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Abstract: Artificially generated datasets often exhibit biases, leading conventional deep neural
networks to overfit. Typically, a weighted function adjusts sample impact during model updates
using weighted loss. Meta-neural networks, trained with meta-learning principles, generalize well
across tasks, acquiring generalized weights. This enables the self-generation of tailored weighted
functions for data biases. However, datasets may simultaneously exhibit imbalanced classes and
corrupted labels, posing a challenge for current meta-models. To address this, this paper presents
Meta-Loss Reweighting Network (MLRNet) with fusion attention features. MLRNet continually
evolves sample loss values, integrating them with sample features from self-attention layers in a
semantic space. This enhances discriminative power for biased samples. By employing minimal
unbiased meta-data for guidance, mutual optimization between the classifier and the meta-model is
conducted, endowing biased samples with more reasonable weights. Experiments on English and
Chinese benchmark datasets including artificial and real-world biased data show MLRNet’s superior
performance under biased data conditions.

Keywords: biased data; class imbalance; corrupted label; meta-learning; self-attention; text classification

1. Introduction

With the increase in model parameters, the fitting capacity of neural networks becomes
stronger. However, when the joint distribution of the training set samples and labels differs
from that of the evaluation/testing set, the training set is considered biased [1]. In the
case of biased data, deep neural networks tend to overfit [2], leading to a decline in model
performance. Thus, effectively utilizing biased data can reduce the high cost of data
re-collection or annotation.

Class imbalance [3] refers to a situation where the number of samples in one or more
classes is significantly different from the number of samples in other classes. This situation
is prevalent in many real-world problems, such as spam email classification and telephone
fraud detection. Class imbalance can affect the performance of classifiers, causing them
to predict the majority class, which would achieve decent accuracy without truly learning
the essence of the problem. However, such training does not serve the purpose of building
a reliable classifier, as the model’s generalization ability is compromised, leading to poor
performance in real-world applications.

Corrupted labels [4] refer to instances where the labels in the training data do not
match the true labels. This issue often arises during data collection or annotation [5]
and may result from automated annotation, non-expert labeling, or adversarial label
tampering [6]. The existence of corrupted labels in the dataset can negatively impact the
model’s performance [7], as it learns from erroneous information.

In the real world, both types of bias often coexist and influence each other. A dataset
may suffer from class imbalance, which, in turn, could lead to the presence of corrupted
labels. Additionally, due to the bias in sample distribution, the model may more easily
learn features that favor the majority class, neglecting features from other classes, further
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exacerbating the class imbalance and corrupted label issues. Therefore, research focusing on
effectively handling and utilizing class imbalanced data and corrupted labels is crucial [1,8].

Currently, many studies have attempted to address the issue of biased data, mainly
employing two methods: sample re-sampling and sample reweighting. Sample re-sampling
includes over-sampling [9], under-sampling, and data augmentation. Sample reweighting,
on the other hand, assigns weights to each sample based on a weighted function, adjusting
the impact of each sample on the model through weighted losses. In sample reweighting,
a weight function along with its associated hyperparameters during model training is
predefined in advance to assign different weights to samples based on their loss values,
reflecting the significance of each sample in the training set. By utilizing importance
weighting, the negative impact of biased samples on the model can be reduced.

However, the bias type in the data is unknown. Traditional weighting methods tend to
assign high weights to samples with small loss to reduce the misleading effect of label noise
samples on the model when label noise exists [10]. Conversely, another scenario might
emerge where high loss samples are assigned high weights, as these large loss samples
could belong to minority classes and need to be forcefully learned by the classifier as hard
boundary samples [11]. As a result, these weighting methods fail to accommodate both
scenarios effectively.

In addition, on the one hand, bias types in the data can be diverse, and the degree
of bias is difficult to predict. On the other hand, the utilization of bias data’s inherent
information in the reweighting method is not high enough to effectively enhance the
discrimination between samples. Meta-learning refers to enabling models to “learn to
learn” and quickly adapt to new tasks with minimal training data. In recent years, the use
of meta-learning has demonstrated high generalization in meta-neural networks across
different tasks [12], acquiring more generalized weights than manual hyperparameter
tuning [13]. To address the aforementioned challenges and drawing inspiration from the
work of [14], we adopt a two-stage training strategy. In the first stage, we employ a pre-
trained model to obtain multiple loss variation values for each epoch of all samples and fuse
these values with attention features, which are semantic features extracted by multi-head
self-attention layers, to enhance the discrimination among samples. We observe that the
variation pattern of the pre-collected average training loss values (as illustrated in Figure 1)
is similar to the findings of [14]. In the second stage, leveraging the high generalization
capability of meta-learning, MLRNet calculates weights based on the fused sample features
and analyzes the loss variation for each sample, assigning more reasonable weights and
obtaining the final weighted loss values through a bi-level optimization problem with the
classifier.

In summary, our contributions are as follows:

• We propose a Meta-Loss Reweighting Network (MLRNet) based on the concept
of meta-learning with attention features, which performs well on complex biased
situations.

• We embed the labels of samples, concatenate them with the features extracted by
self-attention layers, and fuse it with pre-collected sample multi-loss variation values.
This fused representation is referred to as the discriminative feature (or DF). Through
MLRNet analysis of discriminative features, we identify the bias type of each sample
and automatically assign appropriate weights to biased data.

• We conduct experiments on several English and Chinese benchmark datasets, includ-
ing artificially generated and real-world biased datasets. The results demonstrate that
our approach achieves better and more generalizable performance than prior works.

The structure of the paper is organized as follows: Section 2 discusses related work,
Section 3 presents our proposed method, Section 4 demonstrates the experimental results
and analysis, and Section 5 concludes the paper.
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Figure 1. The variation in average training loss for biased samples in the AG News. In the figure, it is
evident that different types of biased samples exhibit distinct trends in their loss value variations
(with an imbalance factor of 20 and noise label level of 0.4). Firstly, concerning the class imbalance
issue, head class samples consistently display lower loss values compared to tail class samples.
Secondly, for samples with noisy labels, their loss values are higher than those with undistorted
labels. For head class samples, the loss values for clean label samples steadily decrease, while the
loss values for samples with noisy labels initially decrease and then sharply increase before slowly
decreasing again. Conversely, for tail class samples, the loss values for clean label samples initially
experience an increase, which is followed by a significant decrease. In contrast, the loss values for
samples with noisy labels first increase and then decrease.

2. Related Work
2.1. Class Imbalance

Resampling the dataset is an effective measure to address class imbalance. Several
methods include the SMOTE series, which involves over-sampling the minority class
samples [15–17], under-sampling the majority class samples, and ensemble learning [18].
Another popular approach is data augmentation for tail class samples [19] using methods
like synonym replacement, random insertion, random swapping, and random deletion.
However, these methods may introduce new issues, such as overfitting with over-sampling
and loss of valuable sample information with under-sampling. Additionally, these methods
often require frequent parameter tuning to achieve better performance, resulting in higher
average training iterations and expensive processing costs, particularly for large-scale
datasets. Moreover, another prevalent choice is using sample reweighting methods, which
involve two strategies. The first approach considers high loss-value samples to be more
likely from the minority class and employs a monotonically increasing weighting function
to force the model to learn from high-loss samples, such as AdaBoost [20] and focal loss [11].
The second approach introduces weighting functions based on the frequency of sample
labels, such as the inverse of the class frequency [21] or the inverse square root [22]. Ref. [23]
extended the traditional paradigm of imbalanced classification problems from discrete
value domains to continuous value domains.

2.2. Corrupted Labels

To tackle label noise, refs. [5,8,24] assume the underlying causes of label noise and
employ label correction processes to transform corrupted labels into cleaner ones. These
methods require estimating a label corruption matrix, which is independent of the model
training process. However, such estimations do not consider data-related noise, which
is common in real-world label noise scenarios [25]. Ref. [26] expanded label correction
by incorporating an additional meta-update process during normal training. They used
a small amount of unbiased data to introduce meta-labels representing the reliability of
each label. Through a meta-learning network, they dynamically adjusted the weights
of each meta-label, enabling adaptive label noise correction during the training process.
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Another approach is reweighting the loss values of each sample, where samples with higher
loss values are considered more likely to be noisy, and the model tends to focus on those
high-confidence samples with clean labels. This is often achieved through methods like the
SPL series [10].

2.3. Meta-Learning Combined with Reweighting

Meta-learning is a popular research direction in machine learning that allows mod-
els to rapidly adapt to new tasks with very few training data. Inspired by previous
works [13,27,28], some automatic weighting methods using meta-learning have been pro-
posed. They use a small amount of unbiased meta-data to automatically fit a more reason-
able weighting function, which exhibits better generalization ability than manually adjusted
hyperparameters [29] and demonstrates superior performance in data selection [30]. Typi-
cal meta-learning reweighting methods include MentorNet, L2RW, MW-Net, and CurveNet,
which guide the model to assign weights to samples with the help of a small amount of
unbiased data. These weights effectively act as hyperparameters for the classifier, which
can be solved by solving a bi-level optimization problem between the classifier and the
meta-network [31,32]. Specifically, MentorNet uses a bidirectional LSTM-based network to
weight mini-batch samples in StudentNet, jointly optimizing deep CNNs for large-scale
data. L2RW and MW-Net follow a similar structure, simultaneously learning the classifier
and the weighting function. The classifier undergoes traditional gradient updates, while
the weighting function is updated through meta-learning, alternating between the two.
This function assigns weights to examples to alleviate overfitting caused by label corruption
or class imbalance in the training data.

Furthermore, recently, a two-stage training strategy has been proposed [33–35] to
improve the model’s classification performance on biased data. CurveNet [14] adopts
a similar two-stage training strategy and discovers different changing trends in the loss
curves of image samples with different types of biases.

Taking inspiration from the aforementioned works, we adopt a similar two-stage
strategy, using multiple loss variation values. We improve the data flow between models
by extracting attention features for each sample before obtaining the final classification
result from the classifier’s output. These attention features, along with the sample’s label
embedding and loss variation values, are fused to create what we call a sample discrim-
inative feature. The classifier and meta-network learn from this discriminative feature
during the training process, making them more sensitive to label-corrupted and class-
imbalanced samples. This allows more reasonable weight allocation for biased training
data that simultaneously contains noisy labels and imbalanced classes. As Table 1 shows,
our method achieves favorable performance in both high-class imbalance and high noise
levels situations.

Table 1. Performance comparisons on AG News with varying noise rates and imbalance factors.

Imbalance Ratio 10 20 50 100 200 1

Noise Rate 0 0 0.2 0.4

Bert-base 90.58 89.33 85.21 81.18 69.01 93.44 92.19 90.13
MW-Net 91.48 90.20 87.79 84.58 80.37 93.44 93.27 91.23

MLC 91.91 88.75 78.63 75.41 73.87 94.57 93.70 91.76
MLRNet(Ours) 92.15 89.95 90.07 88.47 83.22 94.21 94.10 92.38

The best results are highlighted in bold.

3. The Proposed Meta-Loss Reweighting Net Method
3.1. Optimization Objective in Meta-Learning

Following the work of [36], we perform model learning on two sets of data: a large set
containing biased data and a small set of clean and unbiased data. Due to the high cost of
expert labeling, the clean and unbiased dataset is much smaller than the biased dataset.
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Using the biased dataset as the entire training set is not optimal, since it contains a large
amount of biased data. On the other hand, training solely on the clean dataset leads to
severe overfitting due to the limited number of samples. To address this, we adopt the idea
of meta-learning, where we use the small unbiased dataset as the meta-dataset to guide the
parameter updates of both the classifier and the meta-network.

Let us represent the training set containing biased data as Dtrain = {xi, yi}N
i=1 and

the meta-dataset as Dmeta = {xj, yj}M
j=1, where N and M represent the sample sizes of the

training set and the meta-dataset, respectively, and N >> M.
We use Xtrain and Ytrain to denote all the samples and label vectors in the training set

Dtrain, respectively. Similarly, Xmeta and Ymeta represent all the samples and label vectors
in the meta-dataset Dmeta. The classifier is denoted by F, and its learnable parameters are
represented as ω. The regular parameters can be obtained by minimizing the following
loss function:

ω∗ = arg min
ω

1
N

L
(

Ytrain, F
(

Xtrain; ω
))

(1)

Here, we use Ltrain(ω) as shorthand for L(Ytrain, F(Xtrain; ω)). However, due to the pres-
ence of biased data, we need to assign weights to sample loss values to adjust the impact of
biased data and improve the model’s robustness. We use V(l; θ) to represent the weight
net, where θ represents its learnable parameters. Clearly, once θ is set to be optimal, we
can obtain the optimal w∗ value, and Equation (1) can be written in the following weighted
loss form:

ω∗ = arg min
ω

1
N

V
(

Ltrain(ω); θ
)

Ltrain(ω) (2)

The optimal θ can be obtained by minimizing the following loss function:

θ∗ = arg min
θ

1
M

L
(
Ymeta, F

(
Xmeta; ω∗(V(θ))

))
(3)

3.2. Bi-Level Optimization Parameter Update

As evident from Equations (2) and (3), it is apparent that the optimal θ cannot be
directly determined because it requires the optimal ω, and conversely, the optimal ω
also depends on the optimal θ for its calculation. If we were to compute ω∗, we would
need to execute Equations (2) and (3) for each θ, making the computations prohibitively
expensive. The optimization of parameters for both the classifier and the weight net
constitutes a bi-level optimization problem [13] that requires simultaneously optimizing
the upper-level parameters (parameters of the weight net) and the lower-level parameters
(classifier parameters). Therefore, on a mini-batch, we independently optimize the lower-
level parameter ω using Equation (4) to approximate the optimal values. Subsequently, we
optimize the upper-level parameter θ using Equation (5):

ω̂(t) = ω(t) − α
1
n

V
(

Ltrain
(

ω(t)
)

; θ(t)
) ∂

∂ω

(
Ltrain(ω)|ω(t)

)
(4)

θ(t+1) = θ(t) − β
1
m

∂

∂θ

(
Lmeta

(
ω̂(t)(θ)

)
|θ(t)
)

(5)

Here, α and β are the learning rates for ω and θ, respectively. n and m represent the number
of samples in a mini-batch from the training set and the meta-set, respectively. t denotes
the current training epoch. After obtaining the optimal weight net parameters for the
mini-batch, we can further update ω using Equation (6) to obtain the optimal classifier
parameters:

ω(t+1) = ω(t) − α
1
n

V
(

Ltrain
(

ω(t)
)

; θ(t+1)
) ∂

∂ω

(
Ltrain(ω)|ω(t)

)
(6)
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By iteratively performing these updates during training, we aim to find the optimal param-
eters for both classifier and weight net, effectively addressing the issue of biased data and
improving the model’s performance on biased training data.

3.3. Discriminative Features

Inspired by previous works, we also adopt a similar two-stage training strategy.
In the first stage, we collect the loss values of each sample for every epoch using the
loss function L(Ytrain, F(Xtrain; ω)). These loss variation values are represented as Li =
[L0

i , L1
i , · · · Lt

i , · · · LT
i ], where T represents the total number of training epochs (0 ≤ t ≤ T).

We then normalize the multiple loss values for each sample by subtracting the average
loss of the corresponding class, which highlights the difference between clean and biased
samples. We denote the normalized loss variation values of a sample as Ii.

In the field of NLP (Natural Language Processing), pre-trained models have rapidly
developed and achieved impressive results on downstream tasks such as classification [37–39].
We use a pre-trained model as the classifier and extract the vector before the model’s output
as the feature representation h(xi) for each sample. It is important to note that before using
this feature vector, we apply a stop-gradient operation; this is because we only use H(x) as
the sample’s feature during forward propagation and do not want gradients to flow back
to the classifier during backward propagation. Additionally, we embed the sample’s label
to obtain the label-embedding vector Yemb(yi). This label-embedding method is commonly
used in the domain of biased data [26,40]. We concatenate the sample feature H(x) with Yemb,
aiming to preserve the original attributes that can represent the sample’s information. The
concatenated sample features are fed as inputs to the subsequent linear layer with a tahh
activation function. On the other hand, we pass Ii through a fully connected layer with a Tanh
activation function. By summing the input of this layer and the concatenated sample features,
we obtain a vector that fully incorporates the sample’s semantic information and has high
discriminability among samples. We refer to this vector as the discriminative feature DFi:

DF(H(x), Yemb, Ii) = concat(h(xi, Yemb(yi)) + Dense(Ii) (7)

3.4. The Meta-Loss Reweighting Network (MLRNet) with Discriminative Features (DF)

MLRNet takes the discriminative features as inputs. Therefore, the parameter update
Equations (4) and (6) of the model can be rewritten as follows:

ω̂(t) = ω(t) − α
1
n

V
(

DF
(

H(x), Yemb, Ii

)
; θ(t)

) ∂

∂ω

(
Ltrain(ω)|ω(t)

)
(8)

ω(t+1) = ω(t) − α
1
n

V
(

DF
(

H(x), Yemb, Ii

)
; θ(t+1)

) ∂

∂ω

(
Ltrain(ω)|ω(t)

)
(9)

To summarize, in the second stage, guided by a small amount of unbiased data, the classifier
and the meta-net are jointly optimized. After training the classifier for a certain number of
iterations, we use the meta-model to update the classifier’s parameters to obtain suboptimal
parameters based on Equation (8). Next, we update and obtain the optimal upper-level
parameters from the meta-set by using Equation (5). Finally, using Equation (9) on the
biased dataset, we obtain the optimal lower-level parameters, completing the bi-level
optimization for both the main model and the weight net. The entire training process
is illustrated in Figure 2, and the parameter update algorithms for both the classifier
and the meta-model are detailed in Algorithm 1. The introduction of discriminative
features makes the model more sensitive to the types of data bias, thereby allocating more
reasonable weights to biased training data that simultaneously contain corrupted labels
and imbalanced classes.
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Figure 2. The training process of MLRNet. In the depicted diagram, the green-colored blocks
represent the backbone network, serving as the classifier for the entire model. The blue-colored
blocks represent the meta-model, MLRNet, with its network structure outlined at Figure 3. Within
the black-bordered area in the diagram, we illustrate the process of optimizing and updating the
meta-network parameters. The arrows in the diagram denote the flow of data, although, due to the
complexity of the diagram, the three inputs to MLRNet are not explicitly depicted.

(a) Classifier structure. (b) Meta-model structure of MW-Net (left) and MLRNet (right).

Figure 3. The structure of classifier and meta-net. (a) illustrates the network architecture of the
classifier (Bert-base), where N represents the number of layers in the Bert attention layers. (b) depicts
the meta-net structures of MW-Net and MLRNet, respectively.

Algorithm 1: The MLRNet Training Algorithm
Input: Training set Dtrain, meta-data set Dmeta, multiple loss values Ii , attention features H(x), sample

label embedding vectors Yemb, batch size n and m, maximum iterations T.
Output: Classifier network parameter ω(T).
Initialize classifier network parameter ω(0) and Meta-Weight-Net parameter θ(0).
for t = 0 to T− 1 do
{xi , yi}n

i=1 ← SampleMiniBatch(Dtrain, n).
{xi , yi}m

j=1 ← SampleMiniBatch(Dmeta, m).
Compute the discriminative features DFi using Equation (7).
Compute the classifier parameters ω̂(t) at time step t using Equation (8).
Update θ(t+1) using Equation (5).
Update ω(t+1) using Equation (9).

end
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4. Experiments

To evaluate the proposed algorithm’s performance, we conduct experiments on bench-
mark datasets in both English and Chinese. These datasets comprise both synthetic and
real-world biased datasets, allowing us to assess the algorithm’s generalizability in various
scenarios. We compared the algorithm against existing methods under different imbalance
factors and noise levels to gauge its effectiveness.

4.1. Datasets

AG News: This is a large-scale multi-class text classification benchmark dataset
containing 496,835 news articles from over 2000 different news sources. Following the work
of [41], we focused on the four classes with the most samples and used the article titles along
with their corresponding descriptions. In the training set, each class has 30,000 samples,
while in the test set, each class has 1900 samples. For fair comparison (MLC), we randomly
selected 100 samples from each class to form a clean and unbiased meta-dataset.

CLUE: A Chinese language understanding evaluation benchmark [42]. For our ex-
periments, we selected two datasets from the classification tasks, TNEWS and IFLYTEK.
TNEWS is a dataset that contains 73,360 news headlines for short text classification. It
covers 15 categories, and the training, validation, and test sets consist of 53.3 k, 10 k, and
10 k samples, respectively. IFLYTEK is a dataset that includes 17,332 app descriptions for
long text classification. It has 119 categories, and the dataset is split into 12.1 k, 2.6 k, and
2.6 k samples for training, validation, and test sets, respectively.

Real-World Noise: DataCLUE is a benchmark that replaces the traditional model-
centric approach with a data-centric approach for Chinese text classification [43]. We
used the CIC Electronic Commerce 118-classification dataset from DataCLUE because it
contains a high proportion of mislabeled data and a large number of label categories with
certain imbalances in the label distribution. This dataset is used as a real-world biased
dataset. The data are split into 10,000 samples for training, 2000 samples for validation, and
2000 samples for the test set. Notably, more than 1/3 of the training set and more than 1/5
of the validation set have mislabeled data, while the test set has ground-truth labels with
an accuracy exceeding 95%.

It is worth noting that AG News is a large-scale dataset without biased data, but the
other three datasets, THNEWS, IFLYTEK, CIC, are all naturally biased and have smaller
scales than AG NEWS. Therefore, we additionally set the bias for the AG News dataset
and experimentally verified the performance of our method on the large-scale dataset
under different bias combinations. Thus, we constructed a biased training set for the AG
news dataset using the two types of bias settings mentioned in Section 4.2 and conducted
experiments on it.

4.2. Bias Setup

Class Imbalance: To create a class-imbalanced dataset, we gradually reduced the
number of samples for each class using an exponential function n = niµ

i, where i is the
index of the class, ni is the original number of samples for each class, and µ ∈ (0, 1). The
imbalance level of the dataset is defined by an imbalance factor, which is the ratio of the
number of training samples in the largest class to the number of training samples in the
smallest class. For example, when the imbalance factor is 100, assuming the class with the
most samples has 1200 samples, the class with the fewest samples contains only 12 samples.

Label Noise: We used two commonly used methods to introduce label noise: uniform
noise and flipping noise. Both methods change the label of a sample to another label with a
probability of noise level p.

UNIFORM: Suppose the dataset contains C classes. In the uniform noise setting, the
sample’s label is preserved with a probability of 1− p. The label is randomly corrupted to
other labels with equal probability p

C for each class. The UNIFORM noise matrix is defined
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as follows: for each element aij in the matrix, it represents the probability that the label
with index i is corrupted to the label with index j.

corrupted matrix =



1− p + p
C

p
C . . . . . . p

C
...

...
...

...
...

p
C . . . 1− p + p

C . . . p
C

...
...

...
...

...
p
C . . . . . . p

C 1− p + p
C


FLIP: In the FLIP noise setting, we also assume a dataset with C classes. Similar

to the uniform noise, the label is preserved with a probability of 1− p. However, with
a probability of p, the label is corrupted to one of the remaining C − 1 classes specified
randomly. For example, for the label with index 0, the FLIP noise matrix may look like
[1− p 0 p . . . 0]. Due to its randomness, the complete FLIP noise matrix is not
provided here.

4.3. Hyperparameter Configuration for the MLRNet

We maintained a consistent configuration similar to MLC by setting the dimensionality
of the attention features extracted by the classifier to 768. Simultaneously, we established
the size of the label embedding layer as (C, 128), where C represents the number of classes
in the dataset. We then processed Ii through three layers of Tanh activation functions,
resulting in an output dimensionality equivalent to that of the discriminative features.

Given that attention features are concatenated with label embedding vectors, the
concatenated representation subsequently passes through two layers of Tanh activation
functions. The input dimensionality here is the sum of the feature dimension and the label
embedding dimension, while the output dimension matches that of the discriminative
features. Summation is performed to obtain the discriminative features DFi.

Following this, a three-layer feedforward network with Tanh activation functions is
employed, which is followed by a final layer with a sigmoid activation function. This
ensures that the computed weights fall within the [0, 1] range. The structural visualization
of this model can be referenced in Figure 3.

4.4. Implement Details

AG News: We constructed datasets with different bias proportions by artificially
reducing the number of samples in each category and corrupting the labels with noise
using the noise matrices. The model was trained for 10 epochs on an NVIDIA RTX A5000
GPU. We utilized the pre-trained BERT-base-uncased model as the backbone network with
a batch size of 30. The learning rate for the classifier was set to 1 × 10−5 and we set the
random seed to 1 to ensure the results are replicable in multiple runs.

Other datasets: For fairness, for Chinese datasets such as IFLYTEK, TNEWS and CIC,
we used different models as classifiers and conducted different experiments on each dataset.
Following previous work [42,43], we utilized the pre-trained RoBERTa-l3 model as the
backbone network with a batch size of 16. This model was trained for 6 epochs on an
NVIDIA RTX A5000 GPU. The learning rate for the classifier was set to 2 × 10−5, and we
set the random seed to 42 to ensure the results are replicable in multiple runs.

For the CIC dataset, [43] used Macro-F1 as the primary evaluation metric. In this
paper, we use accuracy as the evaluation metric for the experimental results of all English
and Chinese datasets, which is the percentage of the number of correctly predicted sam-
ples divided by the total number of samples by the model. To maintain consistency for
comparison, we adopted the same hyperparameter settings as [43].

It is worth noting that in today’s prevalent pre-training models, such as BERT, the
Post-Norm structure can lead to the problem of gradient vanishing during backpropagation,
especially in deeper layers [44,45]. However, this seems to align with the original design
intention of pre-trained models, aiming to preserve the effectiveness of pre-trained layers



Appl. Sci. 2024, 14, 164 10 of 15

as much as possible. To address this, we used the Adam optimizer for training, and its
warm-up mechanism allowed the model to start with a smaller learning rate to familiarize
itself with the overall data distribution. For the same dataset, each model was trained with
the same number of warm-up steps and epochs.

4.5. Comparison Method

Due to factors such as scale, manual construction, and language differences, AG news
is a large-scale English dataset without biased data, while the other datasets are small-scale
biased Chinese datasets. Therefore, we use the state-of-the-art comparison methods of the
current dataset for comparison.

For the AG News dataset, we conducted experiments with different setting of bias,
which included cases of extreme class imbalance and extreme label noise. For example, in
Table 1, an imbalance factor of 200 means that the class with the highest number of samples
has 200 times the number of samples compared to the class with the lowest number. The
main comparison was made with two SOTA methods: [36] used meta-learning for sample
reweighting (referred to as MW-Net), and [26] used meta-learning for label correction
(referred to as MLC). The label correction model represented by MLC performs poorly on
high class imbalance, so we conducted additional experiments under complete label noise
settings. The values in Table 2 represent the average accuracy of 10 noise levels for each of
the two bias construction methods (UNIFORM and FLIP); for example, UNIFORM noise
level 0.2 and FLIP noise level 0.8 indicates whether to use UNIFORM or FLIP to construct
noise, and 20% or 80% of sample labels are replaced with noisy labels. GLC [5] and MLC
are the best models for handling label noise in weakly supervised label correction models.

Table 2. Mean accuracies on AG News under two noise types and 10 noise levels.

Method Bert-Base MW-Net GLC MLC MLRNet (Ours)

Accuracy(%) 74.65 75.91 83.88 85.27 85.41
The best results are highlighted in bold.

Result on the Chinese Benchmark Datasets

We further evaluated our approach on the Chinese benchmark datasets, and the results
are presented in Table 3. The experimental outcomes affirm that our methodology also
yields commendable results on the Chinese dataset, thus underscoring its versatility and
efficacy across diverse tasks.

Table 3. Performance comparisons on Chinese benchmark datasets.

Method RoBERTa-l3 Bert-wwm-ext RoBERTa-wwm-ext MW-Net MLRNet (Ours)

THNEWS 55.43 56.84 56.94 57.03 59.30
IFLYTEK 58.67 59.43 60.31 59.74 61.45

CIC 84.45 84.90 84.70 84.69 85.35
The best results are highlighted in bold.

For other Chinese benchmark datasets, we also follow the work of previous re-
searchers [42,43] and use their baseline for comparison, such as RoBERTa-l3 [39], Bert-
wwm-ext [46] and RoBERTa-wwm-ext [46]. BERT-WWM is the first pre-training scheme
designed for the Chinese language, which uses a whole word mask (WWM) strategy based
on Chinese words. Compared to individual Chinese character-based masks, word-based
masks enable the model to learn more semantic information. BERT-wwm-ext adopts the
same model structure as BERT-wwm, consisting of 12 layers of bert layers. In fact, it is
able to increase the training dataset and training steps to improve the effect. RoBERTa
changed the pre-training strategy and removed the Next Sentence Prediction (NSP) task; it
is trained with dynamic masking. Thus, RoBERTa-wwm-ext is a Roberta model that uses
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the WWM strategy and increases the training dataset and training steps. RoBERTa-l3 is a
RoBERTa-wwm-ext model but with three Bert layers.

In addition, MW-Net [36], as the state-of-the-art meta-learning reweighting method
with strong universality and robustness, runs through all comparison methods.

4.6. Experiments Results and Analysis
4.6.1. Results on the English Benchmark Dataset

We conducted a comparative analysis of model performance on the AG News dataset
across various imbalance factors and noise levels. The experimental results presented
in Table 1 demonstrate that when utilizing Bert-base as the backbone network, MLRNet
consistently exhibits robust performance across most settings. It is noteworthy that in
this context, the noise labels were generated using the UNIFORM method. Importantly,
when the noise level is set to 0, the task effectively transforms into a single-class imbalance
problem. Similarly, when the imbalance factor is set to 1, it becomes a single-class label cor-
ruption problem. The observations reveal that concerning class imbalance, as the imbalance
factor gradually increases, MWN outperforms other models, while MLC, functioning as a
label correction model, demonstrates relatively weaker performance. Conversely, in terms
of label corruption, MLC outperforms MW-Net. Notably, MLRNet consistently achieves
favorable results particularly in scenarios characterized by high class imbalance and noise
levels.

Furthermore, we investigated two methods for constructing label noise. The values in
Table 2 represent the average results obtained from 20 (2 × 10) different settings with each
method (UNIFORM and FLIP) comprising 10 noise levels. Each configuration was run
five times to ensure robustness. MLRNet demonstrated robust performance even under
extreme label noise conditions.

4.6.2. Ablation Study and Analysis

In order to explore the versatility of MLRNet across different backbone networks, we
substituted the backbone network with Bert-base-3l, which comprises only three layers
of attention layers, and conducted further experiments on the AG News dataset. We
configured imbalance factors for bias data types as [1, 10, 20], employed label noise of the
UNIFORM type, and varied noise levels within the range [0.0, 0.2, 0.4, 0.6]. Building upon
these settings, we conducted a detailed investigation into our methodology to ascertain its
adaptability to diverse bias scenarios. The outcomes of these experiments are presented in
Table 4.

Table 4. Acuracy of our model with Bert-base-l3 on AG News.

Imbalance-Ratio 10 20

Noise-Rate 0.2 0.4 0.6 0.2 0.4 0.6

Bert-base 89.41 88.77 87.43 87.53 86.18 84.88
MW-Net 90.26 89.62 88.36 88.65 88.12 86.71

MLRNet (Ours) 91.23 90.18 88.82 89.77 89.71 88.39
The best results are highlighted in bold.

Effects of the number of Meta-Samples. Given the inherent errors in data collection
and the substantial cost associated with expertly annotating unbiased datasets, we sys-
tematically varied the quantity of meta-samples during training to further validate the
robustness of our method. As delineated in Table 5, our approach demonstrates noteworthy
performance, even when the number of meta-samples per class is as low as 10, resulting in a
notable improvement of 1.24% (imbalance factor set at 20, noise level at 0.4, and DF feature
dimensionality at 128). Interestingly, as the quantity of meta-samples per class gradually
increases, this improvement becomes even more pronounced. It is worth noting, however,
that when the number of meta-samples per class reaches 500, there is a decline in accuracy,
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as illustrated in Figure 4. We attribute this phenomenon to the fact that an excessively large
meta-dataset exacerbates the bias within the training set, ultimately leading to a decrease
in accuracy. Hence, we emphasize the importance of an appropriately sized meta-dataset
in achieving optimal results.

Table 5. Accuracy under varying numbers of meta-samples on AG News.

Method Bert-Base MLRNet (Ours) MW-Net

Num - 10 20 50 100 200 500 200

Accuracy (%) 86.18 87.11 87.17 87.25 88.68 89.71 88.80 88.12
The best results are highlighted in bold.
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Figure 4. Impact of meta-samples per-class.

Effects of discriminative feature dimensionality. Given that the dimensionality of
discriminative features directly impacts the computational workload and training speed of
the meta-model, we conducted experiments by adjusting the dimensionality of discrimina-
tive feature embeddings. The results are presented in Table 6 (imbalance factor set at 20,
noise level at 0.4, and 200 meta-samples per class). Concurrently, as evident from Figure 5,
it is apparent that with an increase in DF dimensionality, the average accuracy steadily
improves, underscoring the pivotal role of discriminative features. However, the escalation
in DF dimensionality also leads to a substantial increase in model parameters, resulting in
extended training times and heightened training costs. Consequently, taking into account
factors both performance and training time, we opted for a DF dimensionality of 128.

Table 6. Accuracy under varying dimensionality of DF on AG News.

DF Dimensionality 32 64 128 256 768

Accuracy (%) 88.50 88.36 89.71 90.04 90.35
The best results are highlighted in bold.
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Figure 5. Impact of DF dimensionality.
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5. Conclusions and Future Work

This paper introduces a novel MLRNet meta-module capable of handling highly biased
datasets, which can be applied to various tasks to enhance their performance. It leverages
the evolving trends in sample loss values to provide valuable insights for distinguishing
different biased samples. Within MLRNet, we propose a meta-loss reweighting network
structure that incorporates attention features. We introduce the concept of discriminative
features, employing a two-stage training strategy to pre-collect multiple loss variation
values for each sample and fuse them with sample feature vectors extracted through
self-attention layers. This enhances the discriminative capability of biased data samples.
Leveraging meta-learning principles, we train the entire model to assign more reasonable
weights to biased samples. Our experimental results on publicly available datasets in both
English and Chinese demonstrate the practicality of our approach, particularly in scenarios
where dataset is highly biased.

It is important to note that our experiments have been primarily conducted in the
domain of text classification. Our future work will explore research in the field of image
recognition. However, the meta-learning ideas and dynamic sample weighting methods
provided by MLRNet may not be limited to text and image classification. Its architecture
and principles may be applicable to other fields, such as speech recognition, medical image
analysis, and financial data mining, especially when there is significant bias in the dataset.
In the future, it may be used to improve the robustness of models in real-world data
and help develop models that are more adaptable to real-world diversity. With data bias
becoming a common problem in machine learning, the introduction of MLRNet marks
a beneficial exploration of this challenge. Future research may further explore model
optimization methods under different types of biases as well as their applications in a
wider range of fields.

Author Contributions: Methodology, H.Y.; Writing—original draft, H.Y.; Writing—review and
editing, H.Y. and X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no funding.

Data Availability Statement: The AG News dataset can be found from http://groups.di.unipi.it/
~gulli/AG_corpus_of_news_articles.html accessed on 25 March 2023. The THNEWS and IFLYTEK
datasets are openly available at https://doi.org/10.48550/arXiv.2004.05986 accessed on 3 July 2023.
The CIC dataset is openly available at https://doi.org/10.48550/arXiv.2111.08647 accessed on 3
July 2023.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ren, M.; Zeng, W.; Yang, B.; Urtasun, R. Learning to reweight examples for robust deep learning. In Proceedings of the

International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 4334–4343.
2. Gong, R.; Qin, X.; Ran, W. Prompt-Based Graph Convolution Adversarial Meta-Learning for Few-Shot Text Classification. Appl.

Sci. 2023, 13, 9093. [CrossRef]
3. He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284.
4. Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding deep learning (still) requires rethinking generalization.

Commun. ACM 2021, 64, 107–115. [CrossRef]
5. Hendrycks, D.; Mazeika, M.; Wilson, D.; Gimpel, K. Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe

Noise. arXiv 2018, arXiv:1802.05300.
6. Reed, S.; Lee, H.; Anguelov, D.; Szegedy, C.; Erhan, D.; Rabinovich, A. Training deep neural networks on noisy labels with

bootstrapping. arXiv 2014, arXiv:1412.6596.
7. Kaya, M. Feature fusion-based ensemble CNN learning optimization for automated detection of pediatric pneumonia. Biomed.

Signal Process. Control. 2024, 87, 105472. [CrossRef]
8. Jiang, L.; Zhou, Z.; Leung, T.; Li, L.J.; Li, F.F. Mentornet: Learning data-driven curriculum for very deep neural networks on

corrupted labels. In Proceedings of the ICML 2018, Stockholm, Sweden, 10–15 July 2018.
9. Neshir, G.; Rauber, A.; Atnafu, S. Meta-Learner for Amharic Sentiment Classification. Appl. Sci. 2021, 11, 8489. [CrossRef]
10. Kumar, M.P.; Packer, B.; Koller, D. Self-Paced Learning for Latent Variable Models. In Proceedings of the International Conference

on Neural Information Processing Systems, Vancouver, BC, Canada, 6–9 December 2010.

 http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
 http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://doi.org/10.48550/arXiv.2004.05986
https://doi.org/10.48550/arXiv.2111.08647
http://doi.org/10.3390/app13169093
http://dx.doi.org/10.1145/3446776
http://dx.doi.org/10.1016/j.bspc.2023.105472
http://dx.doi.org/10.3390/app11188489


Appl. Sci. 2024, 14, 164 14 of 15

11. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell.
2017, 42, 318–327.

12. Wang, X.; Du, Y.; Chen, D.; Li, X.; Chen, X.; Fan, Y.; Xie, C.; Li, Y.; Liu, J. Improving Domain-Generalized Few-Shot Text
Classification with Multi-Level Distributional Signatures. Appl. Sci. 2023, 13, 1202. [CrossRef]

13. Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the
International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; pp. 1126–1135.

14. Jiang, S.; Li, J.; Wang, Y.; Huang, B.; Zhang, Z.; Xu, T. Delving into Sample Loss Curve to Embrace Noisy and Imbalanced Data.
Proc. AAAI Conf. Artif. Intell. 2022, 36, 7024–7032. [CrossRef]

15. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

16. Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning; Lecture Notes
in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005.

17. Georgios, D.; Fernando, B.; Felix, L. Improving imbalanced learning through a heuristic oversampling method based on k-means
and SMOTE. Inf. Ences 2018, 465, 1–20.

18. Liu, X.Y.; Wu, J.; Zhou, Z.H. Exploratory Undersampling for Class-Imbalance Learning. In Proceedings of the Systems, Man and
Cybernetics, San Antonio, TX, USA, 11–14 October 2009.

19. Wei, J.; Zou, K. EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks. arXiv 2019,
arXiv:1901.11196.

20. Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst.
Sci. 1997, 55, 119–139. [CrossRef]

21. Wang, Y.; Ramanan, D.; Hebert, M.H. Learning to model the tail. In Proceedings of the Neural Information Processing Systems,
Long Beach, CA, USA, 4–9 December 2017.

22. Mahajan, D.; Girshick, R.; Ramanathan, V.; He, K.; Paluri, M.; Li, Y.; Bharambe, A.; Van Der Maaten, L. Exploring the limits of
weakly supervised pretraining. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany,
8–14 September 2018; pp. 181–196.

23. Yang, Y.; Zha, K.; Chen, Y.; Wang, H.; Katabi, D. Delving into deep imbalanced regression. In Proceedings of the International
Conference on Machine Learning, Online, 18–24 July 2021; pp. 11842–11851.

24. Yao, Y.; Liu, T.; Han, B.; Gong, M.; Deng, J.; Niu, G.; Sugiyama, M. Dual t: Reducing estimation error for transition matrix in
label-noise learning. Adv. Neural Inf. Process. Syst. 2020, 33, 7260–7271.

25. Xia, X.; Liu, T.; Han, B.; Wang, N.; Gong, M.; Liu, H.; Niu, G.; Tao, D.; Sugiyama, M. Part-dependent label noise: Towards
instance-dependent label noise. Adv. Neural Inf. Process. Syst. 2020, 33, 7597–7610.

26. Zheng, G.; Awadallah, A.H.; Dumais, S. Meta Label Correction for Noisy Label Learning. Proc. AAAI Conf. Artif. Intell. 2021,
35, 11053–11061. [CrossRef]

27. Shu, J.; Xu, Z.; Meng, D. Small sample learning in big data era. arXiv 2018, arXiv:1808.04572.
28. Antoniou, A.; Edwards, H.; Storkey, A. How to train your MAML. arXiv 2018, arXiv:1810.09502.
29. Hospedales, T.; Antoniou, A.; Micaelli, P.; Storkey, A. Meta-learning in neural networks: A survey. IEEE Trans. Pattern Anal.

Mach. Intell. 2021, 44, 5149–5169. [CrossRef]
30. Lee, H.y.; Li, S.W.; Vu, N.T. Meta learning for natural language processing: A survey. arXiv 2022, arXiv:2205.01500.
31. Franceschi, L.; Frasconi, P.; Salzo, S.; Grazzi, R.; Pontil, M. Bilevel programming for hyperparameter optimization and

meta-learning. In Proceedings of the International Conference on Machine Learning, Stockhom, Sweden, 10–15 July 2018;
pp. 1568–1577.

32. Sinha, A.; Shaikh, V. Solving bilevel optimization problems using kriging approximations. IEEE Trans. Cybern. 2021, 52,
10639–10654. [CrossRef] [PubMed]

33. Svoboda, J.; Anoosheh, A.; Osendorfer, C.; Masci, J. Two-stage peer-regularized feature recombination for arbitrary image style
transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19
June 2020; pp. 13816–13825.

34. Zhao, Z.; Tang, P.; Zhao, L.; Zhang, Z. Few-shot object detection of remote sensing images via two-stage fine-tuning. IEEE Geosci.
Remote Sens. Lett. 2021, 19, 1–5. [CrossRef]

35. Valizadeh Aslani, T.; Shi, Y.; Wang, J.; Ren, P.; Zhang, Y.; Hu, M.; Zhao, L.; Liang, H. Two-stage fine-tuning: A novel strategy for
learning class-imbalanced data. arXiv 2022, arXiv:2207.10858.

36. Shu, J.; Xie, Q.; Yi, L.; Zhao, Q.; Zhou, S.; Xu, Z.; Meng, D. Meta-weight-net: Learning an explicit mapping for sample weighting.
arXiv 2019, arXiv:1902.07379.

37. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
arXiv 2017, arXiv:1706.03762.

38. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

39. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly
optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.

http://dx.doi.org/10.3390/app13021202
http://dx.doi.org/10.1609/aaai.v36i6.20661
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1609/aaai.v35i12.17319
http://dx.doi.org/10.1109/TPAMI.2021.3079209
http://dx.doi.org/10.1109/TCYB.2021.3061551
http://www.ncbi.nlm.nih.gov/pubmed/33750725
http://dx.doi.org/10.1109/LGRS.2021.3116858


Appl. Sci. 2024, 14, 164 15 of 15

40. Cao, K.; Chen, Y.; Lu, J.; Arechiga, N.; Gaidon, A.; Ma, T. Heteroskedastic and Imbalanced Deep Learning with Adaptive
Regularization. In Proceedings of the International Conference on Learning Representations, Virtual Event, Austria, 3–7
May 2021.

41. Zhang, X.; Zhao, J.; LeCun, Y. Character-level convolutional networks for text classification. arXiv 2015, arXiv:1509.01626.
42. Xu, L.; Hu, H.; Zhang, X.; Li, L.; Cao, C.; Li, Y.; Xu, Y.; Sun, K.; Yu, D.; Yu, C. CLUE: A Chinese language understanding evaluation

benchmark. arXiv 2020, arXiv:2004.05986.
43. Xu, L.; Liu, J.; Pan, X.; Lu, X.; Hou, X. Dataclue: A benchmark suite for data-centric nlp. arXiv 2021, arXiv:2111.08647.
44. Xiong, R.; Yang, Y.; He, D.; Zheng, K.; Zheng, S.; Xing, C.; Zhang, H.; Lan, Y.; Wang, L.; Liu, T. On layer normalization in the

transformer architecture. In Proceedings of the International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July
2020; pp. 10524–10533.

45. He, R.; Ravula, A.; Kanagal, B.; Ainslie, J. RealFormer: Transformer Likes Residual Attention. In Proceedings of the Findings of
the Association for Computational Linguistics: ACL-IJCNLP 2021, Online Event, 1–6 August 2021.

46. Cui, Y.; Che, W.; Liu, T.; Qin, B.; Yang, Z. Pre-training with whole word masking for chinese bert. IEEE/ACM Trans. Audio Speech
Lang. Process. 2021, 29, 3504–3514. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TASLP.2021.3124365

	Introduction
	Related Work
	Class Imbalance
	Corrupted Labels
	Meta-Learning Combined with Reweighting

	The Proposed Meta-Loss Reweighting Net Method
	Optimization Objective in Meta-Learning
	Bi-Level Optimization Parameter Update
	Discriminative Features
	The Meta-Loss Reweighting Network (MLRNet) with Discriminative Features (DF)

	Experiments
	Datasets
	Bias Setup
	Hyperparameter Configuration for the MLRNet
	Implement Details
	Comparison Method
	Experiments Results and Analysis
	Results on the English Benchmark Dataset
	Ablation Study and Analysis


	Conclusions and Future Work
	References

