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Abstract: Bike sharing systems have become a sustainable alternative to motorized private transport
in urban areas. However, users often face high costs and availability issues due to the operational
effort required to redistribute bicycles between stations. For addressing those issues, the AuRa
(Autonomes Rad, Eng. Autonomous Bicycle) project introduces a new mobility offer in terms
of an on-demand, shared-use, self-driving cargo bikes service (OSABS) that enables automated
redistribution. Within the project, we develop different order management and rebalancing strategies
and validate them using simulation models. One prerequisite for this is sound demand scenarios.
However, due to the novelty of OSABS, there is currently no information about its utilization.
Consequently, the objective of this study was to develop an approach for defining OSABS demand
scenarios in a temporally and spatially disaggregated manner as an input for simulation models.
Therefore, we first derived city-wide usage potentials of OSABS from a survey on mobility needs. We
then spatially and temporally disaggregated the determined usage likelihood using travel demand
matrices and usage patterns from a conventional bike-sharing system, respectively. Finally, we
performed cluster analyses on the resulting annual demand to summarize sections of the yearly
profile into representative units and thus reduce the simulation effort. As we applied this approach
as a case study to the city of Magdeburg, Germany, we could show that our methodology enables the
determination of reasonable OSABS demand scenarios from scratch. Furthermore, we were able to
show that annual usage patterns of (conventional) bike sharing systems can be modeled by using
demand data for only eight representative weeks.

Keywords: bike sharing; demand generation; mobility on demand; autonomous bike; future mobility;
cargo bike

1. Introduction

As a consequence of the persistent trend towards urbanization [1], cities suffer from
negative externalities (traffic congestion, air pollution, noise, etc.) caused by the increase in
urban mobility [2–5]. Since motorized individual transport comprises a sizable proportion of
those negative effects, policymakers consider the promotion of active mobility (i.e., walking
and cycling) as a way to address the key challenges of growing urban transport [6]. In this
regard, bike sharing systems have gained popularity, as they provide a sustainable and
affordable alternative to motorized vehicles. Therefore, these systems are increasingly
implemented in cities around the world [7].
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However, as pointed out by previous studies (e.g., Refs. [8–11]), bike sharing systems
commonly face spatial and temporal fluctuations in bike rentals, which lead to uneven
distribution of bicycles among stations and thus to unavailability and customer dissatisfaction.
To prevent supply imbalance, system operators have to deploy costly and unsustainable
redistribution operations, which are usually performed by trucks or trailers [8]. Further,
although bike sharing systems are highly integrated into public transport, they do not provide
door-to-door mobility, since users still need to walk to a certain bike sharing station and often
cannot return the bike at their final destination [12].

Zug et al. [13] provided an approach to address the associated ecological and economic
disadvantages by introducing a framework for the utilization of shared autonomous
bicycles in the context of mobility as a service concept. Within the AuRa (Autonomes
Rad, Eng. autonomous bike) research project, we are currently further enhancing this
approach as we aim to develop an on-demand, shared-use, self-driving cargo bikes
service (OSABS). Through leveraging autonomous driving functions, the system enables
automated demand-responsive rebalancing and thus reduces rebalancing effort and service
unavailability. In addition, the system enables door-to-door mobility through reserved
on-demand provision, with the possibility of transporting cargo and economically viable
applications in less dense urban areas [13].

As outlined in [14], we therefore believe that OSABS, by offering efficient, accessible,
and eco-friendly transportation alternatives, not only addresses the shortcomings of
conventional bike sharing systems but also significantly contributes to creating more
livable urban environments. Through a reduction in motorized traffic, OSABS leads to a
multitude of benefits, including increased traffic safety, the redistribution of public spaces,
and a reduction in negative environmental impacts. Further, the system’s versatility and
user-centric design, as indicated by the high acceptance and usage intentions reported
in [15], suggest its potential to replace not only conventional bike sharing but also other
short-distance transportation modes, including walking, biking, and public transport.

Figure 1 shows the conceptual OSABS workflow. Initially, the user requests an
autonomous driving cargo bike (ADCB) via a smartphone app. As a next step, the Operation
Control Center (OCC) selects a suitable bike which will then autonomously drive to the
user’s location. After the bike arrives, the user manually rides it to a desired location. At the
destination, the user releases the bike and it autonomously drives to the next customer or
to a waiting or charging station (e.g., Refs. [16–18]).

Figure 1. OSABS workflow.
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In order to explore its potential for sustainable urban mobility and provide a better
understanding of the novel system, we evaluate different strategies (order management,
station distribution, and rebalancing) and energy supply technologies using an agent-based
simulation model [17,18]. Next to various business cases, demand scenarios that predict
the hourly use of OSABS for a one-year period are a key input for the simulation model.
However, due to the novelty of OSABS, there is currently no information about its utilization.
Within this paper, we therefore provide a data-driven approach that aims at modeling
different demand scenarios for OSABS in a temporally and spatially disaggregated manner.

Our contributions are three-fold. First, we identify the usage potentials of OSABS as
a replacement for conventional modes of transport. Second, by analyzing and clustering
trip data from a conventional bike sharing system in Hamburg, Germany, we show that
annual usage patterns can be modeled with trip data for only eight representational weeks.
Finally, we propose a methodology that enables traffic prediction for novel transportation
systems such as OSABS with high temporal and spatial granularity by using traffic demand
models and historical bike sharing data. We illustrate this approach by applying it as
a case study to the city of Magdeburg, Germany. As our results show, the proposed
approach provides reasonable predictions of hourly OSABS demand. Additionally, since
we enable the representation of annual patterns with only eight weeks, we can reduce the
computational effort of simulating annual OSABS usage by nearly 85%.

The remainder of this paper is organized as follows. Within the next two sections, we
review a collection of related publications on different aspects of bike sharing and demand
prediction (Section 2) and outline the OSABS simulation model (Section 3). In Section 4,
we then describe our demand generation methodology and its application as a case study.
In Section 5, we present our modeling results. Finally, in Section 6, we discuss our findings,
summarize our work, and highlight future research initiatives.

2. Literature Review

Due to the steady growth of conventional bike sharing systems worldwide in the past
decades [7], these systems have been subject to increasing research interest. In the recent
literature, a variety of methods and approaches have been used to access different aspects
of bike sharing. The three categories related to the aim of our work are demand prediction,
system design, and influencing factors.

2.1. Prediction of Bike Sharing Demand

Based on their spatial granularity, the existing methods and approaches of predicting
bike sharing demand can be classified into three groups: system-level prediction, cluster-level
prediction, and station-level prediction [19].

For system-level prediction, Borgnat et al. [20] analyzed a public bike sharing scheme
in Lyon, France, using a combination of statistical signal processing tools to derive temporal
usage patterns for a typical week. While including internal (subscribers, number of
available bikes) and external (temperature and precipitation) factors, those tools were
also used to estimate the number of rentals within the next hour.

Additional research on predicting bike sharing demand at the system level was
proposed by Giot and Cherrier [21]. They applied different regression models to predict the
hourly bike sharing usage up to 24 h ahead. The used regressors (weather, previous
bike usage, and holiday) were obtained from a public dataset containing two years
of information on the Washington DC bike sharing system. Within their study, Ridge
Regression and AdaBoost Regression were shown to have the best performance.

An approach for system-wide usage prediction over a longer time period was proposed
by Cantelmo et al. [22]. Within their study, they introduced a clustering technique for
synthesizing mobility data in order to obtain recursive mobility patterns. By validating
their approach with existing data from New York City, Cantelmo et al. could show that
combining those patterns with weather data enables the accurate prediction of daily bike
sharing demand [22].
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However, concerning the objective of our study, the presented methods cannot be
applied to OSABS demand generation, since the usage can be predicted either for only
a few hours ahead [20,21] or with insufficient temporal granularity [22]. An additional
impediment to transferability emerges from the constraint that employing data derived from
already implemented conventional bike sharing systems only allows for the prediction of
demand within these particular systems. This also applies to the multitude of cluster-based
(e.g., Refs. [9,11,23,24]) or station-based (e.g., Refs. [8,19,25–33]) approaches, as they rely on
already existing stations (or subsets of stations).

2.2. Bike Sharing System Design

To estimate potential bike sharing demand in cities or countries where such systems
have not yet been implemented, Todd et al. [34] analyzed data from 322 bike sharing schemes
and divided them into five main groups, which were further classified into subgroups with
regard to usage, contextual indicators, and the behavioral characteristics of their users.
According to their study, this enables a global comparison of scheme performance and
provides a basis for new schemes to recognize existing BSS with comparable characteristics
that can serve as a reference for predicting potential user demand. However, this approach
only allows for a rough estimation of demand on a system level while lacking
spatial granularity.

Further, Frade and Ribeiro [35] proposed a methodology to relate bike sharing demand
with external characteristics that affect bicycle use. These are trip distance and purpose,
slope inclination, and the presence of bike lanes. Within their study, the definition of
demand is accomplished in two steps: quantifying demand based on other case studies and
defining the effect on demand caused by trip and physical city characteristics. However,
we are not able to apply this approach to OSABS demand generation since, due to the
novelty of OSABS, it was not possible to determine demand based on case studies from
existing systems.

Another approach on the dimensioning of bike sharing systems was presented by
Garcia-Gutierrez et al. [36]. To enable the prediction of potential bike sharing usage, they
derived mobility patterns from a large-scale mobility survey in Mexico. Further, they
generated utility models for different modes of transport (foot, bike, public transport, car)
based on declared preferences surveys. In combination with mobility patterns, those utility
functions enabled the determination of initial bicycle travel matrices. But, since we aim
to complement all conventional modes of transport (including bicycles) with OSABS, this
approach is also not feasible for us.

2.3. Factors Influencing Bike Sharing Utilization

According to Chen et al. [37], bike sharing usage patterns are mainly impacted by two
types of contextual factors. Those include common contextual factors that occur frequently
and affect the whole system (e.g., weather and time-related variables). In addition, there
are opportunistic contextual factors which happen irregularly and affect only a subset
of the system (e.g., social and traffic events). While some studies investigate the effects
of opportunistic contextual factors (e.g., calendar events [38] or transit disruption [39]),
common contextual factors are more frequently the subject of the recent literature.

To identify temporal usage patterns, Koska et al. [40] analyzed trip data from five
German bike sharing schemes. Their findings show that during weekdays bike sharing
demand has a slight morning peak and a larger peak in the afternoon. Similar results were
obtained by Miranda-Moreno and Nosal [41] during their analysis of a bike sharing system
in Montreal, Canada.

On a larger scale, O’Brien et al. [42] analyzed 38 global bike sharing systems and
classified them based on temporal characteristics and associated user types. A large
proportion of the considered systems also showed two weekday peaks (morning and
afternoon) and a broad afternoon peak at weekends, with predicted user types being
commuters and weekend leisure users. However, O’Brien et al. also identified further
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systems that, for example, are primarily used on weekends (leisure users) or have more
than two commuter peaks per day (commuters with some utility users) [42]. The temporal
characteristics of an even larger number of 322 global bike sharing schemes can also be
obtained from Todd et al. [34].

Gebhart and Noland [43] analyzed the effect of different weather variables on bike
sharing trips in Washington, DC, USA. Consistent with other studies (e.g., Refs. [38,44–46]),
their results found that adverse weather like cold temperatures, rain, and increased wind
speeds decreases the number of bike sharing trips. In addition, Caulfield et al. [47] claimed
that not only the number of trips but also the travel time increase during good weather
conditions. In contrast, several studies suggest that temperature has a negative impact on
bike sharing demand when it exceeds a certain level [8,10,48].

While looking at temporal and weather effects, An et al. [44] additionally considered
natural and built environments influencing bike sharing trips in New York City, USA.
However, their findings show that weather impacts bike trips more than topography,
infrastructure, or land use mix.

Furthermore, in correlation with previously presented effects of weather variables,
several studies could show that the yearly trend in bike sharing usage can be classified
into three periods. This includes an off season with low demand during winter months,
a main season with high demand during summer months, and a transition phase with
growing or falling demand in spring and fall months, respectively [28,40]. This indicates
that the long-term influence of weather variables on bike sharing usage behavior can be
also expressed through temporal patterns (in terms of yearly profiles or seasons).

In addition to weather conditions and time-related variables, there are many studies
analyzing several other factors affecting bike sharing usage on a higher spatial granularity,
such as sociodemographic and built environment characteristics (e.g., Refs. [45,49–53]).
However, those factors predominantly impact usage behavior on a station level rather than
on a system level. In addition, analyzing them requires specific data which are mostly valid
for the considered study area only and thus limit the broad and easy transferability of our
approach. Hence, related publications are beyond the scope of this work and will not be
discussed any further.

For additional research in this regard, we recommend the work of Eren and Uz [54],
Zhu et al. [55], and Guo et al. [56], who provide a comprehensive literature review of bike
sharing influencing factors such as built environment and land use, public transportation,
sociodemographic attributes, and safety. Another extensive overview of factors influencing
micromobility sharing in general, classified into temporal, spatial, and weather-related
factors, system-related factors, and user-related factors, is provided by Elmashhara et al. [57].

2.4. Implications from the Existing Literature

Based on the literature review, it becomes evident that existing approaches for determining
bike sharing demand are not or only partly applicable to OSABS. In addition, a majority of
the analyses of influencing factors considered in the literature involve significant amounts
of location-specific data (e.g., built environment, public transportation, sociodemographic
attributes, etc.) or affect the system on a short-term basis only (e.g., traffic or social events)
and hence limit their applicability to the approach of creating OSABS demand scenarios for a
period of one year.

This research gap presents an opportunity for further investigation and highlights the
need for a more targeted methodology for generating OSABS demand and, based on this,
the system behavior of OSABS.

3. Simulation Testbed of OSABS

Notable tools for gaining knowledge on the operational facets of novel systems are
simulation models. In order to understand the workings and requirements of our OSABS
simulation model and hence allow for a more informed appreciation of the proposed
methodology for defining demand scenarios, this section briefly outlines the simulation
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testbed of OSABS. A more detailed description of the implementation of the modular
OSABS simulation model as well as the underlying conceptual model are presented by
Mukku et al. [18] and Haj Salah et al. [17], respectively.

For the implementation of the agent-based simulation testbed, we used the Anylogic
simulation software (Professional edition 8.6). Figure 2 depicts the agents and their
interactions in the simulation environment. In the simulation model, every component of
the OSABS system acts as an agent and interacts with other agents to perform the behavioral
and operational tasks of the overall system. For the simulation study, we consider the city
of Magdeburg as our operational area.

Demand module

Customer

ADCBChargingStation

Order 
management

WaitingStation

Rebalancing

Relocation order

AWS 
database

Route calculation

Energy module

No rebalancing
To vicinity
To any
Mixed strategy

Battery Replacement
Inductive charging
Conductive charging
PowerPaste
H2 tank

Main agent

Figure 2. Interaction between agents within the simulation model.

The individual agents shown in in Figure 2 are briefly described as follows.
Main agent: As the model’s main environment, the functions of the Main agent are

as follows:

• Acting as a communication channel for other agents to interact.
• Fetching the demand data from a database using the demand module. For our model,

we used an AWS database to store all generated demand scenarios and created a
custom interface to access and fetch the data from the database.

• Acting as custom input interface for business input and choosing order management
algorithms and energy supply strategies.

• Handling the animation view of various system components such as ADCB, waiting
and charging stations, and customer population on the GIS map of the simulation
environment.

• Visualizing the KPI dashboard of the entire system.

Customer agent: The “createusers()” function from the Main agent populates Customer
agents based on the demand data into the simulation environment. While entering the
system, a Customer agent creates an order request for an ADCB. The request is forwarded
to the Order management module.

Order management: This module consists of matching, rebalancing, and route calculation
algorithms. The matching algorithm assigns an ADCB to the customer and creates a custom
autonomous route. The rebalancing agent calculates the imbalance of bikes in various regions
and sends the available bikes to the demand locations. An investigation of different fleet
management strategies is provided by Haj Salah et al. [58].

ADCB agent: The ADCB agent is modeled with the behavior of autonomous driving
capability. The assigned ADCB is activated with the instructions from the Order management
to serve a specific customer. The ADCB agent interacts with the rebalancing, Customer,
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WaitingStation, and ChargingStation agents to follow the behavioral operation of the
OSABS system.

WaitingStation and ChargingStation agents: After the ADCB completes its trip, it
drives autonomously to the waiting or charging station, depending on the battery status.
In this study, we consider no infrastructure for the waiting station and infrastructure for the
charging station based on the type of energy supply used for the ADCB. Different station
distribution strategies are presented in [59].

Simulation Model Animation Window: Figure 3 shows the operational view of our
simulation model with ADCB driving within the operational area. Also, the animation
contains charging stations and waiting stations with idle ADCB.

Figure 3. Simulation animation window.

4. Demand Scenario Generation
4.1. Methodology

For the implementation of the proposed approach for defining OSABS demand scenarios,
we used the conceptual framework outlined in Figure 4. First, we derived the city-wide
usage potential of OSABS by evaluating a survey on mobility needs. In combination
with existing traffic data from well-established and widely used traffic demand models
(e.g., Refs. [60,61]), we determined the spatially disaggregated base demand for a statistical
day. For temporal disaggregation, we derived daily, weekly, and yearly usage patterns from
an existing conventional bike sharing system using generalized linear regression models.
Based on the assumption that OSABS and conventional systems have similar usage patterns,
we then applied the patterns to the OSABS base demand to enable hourly usage prediction
for a time period of one year.

Since the predicted OSABS usage is intended to serve as input for simulation models,
we furthermore performed a k-medoids cluster analysis on the resulting demand scenario.
The analysis aimed to map the entire course of the year with as few representative weeks
as possible in order to reduce the computational effort for the simulation.



Appl. Sci. 2024, 14, 180 8 of 33

ReductionData collection Data analysis and scenario building

Survey on 

mobility needs

Traffic data

Bike-sharing

data

City-wide OSABS 

usage potential

OD traffic flow

Temporal usage

patterns

Spatially

disaggregated

OSABS demand

for one day

Spatially and 

temporally

disaggregated

OSABS demand

for one year

Cluster 

analysis

Representative

OSABS demand

for one year

Figure 4. Methodological approach.

To illustrate this approach, we describe it by means of a case study for the city of
Magdeburg (a large German city with approximately 235,000 residents). The datasets
used for the application of our methodology are described in the subsequent chapter.
For accessing, handling, and analyzing the datasets, we used the statistical software
environment R (version 4.1) [62].

4.2. Dataset Description
4.2.1. Survey on Mobility Needs

The survey we evaluated for this study was part of several data collection instruments
and methods developed by scientists from both logistics and human sciences collaborating
on the AuRa project. They were used to investigate individual mobility needs in Magdeburg
as well as the acceptability of autonomous (cargo) mobility [12,15]. Next to measures
considering aspects of acceptability research, a comprehensive online survey in which a
total of 1099 respondents participated between April and June 2020 [15] posed questions
that access the usage potential of OSABS.

Of the participants, 50.1% were male, 49.1% were female, and 0.4% were diverse.
Participants had an average age of 40.57 years (SD = 16.31 years), and ages ranged from
18 to 88 years. Other analyses from this survey were previously reported in [15].

To find out more about the intention to use autonomous cargo bikes, the participants
were asked how likely they were to replace conventional modes of transport with autonomous
cargo bikes for various trip purposes. In addition, they were asked about their intention to
use autonomous cargo bikes, what distance they would cover on average in everyday life
with an autonomous cargo bike, and whether they believed OSABS to be a climate-friendly
means of transport.

4.2.2. Traffic Dataset

Within the framework of our case study, we used travel demand matrices provided by
the municipality of Magdeburg. They contain trips for four different modes of transport,
including foot, bike, car, and public transport, for a time period of one day. The matrices
are structured in a way that the rows contain all trips generated from each origin and
the columns contain all trips attracted from each destination. Therefore, they are often
referred to as origin–destination matrices (OD-matrices). Within the matrices, a total of
182 districts evenly distributed throughout the city of Magdeburg serve as origins and
destinations. In order to access the geographic location and geometry information of
those districts, we used an ESRI shapefile which was also provided by the municipality of
Magdeburg. A map of the city of Magdeburg as well as its districts is shown in Figure 5a.
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Additionally, the inner-city OD-flows for the transport modes foot and bike are shown in
Figure 5b and Figure 5c, respectively.

a

0 1 2 3 4 5 km

N b

Trips by foot
1 to 25
25 to 50
50 to 100
100 to 200
200 to 400
400 to 8500

c

Trips by bike
1 to 25
25 to 50
50 to 100
100 to 200
200 to 400
400 to 8500

Figure 5. (a) Magdeburg city districts (green: inner-city area). (b) Inner-city OD-flows by foot.
(c) Inner-city OD-flows by bike.

In the transport sector, since travel demand matrices contain passenger or vehicle trips
related to a certain period of time [60], they commonly serve as input for the development
of travel demand models which are designed to model movements of road users within a
transport network [61]. According to Collin [63], traffic models for a period of one day are
usually related to so-called normal working days or statistical traffic days (i.e., Tuesday or
Thursday), since they reflect traffic events most representatively. This also applies for the
traffic demand matrices used for this study.

4.2.3. Bike Sharing Dataset

For deriving temporal bike sharing usage patterns, we investigated counts of bike
rentals in a conventional public bike sharing system in Hamburg, Germany. The data
were recorded from January 2014 to May 2017 and are provided by the Open-Data-Portal
of Deutsche Bahn (national railway company of Germany) [64]. Although the data were
collected several years ago, we chose the Hamburg bike sharing system for several reasons.
First, the dataset is publicly accessible. Second, we expected both Hamburg and Magdeburg
to have similar temporal characteristics in bike sharing usage due to geographic proximity.
Lastly, we assume that usage patterns have not changed between 2017 and today and
can therefore still be considered as granted. For each booking in the system, the dataset
contains information about booking time, start and destination stations, rental duration, as
well as user-related information like customer ID or technical income channel.

Since our aim was to determine usage patterns based on a full year and 2017 rental
data are merely available for 5 months, we only considered bookings from 2014 to 2016.
In addition, we filtered out all bookings having the same origin and destination and a rental
duration of less than two minutes, as we assumed that these are due to erroneous rental
processes or for maintenance purposes.
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4.3. OSABS Base Demand and Beliefs
4.3.1. Assessment of OSABS as a Climate-Friendly Means of Transport and Intention to Use It

In the survey described in Section 4.2.1, two questions were used to assess whether
autonomous transport bikes would be considered a climate-friendly mode of transport:
(1) “In my opinion, the introduction of autonomous transport bikes brings many benefits
for a climate-friendly mobility transition” and (2) “I believe that the introduction of
autonomous transport bikes brings benefits for the population in the evolution towards
climate-friendly transport”. Both items were answered on a five-point Likert scale with
the options “strongly disagree”, “strongly disagree”, “undecided”, “strongly agree”, and
“strongly agree”. Alternatively, “no answer” could be selected.

A total of 781 people answered item 1 (“Advantages for a climate-friendly change in
transport”), of which 48.4% tended to agree and a further 25.9% fully agreed. Similarly,
for item 2 (“Benefits for the population in the development toward climate-friendly
transport”), of the 781 people who answered it, 50.1% tended to agree and another 24.3%
fully agreed.

With regard to the likelihood of use, participants could indicate whether they rated
their own use of the autonomous cargo bike as “not at all likely”, “rather not likely”,
“undecided”, “rather likely”, or “very likely” on a five-point Likert scale. Of the 782 people
who answered this item, 31.8% thought use was rather likely, and a further 12.5% thought
it was very likely. A total of 23.9% were undecided.

In summary, these descriptive results shed positive light on a possible OSABS use
case. More than half of the respondents perceived OSABS as a possible contribution to
climate-friendly transport. And although the system did not even exist in prototype form
at the time of the survey, 44.3% of respondents could imagine using it themselves. This
provides a promising starting point for an application scenario.

4.3.2. Assessment of OSABS Base Demand

The evaluation of the previously described survey on mobility needs in Magdeburg
showed that about 16.67% of all trips by foot, 16.49% by bike, 14.47% by public transport,
and 15.65% by car are likely to be replaced by using autonomous cargo bikes. Below,
these values are referred to as probability of use per mode of transport pmodei

. In addition,
a large proportion of respondents indicated they would travel a maximum of 10 km on an
autonomous cargo bike. The exact distance distribution is shown in Table 1.

Table 1. Stated OSABS distance limits.

Distance [km] Proportion of
Respondents [%] Distance [km] Proportion of

Respondents [%]

(0, 1] 5.09 (11, 12] 0.85
(1, 2] 7.07 (12, 13] 0.14
(2, 3] 11.03 (13, 14] 0.14
(3, 4] 4.53 (14, 15] 4.24
(4, 5] 25.04 (15, 16] 0.14
(5, 6] 4.38 (16, 17] 0.00
(6, 7] 4.53 (17, 18] 0.00
(7, 8] 4.81 (18, 19] 0.00
(8, 9] 0.28 (19, 20] 5.66
(9, 10] 21.92 >20 0.00

(10, 11] 0.14

To determine the traffic volume of autonomous cargo bikes for a statistical day, we
calculated the number of trips replaced with OSABS by multiplying the previously obtained
usage probabilities per mode of transport with OD-trips from the respective OD-matrices
nODi . In order to provide a wide range of input for any subsequent simulation models, we
conducted this while distinguishing between two different scenarios:
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• High scenario: A share of trips from all modes of transport, namely, foot, bike, car,
and public transport, will be replaced with OSABS.

• Low scenario: A share of trips by only foot, bike, and public transport will be replaced
with OSABS.

For each OD-pair, we then multiplied the resulting number of OSABS trips by the
probability of use, which we derived from the trip distance sOD and the stated distance
limits l(sOD) from Table 1. In the following, this probability will be referred to as
distance-dependent probability of use pdistOD . Since no information was available on the
actual starting and ending locations within origin and destination districts, it was necessary
to estimate trip distances. Therefore, using shapefile and the software packages sf [65] and
stplanr [66], we determined the Euclidean distance between the centroids of the respective
OD-districts sEOD and multiplied it by a factor of 1.3. According to Hoerstebrock [67], this
factor has proven to be a sound approximation of actual distances traveled within cities.
To calculate intrazonal trips (i.e., trips within a district), for which the distance-dependent
probability of use would be zero according to the above calculation, a distance of one
kilometer was assumed.

In conclusion, the calculation of OSABS trips per OD-pair nOSABSOD can be expressed
via the following equations:

pdistOD = sOD · l(sOD) with sOD =

{
1 if O = D
1.3 if O ̸= D

(1)

nOSABSOD,high = ∑
i
(pmodei

· nODi ) · pdistOD with i ∈ {foot, bike, car, pt} (2)

nOSABSOD,low = ∑
i
(pmodei

· nODi ) · pdistOD with i ∈ {foot, bike, car} (3)

Since most of the calculated traffic flows were non-integer values, it was then necessary
to apply an algorithm that allows for rounding the results to integer values while preserving
their overall sum. To achieve this, after rounding every number down in the first step, we
incrementally rounded up those numbers with the highest fractional parts until the desired
sum was reached. The total OSABS demand for a statistical traffic day is 8322 trips for the
high scenario and 5435 trips for the low scenario.

4.4. Temporal Disaggregation
4.4.1. Derivation of Temporal Patterns

For deriving temporal patterns, i.e., systematic variations in daily, weekly, and yearly
profiles, we aggregated the conventional bike sharing demand data using one-hour intervals.
Since the resulting data were typical count data, i.e., observations containing only non-negative
integer values [68], we then applied count models based on generalized linear models (GLMs)
to retrieve the impact of certain time-related influencing variables on the observed hourly
bookings (see [68,69]).

Generalized linear models (GLMs), introduced by Nelder and Wedderburn in 1972 [70],
serve as a comprehensive framework for various statistical models including linear regression,
logistic regression, and Poisson regression. In mathematical terms, a GLM can be represented
as [71,72] (note: In this representation, X denotes the matrix of explanatory variables. This
differs slightly from the notation used by Müller [71], who uses X−1 in her formulation):

E(Y|X) = µ = G−1(Xβ) (4)

In this equation, E(Y|X) denotes the expected value of the dependent variable Y given
the explanatory variable X, β represents an unknown parameter vector, and G−1 is the
inverse of the link function G [73]. Unlike traditional linear regression, which is limited to
normally distributed error terms, GLMs offer a more versatile approach characterized by
three main components [70,72] (note: Müller’s [71] conceptualization of GLMs primarily
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focuses on two components: the distribution of Y and the link function, assuming the
distribution of Y to be a member of the exponential family):

• A random component specifying the probability distribution for modeling the dependent
variable Y, including Bernoulli, Binomial, Poisson, Geometric, Negative Binomial,
Exponential, Gamma, Normal, and Inverse Gaussian distributions (see also [71]);

• A systematic component that describes the predictors (independent or explanatory
variables) through a linear predictor function η = Xβ;

• A link function G which relates the linear predictor η to the mean µ of the distribution
of the response variable Y.

As stated by Zeileis et al. [69], who give a comprehensive overview of regression
models for count data and their application in R, the most simple distribution that can be
used for modeling count data is the Poisson distribution. However, Poisson models are
limited to the assumption that the variance in the model is identical to the mean [69]. Since
our data appeared to be highly over-dispersed (i.e., the variance value is greater than the
mean value), the application of a Poisson model was not feasible. According to Hilbe [74],
a suitable way to deal with over-dispersion is to use a Negative Binomial regression model.
As it is a generalization of the Poisson model, the Negative Binomial model loosens the
restrictive assumption that the variance is equal to the mean [74].

Given the observed over-dispersion in our data, the Negative Binomial regression
model emerged as the most fitting approach. Consequently, for the practical application of
this model, we employed the R package MASS [75] for analyzing the representative bike
sharing dataset.

To decide which influencing factors should serve as an input for our model, we
examined the time-of-day variability in bike sharing rentals with respect to the different
days of the week, as is illustrated in Figure 6.
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Figure 6. Day-to-day variability in hourly bookings from conventional BSS in Hamburg, Germany.

The figure shows that the shape of daily profiles is significantly different for weekdays
and weekend days. Throughout weekdays, the daily pattern is rather similar, consisting of
large morning and afternoon peaks as well as a slight peak during lunchtime. However, it
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is noticeable that the afternoon peak on Friday is slightly below the other days. In contrast,
the daily profile at weekends only shows a broad peak in the afternoon. Also, there is
a high utilization at night compared to weekdays. With regard to the observations of
O’Brien et al. [42] and Todd et al. [34], this indicates that the Hamburg bike sharing system
user structure primarily comprises commuter and weekend leisure users.

To capture the day-to-day variability in hourly bookings within our model, we
included the hour of the day and the day of the week as categorical input variables.
In addition, as we could observe that the influence of daytime is different for specific days
of the week, we included an interaction term between time and day of the week.

In order to access annual patterns, we furthermore analyzed the year-to-year variability
in daily bookings (Figure 7). Next to a slight upward trend due to the general growth of
Hamburg’s bikes sharing system [76], the figure indicates that there is a strong annual
seasonal pattern (represented by the blue line). Coherent with the existing literature, this
pattern consists of three periods with fewer bookings during winter, a high number of
bookings during summer, and a transition phase during spring and autumn with growing
and declining booking numbers, respectively.
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Figure 7. Year-to-year variability in daily bookings from conventional BSS in Hamburg, Germany
(black: observed bookings; green: smoothed conditional means).

As the pattern is repeated each year, we assume that those three periods reflect the
general pattern of annual bike sharing usage. However, neither the associated seasons
nor the respective months provide a sufficient temporal granularity to also represent
any short-term variations within the annual course. Hence, we included week numbers
as a categorical variable in our model since this interval is short enough to represent
fluctuations but long enough to keep the number of input variables used for the regression
model within reasonable limits. In summary, the following explanatory variables were
included in the model:

• Week number (reference variable: calendar week 1);
• Weekday (reference variable: Monday);
• Time of day (reference variable: hour 0);
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• Interaction term between weekday and time of day.

In contrast to the uniform pattern of annual seasonality, Figure 7 also shows that the
frequency of the daily seasonality is rather irregular for the different years. In order to
reveal the key temporal patterns, we consolidated the three-year booking data into a dataset
consisting of hourly booking figures for only one year. We performed this by averaging the
hourly bookings of each corresponding hour over the three years. This dataset is called the
representative bike sharing dataset as follows.

The results of our negative binomial model applied to the representative bike sharing
dataset are presented in Table A1 (Appendix A.1). As this is common in the recent literature
regarding the influence of temporal factors on bike sharing rentals
(e.g., Refs. [11,19,25,41,43,51,53]), we used Nagelkerke’s Pseudo-R2 [77] to measure goodness
of fit.

Table A1 shows that our model has a very high fit, as the Pseudo-R2 value is 0.94443.
This indicates that nearly 95% of the variation in hourly bike sharing rentals can be
explained using the variables used within the model. As expected, the coefficients for
week-related dummy variables show that the number of trips is increased for mid-year
weeks compared to weeks at the beginning or end of the year. Furthermore, since we
included the interaction between weekdays and the time of the day, the results demonstrate
that the regression model enables the estimation of weekday and weekend peaks. Another
finding is that the influence on hourly rentals relative to the reference category is mostly
not significant for the interaction between weekdays and nighttime hours. We explain
this by the fact that there is hardly any difference between the nightly booking numbers
on weekdays.

4.4.2. Cluster Analysis

To enable temporal disaggregation, an alternative approach could have been to directly
apply the results of our regression analysis to the previously determined OSABS base
demand. However, as we aimed to provide hourly demand data for a time period of
one year for two different scenarios (i.e., low and high scenario), this would have led to
two datasets each containing hourly rentals for 52.143 individual weeks (or 52 weeks plus
one day). Thus, for reproducing the annual OSABS traffic flows within a simulation model,
it would be required to simulate 8760 h (52.143 weeks · 7 days · 24 h) of OSABS usage for
each scenario.

Since this would involve an unreasonable computational effort, we applied a cluster
analysis to the representative bike sharing dataset. Within the analysis, we used the
k-medoids clustering technique proposed by Kaufmann and Rousseeuw [78], as it is
more robust to noise and outliers than standard k-means clustering. For the technical
implementation in R, we used the cluster package [79]. The aim of this analysis was to
identify similarities in demand profiles of certain weeks and to group them into clusters
accordingly. We associated each calendar week with the number of the cluster i = 1. . . k in
which it was located. Instead of the individual week numbers, we then used the cluster
numbers as categorical input variables for our regression model.

In order to find the optimal number of clusters, we conducted several regression
models using different cluster sizes and compared them to the initial model. For comparing
the models, we used the Akaike information criterion (AIC) [80] and root mean square
error (RMSE). Table 2 shows that the optimal cluster size is eight, since the performance of
the according regression model is quite similar compared to the initial model. In addition,
as shown in Table A2 (Appendix A.2), the i = 8-regression model provides a very high fit
with a Pseudo-R2 of 0.94235.
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Table 2. Comparison of models with different cluster sizes as categorical input variables.

Cluster Size i AIC RMSE

Initial model 92,400.79 66.36
2 96,453.37 83.44
3 99,898.74 109.57
4 98,627.99 102.34
5 98,641.62 102.41
6 97,688.59 92.40
7 97,098.78 90.04
8 92,635.94 66.27
9 96,912.45 88.81
10 96,914.27 87.62
11 96,853.32 87.95
12 96,794.50 87.32

The performance of our models is further illustrated in the following charts. Figure 8
compares the observed hourly bookings (representative BSS dataset) for different weekdays,
namely, Monday to Thursday, Friday, and Saturday to Sunday, against the values determined
from the regression models.

The diagram effectively demonstrates that these models are highly proficient in
replicating the daily fluctuations in hourly bookings. Nonetheless, it is worth noting
that while these models are largely accurate, they have a slight tendency to underestimate
peak demand and overestimate periods of lower demands.

Figure 9 additionally demonstrates that both the Full Model and the Cluster Model
accurately represent the annual patterns. While the Full Model slightly outperforms in
reflecting short-term changes, it is noteworthy that the overall course is well reproduced
by both models. Notably, the less precise representation of short-term fluctuations by the
Cluster Model is not inherently disadvantageous. These fluctuations vary across different
years, indicating that a perfect replication may not be necessary or even desirable for
accurate modeling. Thus, the Cluster Model efficiently balances simulation effort with
quality of results.

As we could prove that it is sufficient to model annual patterns using only eight
representative weeks, we used the results from the i = 8-regression model for the temporal
disaggregation of OSABS base demand. An overview of the assignment of the clusters to
the actual calendar weeks is presented in Table 3.

Table 3. Represented calendar weeks.

Cluster Represented Calendar Weeks Related Season

C1 1, 2, 3, 4, 5, 52, 53 Winter
C2 6, 7, 8, 9, 48, 50, 51 Winter
C3 10, 11, 12, 13, 45, 46, 47, 49 Spring/Autumn
C4 14, 41, 42, 43, 44 Spring/Autumn
C5 15, 16, 17, 18, 20, 40 Spring/Autumn
C6 19, 25, 33, 38, 39 Spring/Summer
C7 21, 22, 24, 26, 27, 28, 35, 36, 37 Spring/Summer/Autumn
C8 23, 29, 30, 31, 32, 34 Summer
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Figure 8. Comparison of observed and predicted values for daily bookings.

In terms of reproducing the annual OSABS traffic flows within a simulation model,
this represents a reduction in computational effort of almost 85%, as it is only necessary to
simulate 1344 h (8 weeks · 7 days · 24 h) of OSABS usage for each scenario. To extrapolate
these results to an entire year, the resulting representative weeks (C1 to C8) can be combined
according to the represented calendar weeks in Table 3.
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Figure 9. Comparison of observed and predicted values for weekly bookings.

5. Modeling Results

Since the regression coefficients are linked with the model intercept, they could
not be directly applied to the OSABS base demand. Therefore, we needed to develop
a methodology for effectively transferring temporal patterns to the new system based on
the following assumptions:

The k8-regression model’s intercept is 36.07, and the average value of observed hourly
bookings within the data is 288.14. From this, we can derive an intercept–mean ratio of
0.125 for the model. Moreover, given that the OSABS base demand for a statistical day,
i.e., the average value for daily bookings, is 8322 trips for the high scenario and 5435 for the
low scenario, we can calculate average values for hourly OSABS bookings of 346.75 and
226.46 for the high and low scenarios, respectively. Hence, by implementing the model’s
intercept–mean ratio in OSABS, we derive intercept values of 43.34 and 28.31 for the high
and low scenarios, respectively.

Based on these assumptions, we calculate the hourly OSABS traffic flow in Magdeburg
for each of the eight representative weeks. An extract of the results is pictured in
Figures 10 and 11, which show predicted weekly OD-traffic flows for the inner-city area
of Magdeburg as well as average hourly bookings for Monday to Thursday, Friday,
and Saturday to Sunday.

As expected, the figures indicate increased OSABS utilization in weeks C6 and C8,
as they represent calendar weeks with higher average temperatures compared to the
calendar weeks represented by weeks C2 and C4, hence replicating annual BSS usage
patterns. Moreover, Figure 10 indicates that our approach enables the prediction of
OSABS traffic flows with high spatial granularity. Further, Figure 11 shows that the
approach enables accurate reproducibility of previously determined day-to-day variability
in hourly bookings.

A crucial aspect of our study was validating the model. We compared our model’s
predictions for OSABS in Magdeburg with characteristic data from existing bike sharing
systems determined by Todd et al. [34] (Table 4). This comparison served as an indirect
validation method, providing a benchmark for assessing our model’s viability in real-world
scenarios. As Table 4 demonstrates, our model predicts higher OSABS utilization in
Magdeburg compared to conventional BSS in similar-sized cities.
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Table 4. Characteristic BSS data (based on [34]).

BSS Population Area (km2) Weekday Journeys

Very large, high-use BSS 4,299,517 441 68,660
Large BSS in major cities 1,786,311 168 24,903

OSABS in Magdeburg 239,364 201 8322 (high scenario),
5435 (low scenario)

Small to medium efficient BSS 350,354 36 4448
Medium BSS with extensive
cycling infrastructure 448,719 74 2708

Small to medium inefficient BSS 111,302 17 359

However, the slightly higher predicted OSABS figures are justifiable given its distinct
advantages over conventional BSS. Firstly, OSABS extends the reach of bike sharing
services to less dense urban areas. While traditional BSS primarily operates in densely
populated, central city locations, OSABS allows for effective operation throughout the entire
city, including peripheral areas, significantly expanding the potential user base and thus
contributing to the higher predicted usage figures. Secondly, OSABS’s mobility-as-a-service
feature, which enables users to summon vehicles directly to their location, greatly enhances
user convenience and thus system utilization. Further, the ability to transport goods adds a
valuable dimension to the service, attracting a wider range of users, including those who
need to carry items that would be difficult with a standard bike. This feature is likely to
appeal to a diverse demographic, further boosting the system’s utilization.
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Figure 10. Predicted weekly OSABS OD-traffic flows for Magdeburg inner-city area.



Appl. Sci. 2024, 14, 180 19 of 33

Week C6 Week C8

Week C2 Week C4

0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22

50

100

150

50

100

150

Hour

A
v

er
ag

e 
b

o
o

k
in

g
s 

p
er

 h
o

u
r

Weekday: Monday to Thursday Friday Saturday and Sunday

Figure 11. Predicted hourly bookings.

6. Discussion and Future Work

The resulting hourly booking figures are represented as OD-matrices and can be
used directly for the OSABS simulation model. In the realm of simulation, the generated
demand patterns serve as valuable input, contributing to the design and implementation
of various strategies.

Firstly, the implementation of suitable order management strategies, especially rebalancing
algorithms, benefits from the predicted spatial and temporal patterns, leading to enhanced
operational efficiency and customer satisfaction. Additionally, our methodology provides
guidance for the placement of OSABS stations. By accurately predicting traffic flows with high
spatial granularity, we can identify areas of high demand and strategically position stations
to meet this demand, thus optimizing resource allocation and improving service availability.
Furthermore, our approach supports the selection of suitable energy supply technologies.
The ability to anticipate OSABS utilization patterns, particularly during periods of increased
usage, aids in making informed decisions about the types of energy supply technologies that
would be most efficient and sustainable.

A further advantage of the proposed methodology lies in its wide applicability to other
cities or use cases, as the data used, i.e., bike sharing data (in general or for the city itself)
and OD-matrices (most often for larger cities), are widely available. Moreover, the survey
on usage probabilities and distance limits can be conducted with little preparation and
survey effort. Hence, in terms of conventional BSS, city authorities could use our approach
to straightforwardly determine efficient locations for bike docking stations, which not
only would ensure that bikes are available where and when they are needed but could
also prevent issues such as overcrowding at certain stations. Similarly, system operators
could use our demand scenarios to optimize bike distribution, reducing the amount of time
and resources spent on repositioning bikes. Hence, through promoting the adoption of
(conventional) bike sharing systems, our research may also help to drive a shift towards
more sustainable modes of transportation, resulting in reduced carbon emission and air
pollution in cities, but also in improved public health and overall quality of stay.
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While providing new insights into the generation of demand scenarios for novel
transportation systems, our study also raises the need for additional research.

One primary challenge is the theoretical nature of our model coupled with the lack of
real-world OSABS data. This has led to a reliance on indirect validation methods, where we
compare our model’s predictions with existing bike sharing systems data. The comparison
suggested higher predicted OSABS utilization in Magdeburg, which we attribute to the
unique features of OSABS, such as its extended reach and mobility-as-a-service offerings.
While retrieving reasonable results from indirect validation, the integration of real-world
OSABS data in future studies and hence the direct validation of our predictions remains a
pivotal task.

Further, in our analysis, we applied annual usage patterns to represent long-term
fluctuations in demand. To enhance the model’s accuracy in capturing short-term demand
fluctuations, future work could involve the integration of real-time traffic data, weather
conditions, and information about special events into the demand forecasting process. This
would allow for a more dynamic and responsive model, better suited to the complexities of
urban transportation.

An additional limitation arises from our model’s reliance on traffic zones for predicting
demand, without giving the exact position for single requests. In line with findings from
Krause et al. [12] and Kastner et al. [15], we aim to refine the spatial detail of our demand
forecasts in future iterations of our research by incorporating land use, sociodemographic
information, and different trip purposes.

Moreover, the extrapolation of bike sharing patterns from Hamburg to Magdeburg,
while a necessary simplification for our case study, may not fully capture the specific
dynamics of the Magdeburg area. This limitation affects the temporal disaggregation of the
predicted OSABS data for Magdeburg but does not impinge on the broader applicability of
our methodology to other urban contexts. Enhancing data availability could significantly
improve the results of our case study, underlining the potential of our methodology when
applied with context-specific data.

Lastly, the application of advanced machine learning algorithms in future research
could lead to more accurate demand predictions and a reduction in the computational effort
required for simulating annual traffic flows. However, the challenge of data availability
remains a significant hurdle. Comprehensive data collection can be time-consuming and
costly, potentially affecting the ease of transferring our methodology to diverse locations.
Addressing this challenge may require collaborative efforts between various stakeholders,
including cities, system operators, universities, and research institutions.

7. Conclusions

In this paper, we presented a data-driven approach for defining demand scenarios
for OSABS. We described the implementation of our approach by means of a case study
in the city of Magdeburg. In particular, we assessed the potential utilization of OSABS by
analyzing a survey on mobility needs. Our analysis indicated that approximately 15% to
16% of all inner-city trips could be replaced by OSABS, with the majority of respondents
viewing OSABS as an environmentally friendly transportation alternative.

Furthermore, we employed existing travel demand matrices for spatial disaggregation
and usage patterns derived from a conventional bike sharing system via a negative binomial
model for temporal disaggregation. As the model fit indicates, with week number, weekday,
time of day, and an interaction term between weekday and time of day as input variables,
we could explain nearly 95% of the variation in hourly bike sharing within the data.

In addition, since the derived demand scenarios are intended to be used as inputs
for an agent-based simulation model, we performed a cluster analysis to identify similar
patterns in the annual usage profile and reduce data size. Through cluster analysis, we
demonstrated that annual bike sharing usage patterns can be modeled using a combination
of eight representative weeks, resulting in nearly an 85% reduction in computational effort.
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In summary, our study contributes to existing research by proposing a new methodology
for generating demand scenarios for novel transportation systems with high spatial and
temporal granularity. The generated demand scenarios can be integrated into an agent-based
simulation model, enabling us to explore various facets of the new transportation system in
the context of the city of Magdeburg. However, our approach has wider applicability and can
be adapted for other cities or for estimating the potential utilization of other active and public
transportation systems such as conventional bike sharing schemes, therefore encouraging
active mobility.
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Appendix A

Appendix A.1

The subsequent Table A1 contains the estimated parameter values for the regression
model described in Section 4.4.1. The following explanatory variables were included in
the model:

• Week number (weeknum1 . . . weeknum53);
• Weekday (Monday . . . Sunday);
• Time of day (hour00 . . . hour23);
• Interaction term between weekday and time of day (Monday × hour00 . . . Sunday ×

hour23).
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Table A1. Estimated parameter values for Negative Binomial model (Full Model).

Parameter exp(Estimate) 2.5% 97.5% z-Value p-Value

Intercept 34.26298 31.76959 36.95205 91.67588 0
weeknum2 1.02011 0.969 1.07391 0.75919 0.44774
weeknum3 1.14702 1.08985 1.2072 5.25779 0
weeknum4 1.0181 0.96709 1.0718 0.68407 0.49393
weeknum5 1.11568 1.06 1.17428 4.19079 0.00003
weeknum6 1.21136 1.15111 1.27477 7.36623 0
weeknum7 1.28 1.21647 1.34685 9.50437 0
weeknum8 1.28539 1.2216 1.3525 9.66757 0
weeknum9 1.33841 1.27209 1.40819 11.24165 0
weeknum10 1.67394 1.59163 1.76051 20.02514 0
weeknum11 1.58455 1.5065 1.66665 17.85964 0
weeknum12 1.66135 1.57964 1.74729 19.72687 0
weeknum13 1.61856 1.53876 1.70248 18.66883 0
weeknum14 1.93974 1.84477 2.03959 25.87019 0
weeknum15 2.28094 2.16976 2.39783 32.34076 0
weeknum16 2.20978 2.10198 2.32311 31.07184 0
weeknum17 2.20586 2.09825 2.319 31.00083 0
weeknum18 2.52049 2.39793 2.64932 36.34807 0
weeknum19 2.56214 2.4376 2.69304 37.00693 0
weeknum20 2.41433 2.29681 2.53786 34.61958 0
weeknum21 2.86377 2.72491 3.0097 41.49003 0
weeknum22 2.75786 2.62402 2.89851 39.97045 0
weeknum23 3.22538 3.06937 3.38932 46.29455 0
weeknum24 2.87377 2.73444 3.0202 41.63074 0
weeknum25 2.66936 2.53973 2.80561 38.65667 0
weeknum26 2.84903 2.71087 2.99423 41.28189 0
weeknum27 2.83947 2.70176 2.98419 41.14625 0
weeknum28 3.01198 2.86609 3.1653 43.52709 0
weeknum29 3.21143 3.05608 3.37468 46.11924 0
weeknum30 3.12983 2.97835 3.28901 45.0782 0
weeknum31 3.13423 2.98255 3.29364 45.13509 0
weeknum32 3.01874 2.87253 3.17239 43.61758 0
weeknum33 2.71723 2.58533 2.85587 39.37255 0
weeknum34 2.99858 2.85333 3.15123 43.34698 0
weeknum35 2.92831 2.78639 3.07746 42.38946 0
weeknum36 2.73051 2.59798 2.86981 39.56896 0
weeknum37 2.80666 2.67051 2.94974 40.67756 0
weeknum38 2.59161 2.46567 2.72398 37.46689 0
weeknum39 2.56738 2.44259 2.69855 37.0892 0
weeknum40 2.41534 2.29777 2.53893 34.63645 0
weeknum41 2.07896 1.97737 2.18576 28.63293 0
weeknum42 1.9848 1.88769 2.0869 26.78454 0
weeknum43 2.10549 2.00264 2.21361 29.13916 0
weeknum44 2.1187 2.01522 2.22748 29.389 0
weeknum45 1.78337 1.69585 1.87541 22.53153 0
weeknum46 1.61476 1.53527 1.69837 18.6041 0
weeknum47 1.64079 1.56005 1.7257 19.23495 0
weeknum48 1.43213 1.36134 1.5066 13.88654 0
weeknum49 1.58481 1.50674 1.66692 17.86604 0
weeknum50 1.47809 1.40511 1.55486 15.12477 0
weeknum51 1.48365 1.4104 1.5607 15.27207 0
weeknum52 0.96206 0.91374 1.01295 −1.47079 0.14135
weeknum53 1.08627 1.02309 1.15334 2.70687 0.00679
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Table A1. Cont.

Parameter exp(Estimate) 2.5% 97.5% z-Value p-Value

Tuesday 1.21511 1.1074 1.33328 4.11433 0.00004
Wednesday 1.47684 1.34758 1.61848 8.34384 0
Thursday 1.7986 1.64238 1.96968 12.66232 0
Friday 2.20075 2.01084 2.40859 17.13148 0
Saturday 3.15338 2.88372 3.44827 25.17958 0
Sunday 2.93707 2.68456 3.21334 23.49004 0
hour1 0.63309 0.57451 0.69765 −9.22725 0
hour2 0.35303 0.31826 0.39159 −19.68451 0
hour3 0.24193 0.21673 0.27006 −25.28759 0
hour4 0.21409 0.19132 0.23958 −26.85745 0
hour5 0.35319 0.31841 0.39176 −19.67729 0
hour6 1.17402 1.06978 1.28842 3.38174 0.00072
hour7 4.20006 3.84143 4.59218 31.51366 0
hour8 8.05472 7.3723 8.80031 46.18864 0
hour9 4.88454 4.46841 5.33943 34.91168 0
hour10 2.96949 2.71425 3.24873 23.73552 0
hour11 3.32317 3.03822 3.63486 26.25496 0
hour12 4.45261 4.07276 4.86789 32.82732 0
hour13 4.90057 4.48309 5.35693 34.98547 0
hour14 4.84373 4.43103 5.29488 34.72273 0
hour15 5.81653 5.32211 6.35688 38.84665 0
hour16 7.34448 6.72172 8.02495 44.10652 0
hour17 9.74475 8.92038 10.64529 50.4847 0
hour18 9.9338 9.09356 10.85167 50.91803 0
hour19 6.94375 6.35464 7.58746 42.84101 0
hour20 4.53713 4.15018 4.96016 33.25051 0
hour21 3.27708 2.99599 3.58454 25.94193 0
hour22 2.56025 2.3394 2.80194 20.42573 0
hour23 1.80233 1.6452 1.97445 12.65788 0
Tuesday × hour1 0.95022 0.82956 1.08842 −0.73708 0.46108
Wednesday × hour1 1.0005 0.87547 1.14339 0.00735 0.99414
Thursday × hour1 0.9972 0.87369 1.13818 −0.04152 0.96688
Friday × hour1 1.14338 1.00323 1.30311 2.00833 0.04461
Saturday × hour1 1.34922 1.18582 1.53513 4.54771 0.00001
Sunday × hour1 1.50372 1.3209 1.71185 6.16798 0
Tuesday × hour2 0.8832 0.76379 1.02128 −1.67584 0.09377
Wednesday × hour2 0.92873 0.80571 1.07055 −1.01973 0.30786
Thursday × hour2 1.04719 0.9108 1.20399 0.64765 0.51721
Friday × hour2 1.3587 1.18477 1.55818 4.38582 0.00001
Saturday × hour2 1.77705 1.55317 2.03319 8.36874 0
Sunday × hour2 2.15356 1.8811 2.46549 11.11537 0
Tuesday × hour3 0.78137 0.66873 0.91297 −3.10645 0.00189
Wednesday × hour3 0.82919 0.71274 0.96466 −2.4259 0.01527
Thursday × hour3 0.99725 0.86077 1.15537 −0.03663 0.97078
Friday × hour3 1.31706 1.14086 1.52047 3.75843 0.00017
Saturday × hour3 1.84739 1.60544 2.1258 8.56976 0
Sunday × hour3 2.3269 2.02185 2.67798 11.77907 0
Tuesday × hour4 0.63318 0.53798 0.74523 −5.49707 0
Wednesday × hour4 0.64155 0.54764 0.75155 −5.49712 0
Thursday × hour4 0.75317 0.64634 0.87765 −3.63216 0.00028
Friday × hour4 0.97179 0.8379 1.12708 −0.37833 0.70518
Saturday × hour4 1.52429 1.32075 1.75919 5.76421 0
Sunday × hour4 1.98239 1.71782 2.28769 9.36317 0
Tuesday × hour5 0.78739 0.68015 0.91153 −3.20011 0.00137
Wednesday × hour5 0.66987 0.57946 0.77438 −5.41657 0
Thursday × hour5 0.6168 0.53439 0.71191 −6.604 0
Friday × hour5 0.58361 0.50648 0.67249 −7.44606 0
Saturday × hour5 0.66629 0.58041 0.76487 −5.76749 0
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Table A1. Cont.

Parameter exp(Estimate) 2.5% 97.5% z-Value p-Value

Sunday × hour5 0.88791 0.77381 1.01884 −1.69395 0.09027
Tuesday × hour6 0.94719 0.83148 1.07901 −0.81612 0.41443
Wednesday × hour6 0.71674 0.62972 0.81578 −5.04313 0
Thursday × hour6 0.61888 0.54411 0.70392 −7.30453 0
Friday × hour6 0.45441 0.39954 0.51681 −12.01339 0
Saturday × hour6 0.15291 0.13403 0.17446 −27.91737 0
Sunday × hour6 0.19328 0.16948 0.22042 −24.5169 0
Tuesday × hour7 0.97406 0.85935 1.10408 −0.4111 0.681
Wednesday × hour7 0.76604 0.67659 0.86732 −4.20682 0.00003
Thursday × hour7 0.61858 0.54663 0.69999 −7.6135 0
Friday × hour7 0.43462 0.38418 0.49168 −13.23932 0
Saturday × hour7 0.05229 0.04601 0.05942 −45.21671 0
Sunday × hour7 0.056 0.04924 0.06368 −43.9423 0
Tuesday × hour8 0.95697 0.84508 1.08368 −0.69322 0.48817
Wednesday × hour8 0.76354 0.67504 0.86364 −4.29231 0.00002
Thursday × hour8 0.61258 0.54186 0.69253 −7.83049 0
Friday × hour8 0.4266 0.37749 0.4821 −13.65253 0
Saturday × hour8 0.05083 0.04488 0.05757 −46.87874 0
Sunday × hour8 0.04371 0.03854 0.04958 −48.67861 0
Tuesday × hour9 0.9407 0.83013 1.066 −0.95811 0.33801
Wednesday × hour9 0.75956 0.67105 0.85975 −4.35059 0.00001
Thursday × hour9 0.63403 0.56045 0.71726 −7.24056 0
Friday × hour9 0.46545 0.41158 0.52636 −12.18784 0
Saturday × hour9 0.15477 0.13681 0.1751 −29.64379 0
Sunday × hour9 0.13016 0.11493 0.14742 −32.09669 0
Tuesday × hour10 0.88095 0.77647 0.99949 −1.96786 0.04908
Wednesday × hour10 0.72418 0.63903 0.82068 −5.05653 0
Thursday × hour10 0.60839 0.53715 0.68906 −7.82171 0
Friday × hour10 0.49844 0.44028 0.56428 −10.99909 0
Saturday × hour10 0.36617 0.32367 0.41426 −15.95852 0
Sunday × hour10 0.32748 0.28921 0.37081 −17.60574 0
Tuesday × hour11 0.85697 0.75554 0.97201 −2.40165 0.01632
Wednesday × hour11 0.70295 0.62047 0.7964 −5.53477 0
Thursday × hour11 0.60501 0.53434 0.68504 −7.92845 0
Friday × hour11 0.50956 0.45025 0.57667 −10.67954 0
Saturday × hour11 0.44398 0.39264 0.50202 −12.95194 0
Sunday × hour11 0.39119 0.34567 0.44271 −14.86921 0
Tuesday × hour12 0.88243 0.77853 1.0002 −1.95687 0.05036
Wednesday × hour12 0.73374 0.64811 0.83069 −4.88968 0
Thursday × hour12 0.62865 0.5556 0.7113 −7.36527 0
Friday × hour12 0.51648 0.45667 0.58412 −10.52283 0
Saturday × hour12 0.40799 0.36101 0.46109 −14.36272 0
Sunday × hour12 0.38438 0.33987 0.43472 −15.22599 0
Tuesday × hour13 0.83918 0.74047 0.95105 −2.74612 0.00603
Wednesday × hour13 0.71437 0.6311 0.80864 −5.31891 0
Thursday × hour13 0.60701 0.53656 0.68672 −7.93055 0
Friday × hour13 0.53462 0.47281 0.60451 −9.98958 0
Saturday × hour13 0.41962 0.37137 0.47413 −13.93432 0
Sunday × hour13 0.42076 0.37213 0.47575 −13.81387 0
Tuesday × hour14 0.82069 0.72412 0.93012 −3.09415 0.00197
Wednesday × hour14 0.7006 0.61891 0.79307 −5.62505 0
Thursday × hour14 0.59813 0.52869 0.67669 −8.16247 0
Friday × hour14 0.57257 0.50639 0.6474 −8.89798 0
Saturday × hour14 0.44883 0.39724 0.50713 −12.85715 0
Sunday × hour14 0.46893 0.41476 0.53018 −12.09015 0
Tuesday × hour15 0.80719 0.71243 0.91455 −3.36183 0.00077
Wednesday × hour15 0.68144 0.60216 0.77116 −6.07754 0
Thursday × hour15 0.58272 0.51521 0.65907 −8.597 0
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Table A1. Cont.

Parameter exp(Estimate) 2.5% 97.5% z-Value p-Value

Friday × hour15 0.53026 0.46908 0.59942 −10.14243 0
Saturday × hour15 0.37535 0.33225 0.42403 −15.7478 0
Sunday × hour15 0.39645 0.35071 0.44816 −14.79129 0
Tuesday × hour16 0.81363 0.71836 0.92154 −3.24576 0.00117
Wednesday × hour16 0.69281 0.61241 0.78376 −5.83136 0
Thursday × hour16 0.57443 0.50805 0.64949 −8.84742 0
Friday × hour16 0.49157 0.43497 0.55554 −11.37837 0
Saturday × hour16 0.27901 0.24701 0.31516 −20.53488 0
Sunday × hour16 0.29894 0.26448 0.33789 −19.32518 0
Tuesday × hour17 0.81838 0.72278 0.92664 −3.16202 0.00157
Wednesday × hour17 0.68212 0.60314 0.77144 −6.09306 0
Thursday × hour17 0.55142 0.48783 0.6233 −9.52218 0
Friday × hour17 0.39578 0.35028 0.44719 −14.87474 0
Saturday × hour17 0.20997 0.18591 0.23714 −25.14042 0
Sunday × hour17 0.21512 0.19035 0.24312 −24.61568 0
Tuesday × hour18 0.81258 0.71766 0.92005 −3.27481 0.00106
Wednesday × hour18 0.69154 0.61149 0.78208 −5.87573 0
Thursday × hour18 0.54815 0.48495 0.61959 −9.61859 0
Friday × hour18 0.36292 0.32119 0.41008 −16.26182 0
Saturday × hour18 0.18943 0.16772 0.21395 −26.78698 0
Sunday × hour18 0.18412 0.1629 0.2081 −27.08673 0
Tuesday × hour19 0.82623 0.72943 0.93587 −3.0025 0.00268
Wednesday × hour19 0.72009 0.63649 0.81467 −5.21562 0
Thursday × hour19 0.58191 0.51463 0.65799 −8.63659 0
Friday × hour19 0.41974 0.37135 0.47444 −13.88948 0
Saturday × hour19 0.2428 0.21491 0.27431 −22.73572 0
Sunday × hour19 0.21765 0.19249 0.24609 −24.33259 0
Tuesday × hour20 0.87866 0.77523 0.99589 −2.02439 0.04293
Wednesday × hour20 0.76276 0.67379 0.86348 −4.27961 0.00002
Thursday × hour20 0.6108 0.53983 0.6911 −7.82289 0
Friday × hour20 0.51385 0.45437 0.58113 −10.60678 0
Saturday × hour20 0.30835 0.27278 0.34855 −18.815 0
Sunday × hour20 0.24137 0.21331 0.27311 −22.54564 0
Tuesday × hour21 0.91456 0.80635 1.0373 −1.39004 0.16452
Wednesday × hour21 0.77226 0.6817 0.87485 −4.06084 0.00005
Thursday × hour21 0.63913 0.56448 0.72364 −7.06471 0
Friday × hour21 0.54695 0.48331 0.61896 −9.56163 0
Saturday × hour21 0.33247 0.29392 0.37608 −17.51294 0
Sunday × hour21 0.2455 0.21677 0.27804 −22.11696 0
Tuesday × hour22 0.97232 0.85674 1.1035 −0.43468 0.6638
Wednesday × hour22 0.84982 0.74973 0.96328 −2.54517 0.01092
Thursday × hour22 0.71998 0.63555 0.81563 −5.16206 0
Friday × hour22 0.60948 0.53827 0.6901 −7.81124 0
Saturday × hour22 0.36293 0.32065 0.41078 −16.03917 0
Sunday × hour22 0.26189 0.23107 0.29683 −20.97112 0
Tuesday × hour23 0.98758 0.86906 1.12227 −0.19154 0.8481
Wednesday × hour23 0.96602 0.85133 1.09615 −0.53618 0.59183
Thursday × hour23 0.88622 0.78156 1.00489 −1.88383 0.05959
Friday × hour23 0.83394 0.73593 0.945 −2.84688 0.00442
Saturday × hour23 0.52726 0.46551 0.59719 −10.07198 0
Sunday × hour23 0.27959 0.24632 0.31735 −19.71768 0

Model Info:
Observations: 8760
Dependent variable: bookings
Type: generalized linear model

Family: Negative Binomial
Link function: log

Model Fit:
Pseudo-R2 (Nagelkerke) = 0.94443
AIC = 92,400.78528
RMSE = 66.35545
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Appendix A.2

The subsequent Table A2 contains the estimated parameter values for the regression
model described in Section 4.4.2. Instead of using individual week numbers, we assigned a
cluster number i = 1 . . . 8 to each calendar week. We then utilized these cluster numbers as
categorical input variables for our regression model. In summary, the following explanatory
variables were included in the model:

• Number of cluster (cluster1 . . . cluster8);
• Weekday (Monday . . . Sunday);
• Time of day (hour00 . . . hour23);
• Interaction term between weekday and time of day (Monday × hour00 . . . Sunday ×

hour23).

Table A2. Estimated parameter values for Negative Binomial model (Cluster Model (i = 8)).

Parameter exp(Estimate) 2.5% 97.5% z-Value p-Value

Intercept 36.06807 33.66655 38.64089 101.98774 0
cluster2 1.29344 1.26802 1.31937 25.407 0
cluster3 1.56703 1.53731 1.59731 45.9887 0
cluster4 1.94824 1.90712 1.99025 61.27461 0
cluster5 2.2289 2.18418 2.27454 77.5041 0
cluster6 2.49625 2.44392 2.54969 84.636 0
cluster7 2.71512 2.66547 2.76569 106.08542 0
cluster8 2.97104 2.91181 3.03147 105.98863 0
Tuesday 1.21146 1.10226 1.33147 3.98016 0.00007
Wednesday 1.47616 1.34476 1.62041 8.18713 0
Thursday 1.79838 1.63946 1.9727 12.43287 0
Friday 2.20146 2.00814 2.41339 16.82734 0
Saturday 3.15199 2.87758 3.45257 24.70337 0
Sunday 2.93018 2.67371 3.21125 23.00396 0
hour1 0.63255 0.57312 0.69814 −9.09839 0
hour2 0.35251 0.31733 0.39159 −19.43723 0
hour3 0.24146 0.21601 0.26991 −25.00651 0
hour4 0.21356 0.19058 0.23931 −26.57694 0
hour5 0.35226 0.3171 0.39131 −19.44892 0
hour6 1.17162 1.06585 1.2879 3.28083 0.00104
hour7 4.18853 3.82432 4.58742 30.86091 0
hour8 8.03662 7.34303 8.79571 45.25545 0
hour9 4.87561 4.45259 5.33882 34.21192 0
hour10 2.96347 2.70415 3.24766 23.25162 0
hour11 3.31302 3.02377 3.62994 25.69912 0
hour12 4.43575 4.05038 4.85778 32.12553 0
hour13 4.88128 4.45778 5.34503 34.23761 0
hour14 4.82277 4.40427 5.28103 33.97139 0
hour15 5.7931 5.29155 6.3422 38.02006 0
hour16 7.31935 6.68716 8.01131 43.18873 0
hour17 9.70314 8.86693 10.61822 49.42118 0
hour18 9.89627 9.04353 10.82943 49.8568 0
hour19 6.91728 6.3195 7.5716 41.93976 0
hour20 4.52315 4.1303 4.95337 32.55599 0
hour21 3.27109 2.98543 3.58408 25.41923 0
hour22 2.55577 2.33136 2.80178 20.01237 0
hour23 1.79846 1.63893 1.97352 12.38455 0
Tuesday × hour1 0.951 0.82837 1.09177 −0.71338 0.47561
Wednesday × hour1 1.00093 0.87386 1.14646 0.01335 0.98935
Thursday × hour1 0.99778 0.8722 1.14144 −0.03242 0.97414
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Table A2. Cont.

Parameter exp(Estimate) 2.5% 97.5% z-Value p-Value

Friday × hour1 1.14523 1.00254 1.30823 1.99737 0.04578
Saturday × hour1 1.35134 1.18491 1.54115 4.49006 0.00001
Sunday × hour1 1.50504 1.31894 1.71739 6.07074 0
Tuesday × hour2 0.88494 0.76367 1.02545 −1.62568 0.10402
Wednesday × hour2 0.9289 0.80413 1.07302 −1.00227 0.31621
Thursday × hour2 1.04835 0.90984 1.20794 0.65311 0.51368
Friday × hour2 1.36274 1.18568 1.56624 4.3583 0.00001
Saturday × hour2 1.78042 1.55262 2.04163 8.25842 0
Sunday × hour2 2.15992 1.88237 2.47839 10.97382 0
Tuesday × hour3 0.78291 0.66872 0.9166 −3.04266 0.00234
Wednesday × hour3 0.82978 0.71181 0.96729 −2.38508 0.01708
Thursday × hour3 0.99934 0.86081 1.16017 −0.00861 0.99313
Friday × hour3 1.31921 1.14032 1.52616 3.72603 0.00019
Saturday × hour3 1.85133 1.60539 2.13495 8.46903 0
Sunday × hour3 2.33401 2.0236 2.69203 11.64079 0
Tuesday × hour4 0.63512 0.5386 0.74894 −5.39719 0
Wednesday × hour4 0.64227 0.5472 0.75386 −5.41689 0
Thursday × hour4 0.75384 0.64563 0.88019 −3.57406 0.00035
Friday × hour4 0.97346 0.83762 1.13134 −0.35077 0.72576
Saturday × hour4 1.52831 1.32142 1.76759 5.71549 0
Sunday × hour4 1.98911 1.71995 2.3004 9.27038 0
Tuesday × hour5 0.79005 0.68102 0.91655 −3.11004 0.00187
Wednesday × hour5 0.67011 0.57845 0.7763 −5.33384 0
Thursday × hour5 0.61803 0.53433 0.71484 −6.48101 0
Friday × hour5 0.58366 0.50543 0.67399 −7.33357 0
Saturday × hour5 0.66718 0.57991 0.76759 −5.65783 0
Sunday × hour5 0.89051 0.77434 1.02412 −1.62584 0.10398
Tuesday × hour6 0.94866 0.8308 1.08323 −0.77879 0.43611
Wednesday × hour6 0.71581 0.62743 0.81663 −4.97261 0
Thursday × hour6 0.61828 0.5423 0.7049 −7.18754 0
Friday × hour6 0.45424 0.39845 0.51784 −11.80287 0
Saturday × hour6 0.15309 0.13387 0.17507 −27.42116 0
Sunday × hour6 0.19359 0.16936 0.22129 −24.06501 0
Tuesday × hour7 0.97557 0.85857 1.1085 −0.37952 0.7043
Wednesday × hour7 0.7655 0.67445 0.86883 −4.13641 0.00004
Thursday × hour7 0.61804 0.54481 0.70111 −7.47848 0
Friday × hour7 0.43491 0.38349 0.49322 −12.96995 0
Saturday × hour7 0.05237 0.04597 0.05966 −44.36758 0
Sunday × hour7 0.05609 0.0492 0.06393 −43.11472 0
Tuesday × hour8 0.95719 0.84318 1.08662 −0.67616 0.49894
Wednesday × hour8 0.76301 0.67291 0.86518 −4.21881 0.00002
Thursday × hour8 0.6113 0.53939 0.69279 −7.70813 0
Friday × hour8 0.42686 0.37678 0.48359 −13.37118 0
Saturday × hour8 0.05085 0.04478 0.05774 −45.97118 0
Sunday × hour8 0.04375 0.03847 0.04975 −47.74099 0
Tuesday × hour9 0.94082 0.8282 1.06876 −0.9377 0.3484
Wednesday × hour9 0.7591 0.669 0.86133 −4.27556 0.00002
Thursday × hour9 0.633 0.55817 0.71786 −7.12398 0
Friday × hour9 0.46575 0.41084 0.52801 −11.93758 0
Saturday × hour9 0.15468 0.13639 0.17542 −29.0727 0
Sunday × hour9 0.13023 0.1147 0.14786 −31.46498 0
Tuesday × hour10 0.8807 0.77436 1.00164 −1.93497 0.05299
Wednesday × hour10 0.72323 0.63665 0.8216 −4.98032 0
Thursday × hour10 0.60785 0.53537 0.69014 −7.68508 0
Friday × hour10 0.49869 0.43943 0.56595 −10.77865 0
Saturday × hour10 0.36601 0.32273 0.4151 −15.65285 0
Sunday × hour10 0.32775 0.28873 0.37204 −17.2499 0
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Table A2. Cont.

Parameter exp(Estimate) 2.5% 97.5% z-Value p-Value

Tuesday × hour11 0.85752 0.75418 0.97502 −2.34605 0.01897
Wednesday × hour11 0.70236 0.61844 0.79768 −5.44169 0
Thursday × hour11 0.60502 0.53304 0.68672 −7.77507 0
Friday × hour11 0.51017 0.44969 0.57879 −10.45304 0
Saturday × hour11 0.44401 0.3917 0.50331 −12.69479 0
Sunday × hour11 0.39226 0.34575 0.44502 −14.53453 0
Tuesday × hour12 0.88276 0.77691 1.00303 −1.91349 0.05569
Wednesday × hour12 0.73351 0.64632 0.83246 −4.79989 0
Thursday × hour12 0.62925 0.55476 0.71373 −7.20659 0
Friday × hour12 0.51737 0.45634 0.58657 −10.28882 0
Saturday × hour12 0.40866 0.3607 0.46299 −14.05091 0
Sunday × hour12 0.38582 0.34029 0.43745 −14.86477 0
Tuesday × hour13 0.84073 0.74002 0.95514 −2.66493 0.0077
Wednesday × hour13 0.7146 0.62975 0.81088 −5.21069 0
Thursday × hour13 0.6076 0.53576 0.68908 −7.75996 0
Friday × hour13 0.53592 0.47279 0.60748 −9.75463 0
Saturday × hour13 0.42027 0.37102 0.47606 −13.63119 0
Sunday × hour13 0.4224 0.37265 0.4788 −13.47724 0
Tuesday × hour14 0.82264 0.72406 0.93463 −2.99811 0.00272
Wednesday × hour14 0.70088 0.61763 0.79534 −5.50975 0
Thursday × hour14 0.59886 0.52803 0.67919 −7.98364 0
Friday × hour14 0.57422 0.50659 0.65087 −8.67728 0
Saturday × hour14 0.44973 0.39704 0.50941 −12.56856 0
Sunday × hour14 0.47071 0.41529 0.53353 −11.78933 0
Tuesday × hour15 0.80843 0.71177 0.91822 −3.27312 0.00106
Wednesday × hour15 0.68115 0.60042 0.77274 −5.96557 0
Thursday × hour15 0.58355 0.51467 0.66164 −8.4057 0
Friday × hour15 0.53162 0.46912 0.60245 −9.90125 0
Saturday × hour15 0.37601 0.33201 0.42585 −15.40395 0
Sunday × hour15 0.39774 0.35097 0.45075 −14.44385 0
Tuesday × hour16 0.81499 0.71778 0.92537 −3.1569 0.00159
Wednesday × hour16 0.69212 0.6103 0.78492 −5.73238 0
Thursday × hour16 0.57415 0.50654 0.65079 −8.68011 0
Friday × hour16 0.49243 0.43465 0.55789 −11.12447 0
Saturday × hour16 0.27926 0.24661 0.31623 −20.10828 0
Sunday × hour16 0.29963 0.26443 0.33951 −18.90102 0
Tuesday × hour17 0.82039 0.72275 0.93121 −3.06243 0.0022
Wednesday × hour17 0.68235 0.60185 0.77361 −5.96784 0
Thursday × hour17 0.55152 0.48672 0.62496 −9.33008 0
Friday × hour17 0.39668 0.3502 0.44933 −14.54177 0
Saturday × hour17 0.21035 0.18578 0.23816 −24.60536 0
Sunday × hour17 0.21563 0.19032 0.24431 −24.08292 0
Tuesday × hour18 0.81512 0.71813 0.92522 −3.16235 0.00156
Wednesday × hour18 0.69109 0.60957 0.7835 −5.77025 0
Thursday × hour18 0.54822 0.48381 0.62121 −9.42535 0
Friday × hour18 0.36375 0.32112 0.41204 −15.9013 0
Saturday × hour18 0.1897 0.16754 0.2148 −26.2248 0
Sunday × hour18 0.18452 0.16285 0.20908 −26.50792 0
Tuesday × hour19 0.82843 0.72957 0.94068 −2.90315 0.00369
Wednesday × hour19 0.72019 0.63501 0.81679 −5.11135 0
Thursday × hour19 0.58245 0.51383 0.66023 −8.45157 0
Friday × hour19 0.42094 0.37148 0.47698 −13.56916 0
Saturday × hour19 0.24333 0.21484 0.2756 −22.246 0
Sunday × hour19 0.21809 0.1924 0.24721 −23.81504 0
Tuesday × hour20 0.88052 0.77496 1.00045 −1.95307 0.05081
Wednesday × hour20 0.76335 0.67266 0.86627 −4.18471 0.00003
Sunday × hour21 0.24567 0.21638 0.27892 −21.67633 0
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Table A2. Cont.

Parameter exp(Estimate) 2.5% 97.5% z-Value p-Value

Thursday × hour20 0.61123 0.53888 0.69329 −7.65919 0
Friday × hour20 0.515 0.45426 0.58386 −10.36332 0
Saturday × hour20 0.30876 0.27247 0.34989 −18.42045 0
Sunday × hour20 0.24181 0.21317 0.27429 −22.07248 0
Tuesday × hour21 0.91588 0.80555 1.04132 −1.34169 0.1797
Wednesday × hour21 0.7724 0.68016 0.87714 −3.98035 0.00007
Thursday × hour21 0.63907 0.56305 0.72534 −6.92978 0
Friday × hour21 0.54751 0.48262 0.62111 −9.35983 0
Saturday × hour21 0.33252 0.29324 0.37706 −17.16703 0
Tuesday × hour22 0.97373 0.8559 1.10778 −0.40451 0.68584
Wednesday × hour22 0.8497 0.74781 0.96547 −2.4991 0.01245
Thursday × hour22 0.71996 0.63399 0.8176 −5.06366 0
Friday × hour22 0.60985 0.53729 0.69222 −7.6512 0
Saturday × hour22 0.36305 0.31997 0.41193 −15.72255 0
Sunday × hour22 0.2622 0.23077 0.29791 −20.55046 0
Tuesday × hour23 0.98866 0.86792 1.12619 −0.17168 0.86369
Wednesday × hour23 0.96665 0.84985 1.09951 −0.51622 0.6057
Thursday × hour23 0.88714 0.78048 1.00837 −1.83245 0.06688
Friday × hour23 0.83477 0.73488 0.94824 −2.77736 0.00548
Saturday × hour23 0.52779 0.46485 0.59926 −9.86282 0
Sunday × hour23 0.28027 0.24632 0.31889 −19.31151 0
Friday × hour16 0.49157 0.43497 0.55554 −11.37837 0
Saturday × hour16 0.27901 0.24701 0.31516 −20.53488 0
Sunday × hour16 0.29894 0.26448 0.33789 −19.32518 0
Tuesday × hour17 0.81838 0.72278 0.92664 −3.16202 0.00157
Wednesday × hour17 0.68212 0.60314 0.77144 −6.09306 0
Thursday × hour17 0.55142 0.48783 0.6233 −9.52218 0
Friday × hour17 0.39578 0.35028 0.44719 −14.87474 0
Saturday × hour17 0.20997 0.18591 0.23714 −25.14042 0
Sunday × hour17 0.21512 0.19035 0.24312 −24.61568 0
Tuesday × hour18 0.81258 0.71766 0.92005 −3.27481 0.00106
Wednesday × hour18 0.69154 0.61149 0.78208 −5.87573 0
Thursday × hour18 0.54815 0.48495 0.61959 −9.61859 0
Friday × hour18 0.36292 0.32119 0.41008 −16.26182 0
Saturday × hour18 0.18943 0.16772 0.21395 −26.78698 0
Sunday × hour18 0.18412 0.1629 0.2081 −27.08673 0
Tuesday × hour19 0.82623 0.72943 0.93587 −3.0025 0.00268
Wednesday × hour19 0.72009 0.63649 0.81467 −5.21562 0
Thursday × hour19 0.58191 0.51463 0.65799 −8.63659 0
Friday × hour19 0.41974 0.37135 0.47444 −13.88948 0
Saturday × hour19 0.2428 0.21491 0.27431 −22.73572 0
Sunday × hour19 0.21765 0.19249 0.24609 −24.33259 0
Tuesday × hour20 0.87866 0.77523 0.99589 −2.02439 0.04293
Wednesday × hour20 0.76276 0.67379 0.86348 −4.27961 0.00002
Thursday × hour20 0.6108 0.53983 0.6911 −7.82289 0
Friday × hour20 0.51385 0.45437 0.58113 −10.60678 0
Saturday × hour20 0.30835 0.27278 0.34855 −18.815 0
Sunday × hour20 0.24137 0.21331 0.27311 −22.54564 0
Tuesday × hour21 0.91456 0.80635 1.0373 −1.39004 0.16452
Wednesday × hour21 0.77226 0.6817 0.87485 −4.06084 0.00005
Thursday × hour21 0.63913 0.56448 0.72364 −7.06471 0
Friday × hour21 0.54695 0.48331 0.61896 −9.56163 0
Saturday × hour21 0.33247 0.29392 0.37608 −17.51294 0
Sunday × hour21 0.2455 0.21677 0.27804 −22.11696 0
Tuesday × hour22 0.97232 0.85674 1.1035 −0.43468 0.6638
Wednesday × hour22 0.84982 0.74973 0.96328 −2.54517 0.01092
Thursday × hour22 0.71998 0.63555 0.81563 −5.16206 0
Friday × hour22 0.60948 0.53827 0.6901 −7.81124 0
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Table A2. Cont.

Parameter exp(Estimate) 2.5% 97.5% z-Value p-Value

Saturday × hour22 0.36293 0.32065 0.41078 −16.03917 0
Sunday × hour22 0.26189 0.23107 0.29683 −20.97112 0
Tuesday × hour23 0.98758 0.86906 1.12227 −0.19154 0.8481
Wednesday × hour23 0.96602 0.85133 1.09615 −0.53618 0.59183
Thursday × hour23 0.88622 0.78156 1.00489 −1.88383 0.05959
Friday × hour23 0.83394 0.73593 0.945 −2.84688 0.00442
Saturday × hour23 0.52726 0.46551 0.59719 −10.07198 0
Sunday × hour23 0.27959 0.24632 0.31735 −19.71768 0

Model Info:
Observations: 8760
Dependent variable: bookings
Type: generalized linear model

Family: Negative Binomial
Link function: log

Model Fit:
Pseudo-R2 (Nagelkerke) = 0.94235
AIC = 92,635.93798
RMSE = 66.26881
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