it is assumed to be bounded and smooth. Note,
that information about the reference trajectory is exclusively provided to a subset of the
N agents. The access of the followers to the leader’s state is represented by a diagonal
matrix B = diag([b1, b2, . . . , bN ]) ∈ RN×N . If bi = 1, then the i-th agent receives state
information from the leader node; conversely, if bi = 0, then the agent has access to the
leader’s state information. Consequently, we define the augmented graph as G = (V , E),
with V = V ⋃{v0} and E = E ⋃{(vi, v0) : bi = 1} ⊆ V × V , along with the augmented set
of neighbors N i = {vj : (vi, vj) ∈ E}, i = 1, 2, . . . , N.

We now formulate the formation control problem for the aforementioned MAS subject
to limited actuation capacity, encompassing adaptive performance regarding transient and
steady-state response that is confronted in this paper. Our principal goal is to devise a
decentralized control strategy for the following agents of the system, assuming unknown
system dynamics and external disturbances. This work aims to establish and maintain a con-
stantly feasible formation, outlined by the desired relative offsets dij, j ∈ Ni, i = 1, . . . , N,
with adaptive performance characteristics. In order to impose adaptive performance char-
acteristics we build on the adaptive performance control technique [30], to design online
adaptation laws for the user-predefined specifications (i.e., speed of convergence and
steady-state error) with respect to the input limitations that inevitably prevent the accurate
tracking and may put the system at risk, i.e., lead to unstable behavior. To address the
previously stated problem, we establish the following assumptions:

Assumption 1. The communication graph G is connected, and there exists at least one bi ̸= 0,
i = 1, 2, . . . , N.

Assumption 2. The system (1) under consideration is input to state stable.

Remark 1. Assumption 1 implies that L + B forms a strictly diagonally dominant M-matrix [31].
An M-matrix possesses non-positive off-diagonal entries and all principal minors non-negative,
ensuring the positive definiteness of L + B. Assumption 2 is reasonable for stabilizing input
constrained systems [32]. Within the input-constrained MAS framework, characterized by strong
inter-agent couplings, maintaining bounded signals for a general system is quite challenging, even
if each agent initializes within a set contained within its own region of attraction.
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2.1. Preliminaries on PPC

In prescribed performance control (PPC) [33], the primary aim is to achieve a spe-
cific output tracking performance, ensuring the convergence of the error to a predeter-
mined residual set with a predefined minimum convergence rate. The approximation-
free framework, introduced in [33], focuses on the difference between the measured
output y(t) and the desired reference trajectory yd(t), referred to as the tracking er-
ror e(t). This performance is quantified by exploiting a decaying exponential function
ρ(t) = (ρ(0) − ρ∞) exp (−λt) + ρ∞, characterized by parameters ρ(0), ρ∞, and λ. The
parameters ρ∞ and λ represent the maximum allowable steady-state error and the con-
vergence rate, respectively. The prescribed performance requirement demands that the
tracking error e(t) remains bounded within the performance envelope defined by ρ(t) and
−ρ(t) for all t ≥ 0 (i.e., −ρ(t) < e(t) < ρ(t), ∀t ≥ 0). Additionally, the initial tracking error
e(0) is considered within the performance envelope, adhering to the condition ρ(0) > |e(0)|
at t = 0.

3. Main Results
3.1. Sufficient Conditions

Owing to the incorporation of decentralized control protocols reliant on relative
state information, each agent’s control law should be derived from its neighborhood
error feedback:

ei = ∑
j∈Ni

[
Ai,j(xi − xj + dij)

]
+ bi(xi − x0 + di0) (3)

for i = 1, . . . , N with dij, j ∈ Ni denoting the relative inter-agent offsets that define the
desired swarm formation. In addition, we define the collective neighborhood error vector
as e = [e1, . . . , eN ]

T ∈ RN . Leveraging on the graph topology and through straightforward
algebraic manipulations, this vector can be expressed as:

e = (L + B)(x − x0 + d) (4)

where x = [x1, . . . , xN ] ∈ RN represents the collective state vector of the MAS, with
x0 = [x0, . . . , x0]

T ∈ RN and

d = (L + B)−1

[
∑

j∈N1

(
A1,jd1j

)
+ b1d10, . . . , ∑

j∈NN

(
AN,jdNj

)
+ bNdN0

]T

corresponds to the relative offset of the i-th agent with respect to the leader within the
desired formation configuration. Consequently, the formation is aligned with the leader’s
state, hence it is achieved when each agent’s state xi with respect to the leader state x0
maintains its respective offset di, i = 1, . . . , N. Introducing the disagreement formation
variable as q = [q1, . . . , qN ]

T = x − x0 − d, the formation control objective is met when the
disagreement errors si approach an arbitrarily small set around the origin for all i = 1, . . . , N.
However, qi represents global quantities and cannot be measured distributedly based on
the local intercourse specifications, as they utilize information directly sourced from the
leader. However, due to the non-singularity of L + B as a result of Assumption 1, we
arrive at: ∣∣q∣∣ ≤ |e|

λmin(L + B)
(5)

where λmin(L + B) corresponds to the smallest singular value of L + B.

Remark 2. From (5) it is concluded that the error vector e can serve as a reliable measure of the
formation control problem. Thus, transient and steady-state bounds on the neighborhood errors
ei, i = 1, . . . , N can be directly mapped into constraints on the disagreement formation metrics qi,
i = 1, . . . , N. This leads to the conclusion that solving the adaptive performance control problem
for all neighborhood errors ei directly resolves the formation control problem of (1). Specifically, as
dictated by (5), ensuring |ei(t)| < ρi(t), for all t ≥ 0 and i = 1, . . . , N, with ρi(t) denoting a
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performance function to be designed, explicitly constrain the disagreement errors qi, i = 1, . . . , N
within the compact sets Qi := {qi ∈ R : |qi| ≤

ρ̄i
λmin(L+B)} where ρ̄i denotes an upper bound on

ρi(t). Yet, λmin(L + B) remains a global parameter, rendering it impractical for exploitation within
decentralized control methodologies to directly enforce specific limits on q through Equation (5).
To address this challenge, a decentralized estimation algorithm [34] could be initially employed to
estimate λmin(L + B).

3.2. Decentralized Controller Design

In this section, we present an approximation-free decentralized dynamic control
scheme that guarantees |ei(t)| < ρi(t), i = 1, . . . , N and appropriately adapts the magni-
tude of ρi(t) to incorporate both the output (performance) and input (actuation) constraints.
This eventually leads to the solution of the robust formation control problem with adap-
tive performance for the input-constrained MAS. To account for system constraints, we
introduce a smooth saturation function σ(χ, σ̄) : R → [−σ̄, σ̄], where σ̄ > 0 represents the
saturation level. Within this context, we select the saturation function as:

σ(χ, σ̄) =


χ if |χ| < σ̄ − β

p(χ) if |χ| ∈ [σ̄ − β, σ̄ + β]

sχσ̄ if |χ| > σ̄ + β

where:
p(χ) = − 1

4β

(
χ2 − 2sχ(σ̄ + β)χ + (sχσ̄ − sχβ)2

)
with sχ denoting the sign of χ and β = 10−6 serves as a small smoothing parameter. The
design methodology of the proposed controller is elaborated as follows:

Step 1. The reference control signal is given by:

udi
(t) = −ki,1T

(
ei(t)

ρi,1(t)

)
, i = 1, . . . , N (6)

with ki,1 > 0 and T : (−1, 1) → (−∞, ∞) denoting a smooth error transformation function.

In this work, we select the mapping T(χ) = 1
2 ln
(

1+χ
1−χ

)
. Owing to the definition of T the

initial value of the performance ρi,1(t) should be selected to satisfy |ei(0)| < ρ1(0).
Step 2. The adaptive performance law that incorporates the output performance

requirements and the input magnitude saturation is obtained by:

ρ̇i,1 =

[
σ(udi

(t), mi)− udi
(t)

ei(t)
− λi,1

(
1 −

ρ∞
i,1

ρi,1(t)

)]
ρi,1(t), i = 1, . . . , N (7)

where λi,1, ρ∞
i,1 > 0 correspond to the desired convergence rate and the maximum allowable

steady-state error, respectively.
Step 3. The reference control rate signal is given by:

a(t) = −ki,2T
(

ui(t)− σ(udi
(t), mi)

ρi,2(t)

)
, i = 1, . . . , N (8)

with ki,2 > 0.
Step 4. Similar to (7), the adaptive performance law that encompasses rate saturation

on the control signal is obtained by:

ρ̇i,2 =

[
σ(ai(t), ri)− ai(t)

ui(t)− σ(udi
(t), mi)

− λi,2

(
1 −

ρ∞
i,2

ρi,2(t)

)]
ρi,2(t), i = 1, . . . , N (9)

with λi,2, ρ∞
i,2 > 0 and |ui(t) − σ(udi

(t), mi)| < ρ2(0). Thus, the dynamic decentralized
controller, subjected to both magnitude and slew-rate saturation, is obtained by:

u̇i = σ(ai(t), ri), ui(0) ∈ [−mi, mi] (10)
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for i = 1, . . . , N.

Remark 3. Both adaptive laws (7) and (9) consist of two components. The second term, negative
in nature, incorporates the predefined performance attributes and represents the conventional
performance function ρ(t) = (ρ(0) − ρ∞) exp (−λt) + ρ∞. Conversely, the first term, non-
negative and inactive under normal plant operation, i.e., when the control signal is away from
saturation, triggers when control signals udi

(t), ai(t), i = 1, . . . , N reach their saturation level. Its
activation widens the corresponding performance boundaries based on the difference between the
desired and saturated control signals, ensuring the boundedness of all loop signals. Notably, as the
second term in (7) and (9) becomes dominant, the relaxation of performance boundaries halts, and
once the saturation ceases then the performance envelope retrieves its predefined form.

Remark 4. The proposed control protocol operates in a decentralized manner, where each agent
solely relies on local relative state information within its neighborhood, expressed in a common
frame, to compute its individual control signal. Notably, this protocol does not utilize any knowledge
of system dynamics or disturbances. Moreover, it does not employ approximation structures such
as neural networks or fuzzy systems to acquire such insights. Moreover, generating the control
signal does not necessitate intricate calculations, simplifying its implementation. Thus, the proposed
formation protocol not only remains decentralized but also showcases low structural complexity.

Theorem 1. Consider system (1)) obeying Assumptions 1 and 2. The proposed adaptive decentral-
ized control protocol (6)–(10) ensures the boundedness of all loop signals and guarantees:

|ei(t)| < ρi,1(t), i = 1, . . . , N (11)

for all t ≥ 0.

Proof. Let us first define the normalized tracking error vectors:

ξ1 :=
[

e1(t)
ρ1,1(t)

, . . . , eN(t)
ρN,1(t)

]T
(12)

ξ2 :=
[

u1(t)−σ(ud1
(t),m1)

ρ1,2(t)
, . . . ,

uN(t)−σ(udN
(t),mN)

ρN,2(t)

]T
(13)

Notice from (4) and (12) that the state vector can be written as x = (L+ B)−1ρ1(t)ξ1(t) +
x0 − d with ρ1(t) = diag([ρ1,1(t), . . . , ρN,1(t)]). Differentiating ξ1(t) with respect to time and
substituting (1), (2), (4) and (6)–(10) as well as adding and subtracting (L + B)g(x)σ(ud(t), m)
we get:

ξ̇1 =(ρ1(t))−1[(L + B)( f (x) + g(x)ũ(ξ1) + d(t)− ẋ0)

+ ξ1(t)λ1(ρ1(t)− ρ∞
1 ) + ((L + B)g(x)− 1)σ(udi

(t), mi)− k1ϵ1(ξ1)
] (14)

where:

f (x) = [ f1(x1), . . . , fN(xN)]
T

g(x) = diag([g1(x1), . . . , gN(xN)])

ũ(ξ1) = [u1(t)− σ(ud1(t), m1), . . . , uN(t)− σ(udN (t), m1)]
T

σ(ud(t), m) = [σ(ud1(t), m1), . . . , σ(udN (t), mN)]
T

ϵ1(ξ1) =

[
T
(

e1(t)
ρ1,1(t)

)
, . . . , T

(
eN(t)

ρN,1(t)

)]T

λ1 = diag([λ1,1, . . . , λN,1])

ρ∞
1 = diag([ρ∞

1,1, . . . , ρ∞
N,1])

k1 = diag([k1,1, . . . , kN,1]).
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Following the same reasoning the dynamics of ξ2 may be written as:

ξ̇2 =(ρ2(t))−1(− k1σ′(ud(t), m)ξ̇1∇ξ1 ϵ1 + ξ2(t)λ2(ρ2(t)− ρ∞
2 )− k2ϵ2(ξ2)

)
(15)

where:

σ′(ud(t), m) =

[
dσ(ud1(t), m1)

dt
, . . . ,

dσ(udN (t), mN)

dt

]T

ϵ2(ξ2) =

[
T
(

u1(t)− σ(ud1(t), m1)

ρ1,2(t)

)
, . . . , T

(
uN(t)− σ(udN (t), mN)

ρN,2(t)

)]T

∇ξ1 ϵ1 = diag

([
1

1 − ξ2
1,1

, . . . ,
1

1 − ξ2
1,N

])
ρ2(t) = diag([ρ1,2(t), . . . , ρN,2(t)])

λ2 = diag([λ1,2, . . . , λN,2])

ρ∞
2 = diag([ρ∞

1,2, . . . , ρ∞
N,2])

k2 = diag([k1,2, . . . , kN,2]).

Next consider the positive definite and radially unbounded Lyapunov function candi-
date L = 1

2 ϵT
1 ϵ1 +

1
2 ϵT

2 ϵ2. By differentiating L with respect to time, we get:

L̇ =ϵT
1 ∇ξ1 ϵ1(ρ1(t))−1[(L + B)( f (x) + g(x)ũ(ξ1) + d(t)− ẋ0)

+ ξ1(t)λ1(ρ1(t)− ρ∞
1 ) + ((L + B)g(x)− 1)σ(ud(t), m)− k1ϵ1(ξ1)

]
+ ϵT

2 ∇ξ2 ϵ2(ρ2(t))−1(− k1σ′(ud(t), m)ξ̇1∇ξ1 ϵ1 + ξ2(t)λ2(ρ2(t)− ρ∞
2 )− k2ϵ2(ξ2)

) (16)

with ∇ξ2 ϵ2 = diag
([

1
1−ξ2

2,1
, . . . , 1

1−ξ2
2,N

])
. Note, that ũ(ξ1) is bounded due to the magni-

tude saturation, decoupling the boundedness of ξ1 and ξ2. Next owing to the continuity of
the unknown dynamics of (1), the boundedness of the external disturbances d(t) and x0,
the saturation limits mi, ri, i = 1, . . . , N as well as exploiting Assumption 2 which implies
the boundedness of x, ρ1(t), ρ2(t) [30] we conclude the existence of some positive constants
F1, F2 such that:

∥(L + B)( f (x) + g(x)ũ(ξ1) + d(t)− ẋ0)

+ ξ1(t)λ1(ρ1(t)− ρ∞
1 ) + ((L + B)g(x)− 1)σ(ud(t), m)∥ ≤ F1

∥ − k1σ′(ud(t), m)ξ̇1∇ξ1 ϵ1 + ξ2(t)λ2(ρ2(t)− ρ∞
2 )∥ ≤ F2

Additionally, the matrices ∇ξ1 ϵ1, (ρ1(t))−1, ∇ξ2 ϵ2, (ρ2(t))−1, (L + B) are positive
definite thus L̇ becomes negative whenever ∥ϵ1∥ > F1

min{ki,1}
and ∥ϵ2∥ > F2

min{ki,2}
. Moreover,

considering the initial fulfillment of performance constraints, the initial values of ϵ1, ϵ2
are well-defined. Thus, the transformed errors ϵ1, ϵ2 are uniformly ultimately bounded.
Consequently, the performance criteria, as dictated by inequality (11), are consistently met
over time, ensuring adaptive performance specifications. Furthermore, all signals within
the closed-loop system remain bounded, thereby concluding the proof.

Remark 5. Theorem 1 ensures the boundedness of the neighborhood error e by establishing a com-
promise between output specifications and input limitations. However, in the absence of saturation,
the system rapidly reverts to its predetermined performance characteristics exponentially. Therefore,
it can be deduced that when amplitude saturation is inactive (i.e., ρ̇i,1(t) = −λi,1(ρi,1(t)− ρ∞

i,1)),

the disagreement formation variable q converges to the compact set Q∞
i :=

{
qi ∈ R : |qi | ≤

ρ∞
i

λmin(L+B)

}
, i = 1, . . . , N with an exponential rate of at least exp(−λi,1t). Consequently, in this
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scenario, the performance bound on qi(t) i = 1, . . . , N, i.e., q̄i , can be imposed by selecting
ρ∞

i = λ̂min(L + B)q̄i, i = 1, . . . , N, where λ̂min(L + B) is the result of a decentralized connectiv-
ity estimation algorithm [34].

Remark 6. Note, that the performance specifications for the closed-loop MAS are determined by the
evolution of ρi,1(t) i = 1, . . . , N. Nevertheless, in the presence of magnitude and rate saturation,
the performance constraints are inevitably relaxed to ensure the boundedness of the closed-loop
signals. The extent of relaxation is contingent on the control gains ki,1, i = 1, . . . , N. Moreover, the
fluctuation of the performance envelope relies on the control tracking error ui(t)− σ(udi

(t), mi),
as articulated in Theorem 1. Therefore, a quick convergence of ui(t) → σ(udi

(t), mi) is desirable
and can be achieved by opting for relatively higher values for λi,2. However, large gains ki,j, i = 1,
. . . , N, j = 1, 2 might lead to an excessive relaxation of the performance functions (7) and (9),
resulting in an unnecessary deterioration in tracking performance owing to faster saturation of (6)
and (10). On the other hand, lower gain values may result in oscillatory behavior within performance
boundaries, an issue mitigated by elevating these values at the expense of increased control effort.
Similarly, model uncertainties and external disturbances can affect the closed-loop response as they
affect the upper bounds of the reference inputs udi

(t) by regulating the magnitude of F1. While
the latter inevitably influences the MAS performance, the boundedness of the closed-loop signals is
ensured owing to the adaptive performance mechanisms (7) and (9). This underscores the robustness
of the proposed control protocol against model uncertainties and external disturbances.

3.3. Extension to Multi-Input Multi-Output MASs

The M-dimensional agent is described by:

ζ̇i = fi(ζi) + Gi(ζi)ui + di(t)

u̇i = satr
(
ai(t)

)
, i = 1, . . . , N

(17)

where ζi ∈ RM denote the sate of each agent, ui ∈ RM are the control inputs, the functions
fi : RM → RM, Gi : RM → RM×M, di : R+ → RM for i = 1, . . . , N denotes the nonlinear
terms of the system and the external disturbances, respectively, and ζ0 : R+ → RM

corresponds to the state of the leader. To solve the input-constrained formation control
problem with adaptive performance we follow a similar approach as in Section 3.2, given a
controllability assumption on the positive (or negative) definiteness of the matrices Gi(·)
for i = 1, . . . , N.

Specifically, the neighborhood error feedback is defined as:

ei = ∑
j∈Ni

aij(ζi − ζ j + dij) + bi(ζi − ζ0 + di0) ∈ RM

for i = 1, . . . , N. Using the Kronecker product ⊗, we derive the overall neighborhood error
vector:

e =
[
eT

1 , . . . , eT
N

]T
= ((L + B)⊗ IM)(ζ − ζ0 + d)

where ζ =
[
ζT

1 , . . . , ζT
N
]T ∈ RNM represents the overall state vector, ζ0 =

[
ζT

0 , . . . , ζT
0
]T ∈ RNM,

and d denotes relative offsets with respect to the leader, as dictated by the desired formation.
Adopting the proposed control protocol (6)–(10), element-wise for each neighborhood error
ei(t) it can be easily verified that the decentralized control scheme presented in Table 1 ensures
|eij(t)| < ρ1

ij(t) for all t ≥ 0, i = 1, . . . , N, and j = 1, . . . , M, as well as boundedness of all
closed-loop signals.
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Table 1. Decentralized control protocol for MIMO MASs.

Control Protocol

udi
(t) = −k1

i

[
T
(

ei,1(t)
ρ1

i,1(t)

)
, . . . , T

(
ei,M(t)
ρ1

i,M(t)

)]T
, k1

i > 0

ai(t) = −k2
i

[
T
(

ui,1(t)−σ(udi,1 (t),mi,1)

ρ2
i,1(t)

)
, . . . , T

(
ui,M(t)−σ(udi,M (t),mi,M)

ρ2
i,M(t)

)]T
, k2

i > 0

ρ̇1
i =

[(
σ(udi,1 (t),mi,1)−udi,1 (t)

ei,1(t)
− λ1

i,1

(
1 +

ρ1,∞
i,1

ρ1
i,1(t)

))
ρ1

i,1(t), . . . ,
(

σ(udi,M (t),mi,M)−udi,M (t)
ei,M(t) − λ1

i,M

(
1 +

ρ1,∞
i,M

ρ1
i,M(t)

))
ρ1

i,M(t)
]T

ρ̇2
i =

[(
σ(ai,1(t),ri,1)−ai,1(t)

ui,1(t)−σ(udi,1 (t),mi,1)
− λ2

i,1

(
1 +

ρ2,∞
i,1

ρ2
i,1(t)

))
ρ2

i,1(t), . . . ,
(

σ(ai,M(t),ri,M)−ai,M(t)
ui,M(t)−σ(udi,M (t),mi,M)

− λ2
i,M

(
1 +

ρ2,∞
i,M

ρ2
i,M(t)

))
ρ2

i,M(t)
]T

4. Comparative Simulation Results

In this section we present comparative simulation results in order to illustrate the
superiority of the proposed control scheme against a well-established formation control al-
gorithm described in ref. [35]. In this simulation scenario, we consider the formation control
problem of five planar agents described by the following nonlinear dynamical model:[

ẋi
ẏi

]
=

[
0.5xiyi + exp (−x2

i − y2
i )

0.1x2
i − 0.05y2

i + sin(xiyi)

]
+

[
1 + 0.3 sin (xi)

1 + 0.45 cos (xi)

]
ui + di(t)

with ui = [ux,i, uy,i]
T ∈ [−1.2, 1.2] × [−1.2, 1.2] and di(t) = [cos (2t),− sin (2.5t)]T for

all i = 1, . . . , 5. The aim of this paradigm is to achieve a regular pentagon formation
while the swarm dynamically tracks a reference trajectory set by a virtual leader centered
within the formation. The reference trajectory is circular and it is given as xr = cos (0.2t),
yr = sin (0.2t) for t ∈ [0, 25]. The control parameters for the proposed scheme were chosen
as k1

l,i = 0.5, k2
l,i = 2, λ1

l,i = 0.5, λ2
l,i = 1, ρ1,∞

l,i = 0.1, ρ2,∞
l,i = 0.1, l ∈ {x, y}, i = 1, . . . , 5 with

u̇i ∈ [−5, 5]× [−5, 5], i = 1, . . . , 5. For the scheme of [35] the gains were chosen with fine
tuning as ki = 1.15, i = 1, . . . 5. Moreover, the adjacency matrix A of the communication
graph and the matrix B are given by:

A =


0 1 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 1 0

 (18)

B =
[
1 0 0 0 0

]
. (19)

The left subfigures of Figures 2 and 3 display the neighborhood tracking error for each
agent concerning the x and y axes, respectively. A clear observation emerges: the proposed
control (red line) outperforms the control scheme from ref. [35] (blue line), showcasing
a notably improved closed-loop response while also respecting both amplitude and rate
input constraints. Conversely, the right subfigures of Figures 2 and 3, representing the
control signals with respect to the x and y axes, respectively, reveal higher control effort
in the proposed control scheme compared to that in ref. [35]. This increased effort aligns
with the pursuit of the best output performance respecting the system’s input limitations.
To quantify these observations and to offer a comprehensive evaluation of the schemes’
performance, we employ three performance indices, each providing a unique perspective on
the system’s behavior. The Average Squared Error index (µASE) emphasizes larger errors,
reflecting a faster convergence rate with lower values and the Average Absolute Error
index (µAAE), in contrast to ASE, indicates a slower convergence rate but with reduced
persistent oscillations. Additionally, the Total Energy Consumption index (µTEC) signifies
energy utilization efficiency and reduced energy loss in the control process, quantifying
the system’s energy efficiency. It is important to note that smaller values for these indices
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indicate superior control performance and efficiency in the tracking process. Table 2
presents these performance indices for both control schemes, providing a direct validation
of the conclusions drawn from the figures.
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Figure 2. The evolution of tracking errors w.r.t. axis x on the left; The evolution of control inputs
ux,i, i = 1, . . . , 5 on the right. Red lines correspond to signals associated with the proposed scheme;
blue lines correspond to signals associated with the scheme of ref. [35]; black lines correspond to the
adaptive performance boundaries; grey dashed lines denote the magnitude saturation limits.
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Figure 3. The evolution of tracking errors w.r.t. axis y on the left; The evolution of control inputs
uy,i, i = 1, . . . , 5 on the right. Red lines correspond to signals associated with the proposed scheme;
blue lines correspond to signals associated with the scheme of [35]; black lines correspond to the
adaptive performance boundaries; grey dashed lines denote the magnitude saturation limits.
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Table 2. Tracking Performance Indices.

Performance Index Proposed Scheme Scheme of [35]

µASE 0.43835 0.83016
µAAE 0.9195 2.3677
µTEC 5.0563 2.7216

5. Experimental Results on a Swarm of Aerial Robots

In this section, we showcase the experimental outcomes of implementing the proposed
decentralized control protocol on a fleet of five commercial quadrotors, specifically the
Crazyflies 2.1 (https://www.bitcraze.io/products/crazyflie-2-1/, accessed on 3 December
2023). All the experiments were conducted in our lab using the associated Loco Positioning
system (https://www.bitcraze.io/documentation/system/positioning/loco-positioning-
system/, accessed on 3 December 2023) to measure the position of every quadcopter w.r.t.
to their inertial frame. Note, that each quadrotor can only exchange information with its
neighbors dictated by the communication graph of the system. The quadrotors are equipped
with a cascade PID onboard control scheme that compensates for the inertial dynamics.
Therefore, each quadrotor belongs to the class of (17) and satisfies Assumption 2, where
the state ζi ∈ R3 of agent i, represents its coordinates w.r.t. to its inertial frame, denoted
as ζi = [xi, yi, zi]

T , i = 1, . . . , 5. The control inputs are the corresponding translational
velocities, i.e., ui = [ux,i, uy,i, uz,i]

T , i = 1, . . . , 5, restricted in both magnitude and rate
by the physical constraints of the quadcopter’s motors. The adjacency matrix A of the
communication graph is the same as in (18) and the matrix B = [1, 0, 0, 0, 1] was chosen to
satisfy Assumption 1. Notice that only agents 1 and 5 have knowledge about the state of
the leader ζ0 = [x0, y0, z0]

T . The objective of the robotic swarm is twofold. First, the agents
starting from a straight line configuration on the ground should form a regular pentagon,
with the virtual leader positioned at its center. Then, the swarm should track the motion of
the leader, moving at a constant speed of 5 cm/s, while maintaining the desired formation.
In particular, the leader’s trajectory is given by:

ζ0(t) =

{
[0.5, 0, 1.3]T , 0 ≤ t < 40
[0.5 − 0.05(t − 40), 0, 1.3]T , 40 ≤ t ≤ 70

The performance parameters, the control gains and the saturation levels are presented
in Table 3. The selection of control parameters is based on Remark 6 while the saturation
levels were selected in order to guarantee safe flight for the agents, free of large and
jerky velocities.

Table 3. Control Protocol Parameters.

Parameter Value Parameter Value

k1
x,i, i = 1, . . . , 5 0.02 ρ2

l,i(0), i = 1, . . . , 5, l = x, y 3

k1
y,i, i = 1, . . . , 5 0.01 ρ2

l,i(0), i = 1, . . . , 5, l = z 2

k1
z,i, i = 1, . . . , 5 0.01 ρ1

l,i(0), i = 1, 5, l = x, y 3

k2
l,i, i = 1, . . . , 5, l = x, y, z 2 ρ1

z,i(0), i = 1, 5 2

λ1
l,i, i = 1, . . . , 5, l = x, y, z 0.3 ρ1

l,i(0), i = 2, 3, 4, l = x, y 2

λ2
l,i, i = 1, . . . , 5, l = x, y, z 4 ρ1

z,i(0), i = 2, 3 0.3

ml,i i = 1, . . . , 5, l = x, y 0.1 ρ1
z,4(0)

0.6

mz,i i = 1, . . . , 5 0.15 ρ2,∞
l,i , i = 1, . . . , 5, l = x, y, z 0.1

rl,i i = 1, . . . , 5, l = x, y 5 ρ1,∞
l,i , i = 1, . . . , 5, l = x, y 0.1

rz,i i = 1, . . . , 5 1 ρ1,∞
z,i , i = 1, . . . , 5 0.15

https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/documentation/system/positioning/loco-positioning-system/
https://www.bitcraze.io/documentation/system/positioning/loco-positioning-system/
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Phase A of the experiment is shown in Figure 4, where the white star denotes the
position of the leader. The agents start from a straight line formation on the ground and
aim to achieve the desired configuration, represented by the white pentagon, and then
hover around their desired positions. The achieved position of agents 2 and 4 concerning
the z-axis is observed to be smaller than the leader’s setpoint. This deviation arises due to
the MAS topology, as agents 2 and 4 lack direct access to the leader’s state, requiring them
to move relatively to their neighbors only. This limitation can be compensated by selecting
larger values of the control gains k1

z,i, i = 2, 4 at the expense of more intense saturation
effects. Consequently, coordinating motion in a 3D MAS framework involves coordinating
three distinct motions, posing considerable challenges in achieving precise results. These
challenges stem not only from motion couplings but also from actuation constraints and
delays induced by feedback limitations.
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Figure 4. Phase A: The agents form the desired configuration (white pentagon) starting from a
straight line on the ground. The leader is positioned at the center of the pentagon (white star).

In Phase B, the coordinated swarm is commanded to track the leader’s trajectory as
depicted in Figure 5. Only agents 1 and 5 have access to the MAS’s reference trajectory,
while the rest of the following agents should align themselves with the trajectory of these
two agents. The demonstration of the experiment is available at (https://vimeo.com/8898
77313?share=copy, accessed on 3 December 2023).

The neighborhood tracking errors w.r.t. to axes x, y, z for each agent throughout the
entire experimental duration are depicted in the left subfigures of Figures 6–8, respectively.
Note, that these figures show cumulative neighborhood errors, which are strongly coupled
with the relative inter-agent motion. The performance boundaries expand as the corre-
sponding control input, which is illustrated in Figure 9 for each agent, reaches saturation,
ensuring that the closed-loop signals remain within bounds. When the saturation is in-
active the performance boundaries retrieve their prescribed form with exponential rate
exp (−λ1

l,it), i = 1, . . . , N, l ∈ {x, y, z}. Additionally, the right subfigures of Figures 6–8
depict the control tracking error incorporating the limitations on control signal rates, as the
system’s actuators are unable to instantaneously modify the control effort arbitrarily.

In summary, the decentralized adaptive performance scheme presented in this work
effectively manages the formation control of a realistic MAS under nested saturation
nonlinearities. However, it is crucial to recognize certain limitations of this approach.
Depending on the saturation condition, fluctuations in performance boundaries might
become unnecessary due to gain selection, resulting in the relaxation of closed-loop per-

https://vimeo.com/889877313?share=copy
https://vimeo.com/889877313?share=copy
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formance specifications more than required for ensuring signal boundedness. Moreover,
precise and rapid state feedback is essential for the proper evolution of tracking errors
within performance envelopes, yet this can also contribute to unnecessary fluctuations in
performance constraints.
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Figure 5. Phase B: The coordinated agents track the leader’s trajectory (white line).
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Figure 6. The evolution of tracking errors w.r.t. axis x; Neighborhood tracking error (m) over time (s)
on the left; Control tracking error (m/s) over time (s) on the right. Red line denotes the tracking error;
black lines correspond to the adaptive performance boundaries.
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Figure 7. The evolution of tracking errors w.r.t. axis y; Neighborhood tracking error (m) over time (s)
on the left; Control tracking error (m/s) over time (s) on the right. Red line denotes the tracking error;
black lines correspond to the adaptive performance boundaries.
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Figure 8. The evolution of tracking errors w.r.t. axis z; neighborhood tracking error (m) over time (s)
on the left; Control tracking error (m/s) over time (s) on the right. Red line denotes the tracking error;
black lines correspond to the adaptive performance boundaries.
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Figure 9. The evolution of control inputs ul,i, i = 1, . . . , N, l = x, y, z for each agent. The grey dashed
lines denote the magnitude saturation limits ml , l = x, y, z.

6. Conclusions

In this work, a decentralized robust adaptive control scheme for formation control
of MAS with constraints regarding the magnitude and slew-rate of the control signal
was designed. The proposed control algorithm tackles the inherent conflict between user-
defined output specifications and the system’s input constraints while ensuring adaptive
output performance boundedness of the control signals without the need for extensive gain-
tuning procedures. The theoretical results are validated by comprehensive experimental
results on a swarm of 5 quadcopters. Employing the adaptive performance technique
ensures the stability of the closed-loop system while enabling precise tracking of the leader
with predefined characteristics when operating outside the saturation area.

Regarding future directions, our aim is to tackle the challenge of feedback delays in
order to enhance the efficiency and resilience of adaptive performance controllers. Addi-
tionally, while the relaxation of performance specifications is critical for the boundedness
of the closed-loop signals, it is essential to emphasize that provably ensuring inter-agent
collision avoidance remains an open problem requiring further investigation.
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