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Abstract: As a link connecting the environmental perception system and the decision-making
system, accurate obstacle trajectory prediction provides a reliable guarantee of correct decision-
making by autonomous vehicles. Oriented toward a mixed human-driven and machine-driven traffic
environment, a vehicle trajectory prediction algorithm based on an encoding–decoding framework
composed of a multiple-attention mechanism is proposed. Firstly, a directed graph is used to describe
vehicle–vehicle motion dependencies. Then, by calculating the repulsive force between vehicles using
a priori edge information based on the artificial potential field theory, vehicle–vehicle interaction
coefficients are extracted via a graph attention mechanism (GAT). Subsequently, after concatenating
the vehicle–vehicle interaction feature with the encoded vehicle trajectory vectors, a spatio-temporal
attention mechanism is applied to determine the coupling relationship of hidden vectors. Finally,
the predicted trajectory is generated by a gated recurrent unit (GRU) decoder. The training and
evaluation of the proposed model were conducted on the NGSIM public dataset. The test results
demonstrated that compared with existing baseline models, our approach has fewer prediction errors
and better robustness. In addition, introducing artificial potential fields into the attention mechanism
causes the model to have better interpretability.

Keywords: trajectory prediction; encoding–decoding framework; vehicle–vehicle interaction; spatio-
temporal attention

1. Introduction

Correct decision-making and precise control are fundamental to the safety of au-
tonomous vehicles, which plays a vital role in their widespread adoption. The accurate
perception and prediction of the motion of surrounding obstacles greatly contribute to
autonomous vehicles making safe and comfortable decisions. However, it is still too early
to implement fully autonomous driving. Autonomous vehicles will remain under testing in
dynamic interactive scenarios of human-driven and machine-driven mixed traffic flow for
a long time. Due to differences in driving skills, driving styles, and degrees of autonomous
driving, predicting the future trajectories of surrounding vehicles and their drivers’ intents
is one of the major challenges for autonomous vehicles, which has become a research
hotspot in recent years.

Early vehicle motion prediction methods can be mainly divided into two categories,
namely physical models and behavioral models. Traditional physical models assume
that the motion trend of an object remains unchanged over a short period of time; these
models include the constant acceleration model, extended Kalman filter (EKF), etc. [1,2].
Behavioral models are generally based on statistical theory, using the Gaussian mixture
model [3] and hidden Markov processes [4] to estimate a driver’s intended behavior and a
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vehicle’s motion trends. Such methods are suitable for some simple scenarios, but have
poor long-term prediction performance when facing a complex environment.

Thanks to the rapid development of deep learning in recent years, it now achieves
excellent performance in the fields of object detection, pattern recognition, and behav-
ioral prediction owing to its strong feature extraction capabilities. For vehicle trajectory
prediction, since changes in the motion of vehicles or humans are continuous and reflect
significant temporal coupling characteristics, related networks such as recurrent neural
networks (RNNs) [5] and long short-term memory (LSTM) [6–9] are commonly adopted to
extract the temporal features of target trajectories. At the same time, with the continuous
enrichment of the autonomous driving dataset [10,11], its scene coverage has been grad-
ually improved, which also provides a strong support for model training. Furthermore,
benefiting nowadays from the decreasing cost of sensors and the gradual popularization
of V2X technology, autonomous vehicles can obtain richer environmental information.
In order to characterize potential spatio-temporal interactions in complex environments,
encoding–decoding frameworks based on a variety of aggregation modes have been widely
adopted, including the generative adversarial network (GAN) [12], graphic neural network
(GNN) [13], and convolutional neural network (CNN) [14]. However, the vast number
of spatio-temporal interactions contain a lot of redundant information. To more effec-
tively extract important features from a large amount of spatio-temporal information,
attention mechanisms based on encoding–decoding frameworks have become mainstream
approaches in recent years.

To improve predictive accuracy and interpretability, an encoding–decoding frame-
work that incorporates spatio-temporal information, allowing for a more comprehensive
extraction of potential interaction relationships between the target vehicle and surrounding
vehicles, is proposed in this paper. As shown in Figure 1, our approach contains three
modules. The vehicle–vehicle interaction module embeds vehicle motion states via a graph
message and extracts spatial interaction features using a graph attention mechanism (GAT).
The historical trajectory encoder adopts BiLSTM to extract temporal trajectory features and
combines them with vehicle–vehicle interaction coefficients to carry out spatio-temporal
information aggregation. The decoder module finally generates the predicted trajectory by
decoding the hidden variables.
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Figure 1. The encoding–decoding framework for vehicle trajectory prediction. 
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The remainder of the paper proceeds as follows. Section 2 is the literature review of
the related work. Section 3 gives the description of the vehicle trajectory problem and the
definition of the basic scenario parameters. Then, the encoding–decoding trajectory predic-
tion model considering vehicle–vehicle interaction is outlined in Section 4. The training
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process is presented and the prediction performance analyzed in Section 5. Section 6 draws
the conclusion for the whole paper.

2. Related Work

Conventional trajectory prediction methods mainly rely on kinematics and dynamics
models. The constant velocity (CV), constant acceleration (CA), and their combinations
were adopted in the early years of research [15]. Barrios et al. employed the Kalman
filter for vehicle trajectory prediction [16]. Considering model nonlinearity, Schubert
adopted the unscented Kalman filter in a constant-turn-rate model for better prediction
performance [17]. Other scholars attempted to analyze vehicle behavioral characteristics
from historical motion states. Inspired by the human driver’s visual system, Xia et al.
implemented a mixed Gaussian model combined with a hidden Markov model to derive
earlier lane-changing intentions of drivers by judging based on sudden changes in the speed
of the target vehicle [18]. Li et al. exploited multiple predictive features including historical
states of vehicles and the road structures, which were entered into a dynamic Bayesian
network to infer the probability of each maneuver of the target vehicle [19]. Such methods
are simple to compute. However, they mainly rely on the current motion information of
the target vehicle. Model uncertainties and changes in the driver behavior are not covered.
Furthermore, environmental interactions are also not considered. So, a physical model is
only suitable for short-term prediction. Although some other approaches [20–22] integrated
physical and behavioral models through multi-model interaction to enhance the prediction
accuracy, this still has insufficient reliability for long-term prediction, especially in complex
traffic environments.

The essence of vehicle trajectory prediction is the regression of time-series data. LSTM
has been subject to significant advances in sequence generation, meaning it has been
widely adopted for natural language processing, target tracking, and trajectory prediction
in recent years. Alahi proposed an LSTM-based trajectory aggregating method in which
they synthesized all the information through a pooling operation and applied a decoder
to generate predicted trajectories [7]. Other forms of LSTM incorporated with different
networks have also been utilized to better represent multi-object interactions. Gao incorpo-
rated the graph representation learning module into an LSTM encoder–decoder model in
order for it to precisely learn the spatial interactions between vehicles [8]. Sheng processed
spatio-temporal trajectory information through a combination of a GNN and CNN [14]. Li
applied graph convolutional blocks to represent the interactions of close objects [23]. Xu
et al. established a multi-scale heterogeneous network for varying numbers of moving
objects, and the prediction of targets was realized by decoding the hidden features [24]. Ce
et al. proposed an interaction-aware Kalman neural network (IaKNN)-based multi-layer
architecture to resolve a high-dimensional traffic environment [25]. To capture the impor-
tance of spatio-temporal coupling information more accurately and further enhance the
prediction performance, Messaoud applied a multi-head attention mechanism that encodes
the vehicle dynamics and category information, and they formulated a multimodal trajec-
tory prediction framework [26]. Mo presented a multi-vehicle trajectory prediction based
on establishing a heterogeneous edge-enhanced graph attention network describing the
multi-vehicle interaction mechanism and introducing a gate-based multi-objective selective
map sharing mechanism [13]. To extract feature information more efficiently, Li introduced
reinforcement learning into the graph attention mechanism in order to determine the rela-
tive significance of each node in continuous training interactions [27]. Some other forms of
attention mechanisms from different perspectives have also been adopted in similar studies,
which effectively improved the prediction performance [28–30]. Although the attention
mechanism has good performance in selecting the important spatio-temporal information,
most of the existing studies have adopted the generalized attention mechanism for vehicle
trajectory prediction, which directly concatenates or produces a weighted sum of the node
features to obtain the attention coefficients, while failing to introduce evaluation indexes



Appl. Sci. 2024, 14, 161 4 of 16

that characterize the interaction risk in the actual driving scenario, which results in poor
interpretability of the prediction model.

To tackle the above limitations, an attention-based vehicle trajectory prediction model
considering multi-vehicle interaction is proposed in this paper. The main contributions are
as follows.

The multi-vehicle motion features are extracted via graph messaging embedding
and the GAT is employed to describe the vehicle–vehicle spatial interaction relationships.
In addition, these features are concatenated with temporal trajectory features via a self-
attention mechanism to achieve spatio-temporal information aggregation.

The potential field model is introduced as the prior information for the edge feature
when obtaining the vehicle–vehicle interaction feature, which differs from the traditional
model, calculating the edge weights by directly concatenating the node information.

3. Problem Description and Basic Definition

It is believed that in a complex traffic environment, the motion states of surrounding
vehicles have a significant impact on the future motion trends of the target vehicle. The
vehicles in the current and adjacent lanes that are closest to the target vehicle in front
and behind are defined as the surrounding vehicles. As shown in the left of Figure 1, the
blue car is the target vehicle Vo whose motion needs to be predicted. Yellow cars are the
surrounding vehicles, expressed as Vi, i ∈ N (Vo) = [F, R, LF, LR, RF, RR], where N (Vo)
represents the set of the surrounding vehicles. The encoder proposed in this paper consists
of two components, the vehicle–vehicle interaction module and trajectory encoding module.
For the vehicle–vehicle interaction module, the motion states of vehicles are primarily
focused. We define the motion states of the object vehicle and surrounding vehicles at
time t as st

o =
[
ut

o, vt
o, at

o
]

and st
i =

[
ut

i , vt
i , at

i
]
, where ut

o, vt
o, at

o are the longitudinal velocity,
lateral velocity, and longitudinal acceleration of the target vehicle and ut

i , vt
i , at

i are the
longitudinal velocity, lateral velocity, and longitudinal acceleration of the ith surrounding
vehicle, respectively. Similarly, for the trajectory encoding module, we define the trajectories
of the target vehicle and surrounding vehicles at time t as τt

o =
[
xt

o, yt
o
]

and τt
i =

[
xt

i , yt
i
]
,

where xt
o, yt

o, xt
i , yt

i represent the longitudinal and lateral positions of the target vehicle and
ith surrounding vehicle. Based on these, the historical observation can be formulated as

St
o = [st−tobs

o , st−tobs+1
o , · · · , st−1

o , st
o]

St
i = [st−tobs

i , st−tobs+1
i , · · · , st−1

i , st
i ]

Γt
o = [τ

t−tobs
o , τ

t−tobs+1
o , · · · , τt−1

o , τt
o ]

Γt
i = [τ

t−tobs
i , τ

t−tobs+1
i , · · · , τt−1

i , τt
i ]

(1)

where tobs is the observation horizon.
Note that the trajectories and motion states of all vehicles need to be unified in the

same coordinate. Here, we define the projection position on the centerline of the lane where
the object vehicle is located at time t as the origin point. The x-axis corresponds to the
tangent of that point on the lane’s centerline, and the y-axis is perpendicular to the x-axis.
The coordinate system is shown in Figure 2.
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Figure 2. The coordinate system for trajectory prediction.

4. The Vehicle Trajectory Prediction Model

To effectively aggregate the interaction features between the target vehicle and the
surrounding environment and thereby achieve more reliable trajectory prediction, an
attention-based encoding–decoding framework for trajectory prediction is proposed. As
illustrated in Figure 1, the whole framework can be divided into the vehicle–vehicle
interaction module, trajectory encoding module, and decoding module.

4.1. Vehicle–Vehicle Interaction Module

When vehicles move on highways or urban roads, there are significant interactions
between a target vehicle and surrounding obstacles, especially moving targets. Such inter-
actions are crucial for determining the future trajectory of the target vehicle. By observing
the historical motion states of traffic participants and extracting their temporal features,
we may obtain relationship coefficients between the target vehicle and the surrounding
vehicles via a graph attention mechanism.

A mixed traffic scenario consisting of multiple vehicles can be regarded as a multi-
agent system expressed as the directed graph G = (V , E), where V = (Vo, Vi), i ∈ N (Vo)
represents the nodes consisting of vehicles and E ⊂ V × V is the set of edges, denoting the
interactions between nodes. Note that the edge information only exists for neighboring
nodes, indicating that the motion of the vehicle is affected by the other vehicles nearby.
Firstly, based on the motion states of the object vehicle and surrounding vehicles, the node
information is encoded at each sampling time t as

mt
o = σ

(
Wo

v st
o
)

mt
i = σ

(
Wi

vst
i
) (2)

where σ(•) is the nonlinear activation function, and Wo
v and Wi

v are the weight matrixes for
the object vehicle and surrounding vehicles, respectively. Considering that the trajectory
and motion states of the vehicle are continuously time-varying parameters, the interac-
tions between the motion states of all surrounding vehicles and the target vehicle also
show temporal variations. Therefore, the LSTM is adopted here to process the historical
motion states of the target vehicle and the surrounding vehicles, to obtain their poten-
tial temporal features, which are represented as temporal motion feature vectors in the
following equations:

ht
o = LSTM

(
ht−1

o , mt
o; Wh

)
ht

i = LSTM
(

ht−1
i , mt

i ; Wh

) (3)

where ht
o and ht

i are the hidden feature vectors of the target and surrounding vehicles at
time t, while Wh is the LSTM encoder weight. Although different vehicles use separate
LSTM networks, they share the same network parameters.
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Based on the directed graph containing nodes and edges, the interaction features can
be extracted by aggregating the node and edge information, which effectively indicates
the vehicle–vehicle motion interaction mechanism. Here, the GAT is adopted to execute
aggregation operations on neighboring nodes for adaptive matching of different node
weights. The basic principle of GAT is shown in Figure 3.
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The general GAT architecture directly concatenates the node information to obtain
the spatial weight coefficients. However, the node feature only contains the vehicles’ own
motion information, and it is difficult to represent the relative vehicle motion relationships
via direct concatenation of each node. Moreover, it is impossible to explicitly express
the physical collision constraints between vehicles. In fact, there are a number of well-
established evaluation metrics that can effectively quantify the vehicle collision risk and
provide a reliable basis for vehicle decision-making systems. For example, the time to
collision (TTC) and time head way (THW) are widely adopted in adaptive cruise control
(ACC) and autonomous emergency braking (AEB) for longitudinal collision risk assessment,
which are also incorporated into the vehicle motion features to establish the cognitive model
of driver behavior [31].

In complex environments, vehicle motion trends are influenced by a combination of
multidimensional factors. The artificial potential field method is widely used to estab-
lish multi-agents’ interactions, which represents the combined effect of obstacles in the
environment on the target, as determined by adding the attractive and repulsive fields
together. As for vehicle–vehicle interaction, the repulsive field is the most suitable to
characterize the effect of surrounding vehicles on the target vehicle, which generates the
repulsive force need for the target vehicle to adjust its future motion trends in order to
avoid potential collision risks and ensure a safe driving space [32–34]. Thus, we adopt the
repulsive potential field as the priori information about the edge features. The repulsive
force between vehicles at time t can be presented as

Ft
ij = cije

−(ct
xijx

t
ij

2+ct
yijy

t
ij

2)

ct
xij =

1
ut

ij
+p

ct
yij =

1
Wj

(4)

where Ft
ij is the repulsive force on the ith vehicle generated by the jth vehicle. cij is the

scaling factor determined by the vehicle type. xt
ij,y

t
ij denote the relative longitudinal and
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lateral distances between the ith and the jth vehicles. ut
ij

is the relative longitudinal velocity.
Note that compared with longitudinal collision, lateral collision is more dangerous. Even if
the collision speed is low, it is still prone to causing dangerous conditions such as vehicle
side slip and spinning. Hence, we introduce ct

xij and ct
yij as the shape factors defining the

vehicle collision risk at different scales for the longitudinal and lateral directions. p is a
very small positive number and Wj is the width factor for the jth vehicle. For the partial
derivatives of Ft

ij with respect to xt
ij and yt

ij, the longitudinal and lateral repulsive force
gradients of the vehicle can be obtained as

gt
xij =

∂Ft
ij

∂xt
ij

gt
yij =

∂Ft
ij

∂yt
ij

(5)

After summing up the repulsive force gradients generated by the surrounding vehicles,
the total gradient of the ith vehicle is

gt
xi = ∑ gt

xij, j ∈ N (Vi)

gt
yi = ∑ gt

yij, j ∈ N (Vi)
(6)

When applying an artificial potential field, we regard the longitudinal and lateral
repulsive force gradients as the priori edge information and concatenate that with vehicles’
own motion feature parameters to form new node features, as

⌢
h

t

o =
(

ht
o

∥∥∥gt
xo

∥∥∥gt
yo

)
, j ∈ N (Vo)

⌢
h

t

i =
(

ht
i

∥∥∥gt
xi

∥∥∥gt
yi

)
, j ∈ N (Vi)

(7)

where ∥ defines the concatenation operation. Then, the attention coefficients between
individual nodes can be calculated as

αt
ij =

exp
(

LeakyReLU
(

aT
[

W
⌢
h

t

i

∥∥∥∥W
⌢
h

t

j

]))
∑k∈N (i) exp

(
LeakyReLU

(
aT

[
W

⌢
h

t

i

∥∥∥∥W
⌢
h

t

k

])) (8)

where αt
ij is the attention coefficient of node j to node i, W is the weight matrix of the

trainable linear transformation for each node, a is the weight vector of the single-layer
feed-forward neural network, and LeakyReLU(•) is the LeakyReLU activation function.
Subsequently, the weighted sum of node features is derived based on the graph attention
coefficients. The output of GAT can be reformulated as the new node feature

ĥt
i = σ

(
∑j∈N (i) αt

ijW
⌢
h

t

j

)
(9)

Equation (9) illustrates the vehicle motion features containing spatial vehicle–vehicle
interactions. Due to the continuity of vehicle motion, such features at different sampling
times are still temporally coupled. Thus, another LSTM network is utilized here to imple-
ment spatio-temporal feature fusion, denoted as

pt
o = LSTM

(
pt−1

o , ĥt
o; Wg

)
pt

i = LSTM
(

pt−1
i , ĥt

i ; Wg

) (10)
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Similar to Equation (3), each LSTM network shares the same learnable weight matrix
Wg. Finally, the multilayer perceptron (MLP) is used to aggregate the spatio-temporal
fusion features over the observation horizon, and the vehicle interaction fusion coefficients
can be obtained:

pt
o = MLP

(
pt−tobt

o , pt−tobt+1
o , · · · , pt−1

o , pt
o

)
pt

i = MLP
(

pt−tobt
i , pt−tobt+1

i , · · · , pt−1
i , pt

i

) (11)

4.2. Vehicle Historical Trajectory Encoder

In addition to the vehicle–vehicle motion interaction, the vehicle historical trajectory is
also very important and should not be ignored. Particularly when there are only a few traffic
participants around, its historical trajectory can reflect the drivers’ behavioral characteristics
to a certain extent, which can provide a valuable reference for future trajectory prediction.
Therefore, the historical trajectories of the target vehicle and the surrounding vehicles are
encoded here first.

Considering its spatio-temporal coupling properties, we used the BiLSTM network
to process the vehicle historical trajectory information. Different from the general LSTM
network stated as Equation (3), the BiLSTM network contains two layers of LSTM networks.
By adding an inverse LSTM layer to the LSTM network, BiLSTM can further deal with the
information from the future. The bi-directional characteristic of BiLSTM cannot only better
tackle the long-term dependency problem but also improves the prediction accuracy due
to the increased number of networks.

As shown in Figure 4, BiLSTM can be formulated as(
ht

f i, ct
f

)
= LSTM

(
ht−1

f i , τt
i ; ct−1

f

)
(

ht−tobs
bi , ct−tobs

b

)
= LSTM

(
ht−tobs+1

bi , τ
t−tobs
i ; ct−tobs+1

b

) (12)

where c f and cb denote the feedforward and backward network parameters. Considering
that the deep BiLSTM architecture is prone to lead optimization bottleneck and gradient
disappearance, a deep residual network is used to connect the inputs and outputs of
the BiLSTM layers. We sum the hidden variable with the input sequence and concate-
nate them for forward and backward networks. We can then obtain the output of the
BiLSTM network:

ht
pi =

(
ht

f i + τt
i

∥∥∥ht−tobs
bi + τ

t−tobs
i

)
(13)
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where fc  and bc  denote the feedforward and backward network parameters. Consid-
ering that the deep BiLSTM architecture is prone to lead optimization bottleneck and gra-
dient disappearance, a deep residual network is used to connect the inputs and outputs 

Figure 4. The diagram of BiLSTM.

After encoding the trajectory sequence, a large number of historical trajectory feature
vectors can be obtained. Subsequently, based on Equations (11) and (13), we carry out
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weighted aggregation of the trajectory feature with the vehicle–vehicle interaction feature
to generate a new feature vector rt

i as

rt
i = tan h

(
Wpht

pi + Wv pt
i

)
(14)

where Wp and Wv are weight matrixes.
Then, the dual-attention mechanism is adopted here for key information extraction.

The spatial attention mechanism is mainly used to handle the influences of different
surrounding vehicles on the target vehicle. For the vehicles’ trajectories, the interaction is
closely related to the relative distance. The closer obstacles always have more significant
influences on the target vehicle. Therefore, the cosine distance is used here to calculate the
correlation coefficients of encoded vectors between vehicles.

f (ro, ri) = 1 − r0 · ri
∥ro∥2 · ∥ri∥2

(15)

To ensure that the weight scales are the same, we normalize f (ro, ri) to obtain the
spatial attention coefficients.

si =
f (ro, ri)

∑
i∈N (Vo)

f (ro, ri)
(16)

By multiplying the hidden feature vectors and attention coefficients, the context vectors
including spatial correlation can be obtained as

rso = ∑
i∈N (Vo)

siri (17)

To determine the importance of the historical information at each sampling time, the
temporal attention mechanism is applied here. Due to the nonlinearity of the vehicle
model and the unpredictability of the driver behavioral characteristics, the relevance of the
temporal features cannot be characterized using quantitative measurements such as the
spatial attention mechanism. Thus, the inter-relationships of historical trajectory features
are described by the linear transformation as

g
(

rt
o, rk

o

)
= tan h

(
ri

oWtrk
o

)
, k ∈ [t − tobs, t − tobs + 1, . . . , t − 1] (18)

where Wt is the trainable weight. Then, we adopt the softmax function to normalize the
temporal attention distribution

αk =
exp

(
g
(

rt
o, rk

o

))
∑
k

exp
(

g
(
rt

o, rk
o
)) (19)

Similar to Equation (17), the context vectors including temporal correlation can be
obtained as

rto = ∑
k

αkrk
o (20)

Finally, we utilize a convolution pooling layer to integrate the encoded trajectory
feature, spatial attention, and temporal attention of the object vehicle, to derive the
overall feature

h̃t
o = W1rt

o + W2rso + W3rto (21)

4.3. Future Trajectory Prediction Decoder

Based on the aggregated feature vectors, the decoder predicts the future trajectory
of the vehicle. Considering that the training process involves learning from real-world
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trajectory datasets, and in order to generate diverse samples, we add noise to the aggregated
features to establish the initial hidden states of the decoder

nt
o = h̃t

o∥z (22)

where z is the noise satisfying z ∼ N(0, 1). Then, the GRU network is applied here for
trajectory decoding. At time t, we input the initial hidden state to the GRU obtain the
hidden state at the next moment and calculate the predicted trajectory via another nonlinear
activation function:

nt+1
o = GRU

(
nt

o, τt
o ; Wg

)
(23)

τ̂t+1
o = σ

(
nt+1

o

)
(24)

Subsequently, we re-input the predicted motion states obtained at each moment into
the GRU for iteration, to obtain the target vehicle trajectory in the predicted horizon:

ni
o = GRU

(
ni−1

o , τ̂t
o ; Wg

)
, i ∈

[
2 : tpre

]
(25)

τ̂i
o = σ

(
ni

o

)
, i ∈

[
2 : tpre

]
(26)

where tpre is the prediction horizon.

5. Experiment and Analyses
5.1. Training Details

The next-generation simulation (NGSIM) dataset, comprising vehicle trajectory data
from the US101 and I-180 highways collected through a network of synchronized digital
cameras [10], was adopted for model training in this study. The vehicle trajectory data
records are provided for every one-tenth of a second. This dataset contains a large number
of vehicle-following and lane-changing scenarios in dense traffic, which effectively reflects
interaction between vehicles and other traffic participants. For the prediction model
proposed in this paper, the vehicle historical data of the past 3 s is applied to predict the
vehicle trajectory for the next 5 s.

To quantitatively illustrate the accuracy and reliability of the prediction model pro-
posed in this paper, the root mean squared error (RMSE) metric between the predicted
position and ground truth trajectory position within the prediction range for the prediction
horizon is chosen as the evaluation index used for evaluation

LRMSE =

√√√√ 1
tpre

tpre

∑
1

∥∥∥τt
g − τ̂t

o

∥∥∥2

(27)

where τt
g means the position of the ground truth trajectory at time t, while τ̂t

o denotes the
position generated by the prediction model at time t.

5.2. Quantitative Comparison with Baselines

To reveal the advantage of the proposed model, some benchmark models are listed
here for quantitative comparison.

CV: single-vehicle trajectory prediction using a Kalman filter at a constant velocity [35].
IA-KNN: a multi-layer architecture of interaction-aware Kalman neural networks

(IaKNNs), which involves an interaction layer for resolving high-dimensional traffic envi-
ronmental observations and a filter layer for future trajectories’ estimation [26].

S-LSTM: sharing the information between multiple LSTMs to capture the interactions
within the neighborhood corresponding to the neighboring trajectories [11].

GR-LSTM: adopting an LSTM to handle the temporal sequence and a graph represen-
tation learning module to precisely represent the spatial interaction between vehicles [27].
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S-GAN: using a recurrent sequence-to-sequence model to observe the motion histories
and aggregate the information via a pooling mechanism. The plausible future trajectories
are predicted through adversarial training against a recurrent discriminator [28].

GRIP++: applying a graph to represent the interactions of neighboring objects with
several graph convolutional blocks to extract features, while an encoder–decoder LSTM
model is designed to make the predictions [29].

DAM: a dual attention mechanism is introduced for trajectory prediction by analyzing
the influence between the neighboring vehicle and target vehicle, which is combined with
the temporal hidden trajectory feature of the target vehicle to reduce the uncertainty of the
potential trajectory [17].

The experiment results and the comparisons between benchmarks are listed in Table 1.
The CV model has the worst prediction performance when compared with other algorithms
both for prediction error and its growth rate, which illustrates that vehicle nonlinear
characteristics, different driver behaviors, and environmental changes have a significant
effect on the future trajectory changes of vehicles. The rest of the learning-based prediction
algorithms enhanced the prediction performance by extracting hidden features from the
dataset. Note that the original S-LSTM was used for trajectory prediction of pedestrians.
Although it analyzed the relative interactions of different objects, it did not have satisfactory
performance for vehicle trajectory prediction, illustrating the significant differences between
pedestrian–pedestrian and vehicle–vehicle interaction. GR-LSTM, S-GAN, and DAM used
different methods to further explore the potential influence mechanism of spatio-temporal
features on the future trajectories of vehicles, all of which improved the prediction accuracy.
GRIP++ has the best prediction accuracy among the existing algorithms, revealing the
advantage of a graph for the representation of vehicle–vehicle interactions. Compared with
the aforementioned methods, our model not only represents the correlation of historical
positions of the object vehicle and the surrounding vehicles through the spatio-temporal
attention mechanism, but the relative dynamic motion interaction features between vehicles
are also extracted through GAT combined with the artificial potential field. Thus, it achieves
the lowest average RMSE of 1.45 m for the prediction trajectory, which improves the best
baseline (GRIP++) by 5.9%. For the entire prediction horizon, our method also has the
better performance at all prediction moments except for at 1 s. It is not all that worse than
the best method, and is acceptable for a vehicle decision system.

Table 1. Comparison of the prediction performances of different models.

Prediction
Horizons (s) 1 2 3 4 5 Average

CV 0.7 1.78 3.13 4.78 6.68 3.42
IA-KNN 0.62 1.03 1.97 2.93 4.12 2.13
S-LSTM 0.65 1.31 2.16 3.25 4.55 2.81

GR-LSTM 0.68 1.17 1.74 2.64 3.32 1.91
S-GAN 0.57 1.32 2.22 3.26 4.4 2.35
GRIP++ 0.38 0.89 1.45 2.14 2.94 1.56

DAM 0.5 1.11 1.78 2.69 3.93 2.0
Ours 0.42 0.79 1.32 2.03 2.64 1.45

Comparison +10.5% −11% −9% −5.1% −10.2% −5.9%

5.3. Prediction Performances under Different Scenarios

Vehicle lane-keeping and lane-changing maneuvers are the two most common sce-
narios in highway driving. To illustrate the prediction performance and demonstrate the
advantage of applying the potential field method to describe a priori information of vehicle–
vehicle interactions, we introduced another prediction model for comparison, which has the
same network architecture as the proposed model in this paper but without the potential
field module. Comparisons of the prediction performances for these two models under
these two key scenarios are shown in Figures 5 and 6.
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Figure 5 illustrates the prediction results for the lane-keeping maneuver. The gray
and blue dots denote the surrounding vehicles and the target vehicle, respectively. The
gray solid line is the historical trajectory of the target and surrounding vehicles. The pink
dashed line is the future ground truth trajectory. The purple solid line is the predicted
trajectory for the proposed model in this paper and the blue solid line is the predicted
trajectory generated by the prediction model without the potential field module. Figure 5a
is a congested traffic scenario. The vehicles are accelerating at a low initial speed. Note
that there are six moving obstacles around the target vehicle. Although the speed of the
front vehicle is slower and blocks the target vehicle, there are surrounding vehicles in both
the left and right adjacent lanes, which move side-by-side with the target vehicle within
the observation horizon. The free space for lane changing is insufficient. Therefore, both
prediction models judge that the vehicle will sustain lane keeping. The model without a
potential field module is not sensitive enough to predict the change in the vehicle speed,
which leads to a relatively large final distance error (FDE). In contrast, our approach
analyzes the collision threat of the front vehicle to the target vehicle more accurately,
enabling a better FDE performance. In Figure 5b, the traffic flow is still congested but
vehicles are moving steadily. During the observation horizon, no obvious acceleration,
deceleration, or lane-changing maneuver occurs, meaning the safety of the object vehicle
is not threatened. So, the vehicle trajectory prediction results are continual lane keeping
for both prediction models. Similar to Figure 5a, the proposed algorithm predicts the
future speed of the vehicle more accurately and the predicted trajectory is closer to the
ground truth.

In Figure 6a, there are three obstacle vehicles around the object vehicle. Due to its
slower speed, the target vehicle is gradually approaching the leading vehicle. But at this
time, the right lane is relatively empty in front, with no obstacles. And the historical
trajectory of the target vehicle has a tendency of moving to the right. So, it is predicted that
the vehicle will execute a lane change action. It is worth noting that due to the insufficient
extraction of vehicle–vehicle interaction features for the model without a potential field,
it judges that the vehicle will first continue to move according to the historical motion
trend, and implement the lane change operation later when it is too close to the preceding
vehicle. In comparison, the proposed model predicts the lane change trend of the target
vehicle earlier under the effect of the repulsive force, resulting in smoother prediction
trajectories and lower prediction errors. In Figure 6b, there is no obstacle in the current lane
of the target vehicle, and the other vehicles in the adjacent lanes have no lane-changing
tendencies, meaning they have no obvious impact on the target vehicle. The prediction of
the future trajectory for the target vehicle at this time relies more on its historical motion
state. When analyzing its historical trajectory, it is predicted that the target vehicle will
change lanes to the right. Note that the predicted trajectory is not directly offset to the
right lane, but keeps going straight for a period of time and then moves to the right.
Particularly for the proposed model in this paper, by precisely considering the potential
threat of the obstacle vehicle in front and to the right of the object vehicle at the predicted
moment, it generates a more conservative lane change trajectory that leaves a larger safety
distance than the model without a potential field module. It can be seen that both for the
vehicle lane-keeping and lane-changing scenarios, the predicted trajectories and the real
trajectories maintain a high degree of consistency. Therefore, it seems that by using the
prediction model proposed in this paper, autonomous vehicles can accurately predict the
future trajectories of surrounding vehicles in front or in adjacent lanes by capturing their
historical motion information, so as to make the best corresponding decisions and thus
ensure driving safety.

6. Conclusions

In this paper, an attention-based vehicle trajectory prediction architecture considering
multi-vehicle interactions has been proposed. Firstly, the motion interaction between the
target vehicle and surrounding vehicles is described as the directed graph and the GAT is
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adopted to extract the interaction features. Unlike the tradition method, which calculates
the edge attention weight by directly concatenating the node features, we introduce the
repulsive force between vehicles as a priori edge information to better represent the po-
tential collision risk. Then, the vehicle–vehicle interaction features are integrated into the
embedded trajectory vectors and the spatio-temporal attention mechanism is applied to
excavate the significance of hidden features, guiding the decoder to generate a plausible
future trajectory. The NGSIM public dataset was chosen for training and evaluation of the
proposed prediction model. The test results reveal that compared with the existing predic-
tion models, our method can reduce the prediction error and maintain good robustness
both for short and long prediction horizons. It is also demonstrated that even in a dense
traffic environment, the proposed model can accurately predict the future trajectory of the
objecti vehicle even when there are lane-keeping and lane-changing maneuvers, meaning it
provides reliable information for decision-making systems of autonomous vehicles.

In future work, we will expand the network by exploring richer interaction features,
that is, not only vehicle–vehicle interaction but also vehicle–pedestrian interaction in
dynamic driving environments, enabling better scenario adaptation and robustness of the
prediction model. In addition, map information has not yet been utilized for the prediction
model. With the gradual expansion of high-precision maps, we will incorporate map data
into the model to further improve its prediction accuracy.
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