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Abstract: Few-shot relation extraction (FSRE) constitutes a critical task in natural language processing
(NLP), involving learning relationship characteristics from limited instances to enable the accurate
classification of new relations. The existing research primarily concentrates on using prototype
networks for FSRE and enhancing their performance by incorporating external knowledge. However,
these methods disregard the potential interactions among different prototype networks, and each
prototype network can only learn and infer from its limited instances, which may limit the robustness
and reliability of the prototype representations. To tackle the concerns outlined above, this paper
introduces a novel prototype network called SACT (multi-head self-attention and contrastive-center
loss), aimed at obtaining more comprehensive and precise interaction information from other proto-
type networks to bolster the reliability of the prototype network. Firstly, SACT employs a multi-head
self-attention mechanism for capturing interaction information among different prototypes from
traditional prototype networks, reducing the noise introduced by unknown categories with a small
sample through information aggregation. Furthermore, SACT introduces a new loss function, the
contrastive–center loss function, aimed at tightly clustering samples from a similar relationship
category in the center of the feature space while dispersing samples from different relationship cate-
gories. Through extensive experiments on FSRE datasets, this paper demonstrates the outstanding
performance of SACT, providing strong evidence for the effectiveness and practicality of SACT.

Keywords: few-shot; relation extraction; prototype network; multi-head self-attention;
contrastive–center loss

1. Introduction

Relation extraction (RE) serves as a crucial subtask in natural language processing
(NLP) [1] and a key step in constructing Knowledge Graphs (KGs). Its objective is to extract
semantic relationships between entities from unstructured text. For example, from the sen-
tence “The hacker gained access to sensitive information by executing a media-less attack
on Android”, the relationship “gained access to” can be extracted, resulting in the triple
<Hacker, gained access to, sensitive information>. RE can extract numerous relationship in-
stances, which can be applied in downstream tasks, such as intelligent question-answering
systems [2], machine translation [3], information retrieval [4], recommendation systems [5],
and so on.

The existing RE methods commonly employ deep learning techniques and can be
categorized into supervised, semi-supervised, and unsupervised approaches. Extensive
research has shown that supervised RE methods achieve excellent results. However,
supervised methods need to utilize a substantial mass of high-quality manually labeled
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training data during the training phase, which entails significant human and time costs.
Meanwhile, supervised RE is hindered by the presence of annotation errors in the manually
labeled data, limiting its performance. To address the limitations of manually annotated
data, Mintz [6] proposed the use of a distant supervision algorithm to automatically
generate large-scale labeled data. However, utilizing labeled data generated by distant
supervision algorithms has certain drawbacks. It introduces a substantial amount of label
noise [7] and also results in a long-tail distribution of data [8], where only a few categories
have extremely limited labeled data available. While some established methods [9–11]
have effectively mitigated the issue of noisy data, they encounter a substantial decline in
performance when confronted with a limited quantity of training data.

To address the issue of data sparsity [12] caused by distant supervision for RE, re-
searchers have advocated for the adoption of few-shot learning (FSL) [13]. This approach
typically applies meta-learning [14] to tackle this task. Few-shot relation extraction (FSRE)
tasks involve the generalization of a limited number of labeled examples for the extrac-
tion of new relations. These tasks often employ the N-way-K-shot setup, as illustrated
in Figure 1. Recently, many studies have utilized metric learning within a meta-learning
framework to address FSRE, and prototype networks [15] have become a hot research
topic due to their simplicity and efficiency. While prototype networks have made sig-
nificant advancements, many studies have aimed to enhance the model’s performance
by incorporating external information for better prototype representations. For instance,
TDproto [16] leverages relation and entity description information to enhance prototype
networks. HCRP [17] employs relation–prototype contrastive learning to better leverage
relationship information and obtain diverse and discriminative prototype representations.
SimpleFSRE [18] improves model performance by concatenating two representations of
relationship information and directly incorporating them into the prototype representation.
PRM [19] combines a gating mechanism to utilize relationship description information, de-
termining the degree of preservation and an update of both the prototype and relationship
information. CBPM [20] corrects the prototype network by utilizing category information
from the query set and hierarchical information from relationship synonyms.

Figure 1. A demonstration of 3-way 1-shot scenario. Words with underscores signify entity mentions.
The model is trained on support set instances to predict the relationship between the two known
entities in the query set.
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However, these investigations often employ a simplistic strategy, which entails aver-
aging the sentence representations associated with each relation class in the support set
to obtain the prototype representations. Despite introducing relationship information to
constrain prototypes for better representations, there are limitations to consider: Firstly,
they overlook the interactivity among prototypes, which would constrain the model’s
access to global information within the data. Each prototype network merely learns from its
own limited instances, lacking a comprehensive perspective from other prototype networks.
This limitation may result in the model’s inability to capture potential correlations and
shared features among distinct prototypes, leading to a diminished expressive capability
of the prototype network. In practical applications, variations in unknown categories or
samples may not be confined to a single prototype network but rather involve interac-
tions among multiple prototype networks. Neglecting such interactions could render the
model less robust when confronted with unfamiliar situations, making generalization to
broader data distributions challenging. As shown in Figure 2, the interaction information
between different prototypes can provide strong supporting evidence for RE. Additionally,
when employing contrastive learning or graphs to constrain prototypes, there is limited
utilization of global information. Consequently, this model may exhibit poor classification
performance for outlier samples with low semantic similarity due to substantial differences
between their prototypes.

Figure 2. An illustration of the impact of prototype interaction information on query instances.
Gray spheres represent prototype networks, while spheres of other colors represent representations
of support instances. The green spheres with question marks represent representations of query
instances. (a) Originally, the representation of the query instance closely resembles the blue prototype.
(b) After interacting with information from different prototypes, the position of the query instance
representation changes, thereby modifying the prototypes.

To tackle the previously mentioned concerns, this paper presents a relationship–
prototype fusion method based on a multi-head self-attention network (SACT). SACT
leverages prototype interrelationships more effectively and combines them with relation-
ship description information to generate improved prototype representations. Specifically,
SACT introduces a prototype enhancement module that enhances prototype representa-
tions by adding a multi-head self-attention mechanism based on the relationships between
prototypes. This results in enriched prototype representations that are integrated with the
basic prototypes. Furthermore, SACT employs an adaptive space fusion technique to merge
relationship information with prototype representations, ultimately obtaining the final pro-
totype representations. This approach facilitates the acquisition of more comprehensive and
effective prototypes by the model. Additionally, SACT introduces a contrastive–center loss
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function, which simultaneously minimizes distances among the same class while increasing
distances between different classes, thereby improving the handling of outlier samples.

The following outline the principal contributions of this paper:
(1) This paper presents a novel prototype network with multi-head self-attention

enhancement with contrast–center loss, named SACT. This model leverages interaction
information among sufficient prototypes to enhance them. It employs an adaptive fusion
mechanism to integrate relationship information with the improved prototypes, thereby
enhancing the classification accuracy.

(2) This paper introduces a contrastive–center loss function that enhances intra-class
cohesion and inter-class separability by comparing the distances between query samples
and their respective class centers with the distances to non-corresponding class centers.

(3) Extensive experiments were conducted using two extensive FSRE datasets, FewRel
1.0 and FewRel 2.0, which yielded results surpassing those of other SOTA models. Further-
more, ablation experiments were carried out to showcase the efficacy of SACT.

2. Related Work
2.1. Relation Extraction

While traditional RE methods [21,22] have achieved notable results, they entail sub-
stantial investments in human and material resources and exhibit limited robustness. As
deep learning [23] is rapidly evolving, many researchers have made significant strides by
leveraging it for RE. Currently, supervised RE research heavily relies on various neural
network models, including CNNs [24,25], RNNs [26,27], LSTMs [28,29], and more. The
introduction and application of these methods have contributed to the advancement of the
field of RE. However, supervised RE methods necessitate a substantial deal of annotated
data, a resource-intensive and time-consuming endeavor that places a significant strain
on human resources. Building upon this, in 2009, Mintz was the pioneer in proposing the
utilization of distant supervision to address the aforementioned issue. Huang et al. [30] first
proposed the use of residual learning in conjunction with a multilayer CNN to solve the RE
problem. Zeng and Qin used adversarial learning [31], deep reinforcement learning [32],
and generative adversarial learning [33], respectively, to solve the remotely supervised
noise problem. While the aforementioned methods provide improved solutions to the noise
problem associated with distant supervision, addressing the long-tailed distribution of data
resulting from remote supervision algorithms remains an ongoing challenge.

2.2. Few-Shot Learning

FSL endeavors to explore how to train models using a limited quantity of data. Re-
search on FSL is generally categorized into three main approaches: FSL methods that focus
on enhancing the model structure, FSL methods that utilize metrics, and FSL methods that
employ optimization techniques.

Methods based on improving model structure do not require the use of meta-learning
and directly strengthen the model to address FSL problems. Santoro et al. [34] eliminated
the drawbacks of traditional models by improving the model’s memory mechanism, using
Neural Turing Machines (NTMs) to perform short-term memory and update long-term
memory, enabling rapid and accurate predictions for data that only appear once. Em-
ploying a meta-learning framework grounded in temporal convolution and soft attention,
Mishra et al. [35] facilitated the utilization of historical information and the precise localiza-
tion of required information segments. Ren et al. [36] combined incremental learning based
on attention guidance mechanisms with FSL, introducing a method called the attraction
mechanism that directs the model’s attention to features related to new classes, enabling
rapid adaptation to new categories.

In optimization-based FSL methods, Finn et al. [37] utilized a straightforward and
efficient task-agnostic algorithmic model. Parameters are acquired by executing gradient
descent on a collection of small tasks, allowing the current task to quickly converge with
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only a few iterations on the training set. Elsken et al. [38] proposed a method that fully
integrates the Neural Architecture Search (NAS) with gradient-based meta-learning.

Metric-based FSL methods learn the distances between different classes of samples and
have found widespread applications in FSL. Koch [39] and Vinyals [40] introduced Siamese
neural networks and matching networks for FSL, respectively. Snell et al. [41] made the
first attempt to solve the FSL problem using a prototype network. Prototype networks
create a prototype representation for each class, establishing a metric space for classification
by measuring the distance between the prototype vectors of all classes and query points in
the metric space. However, prototype networks have not been well explored in RE. The
research conducted in this study aims to address this gap by focusing on the information
interaction between prototypes. The objective of this work is to delve into the interactions
between prototypes and present a prototype refinement method that relies on a multi-head
self-attention mechanism. The aim is to better capture the interactions and information
flow among different prototypes.

2.3. Few-Shot Relation Extraction

FSRE endeavors to extract relationships among entities using a limited amount of
labeled data. Han et al. [42] played a pioneering role in creating FewRel 1.0, a compre-
hensive large-scale dataset for FSRE. This dataset provides various evaluation metrics for
comparing different FSRE models. However, both the training and validation sets originate
from Wikidata, leading to a lack of domain adaptability and affecting its generalization
performance. In response to this issue, Gao et al. [43] re-annotated a cross-domain test set
utilizing the FewRel 1.0 dataset as the foundation, making it more challenging for models to
transfer knowledge across different domains. Ye et al. [44] consider the information about
the matching of each query and support instances at local and instance levels, facilitating
instance classification in the query set based on relationships.

However, in FSRE, issues like dataset noise and feature sparsity can result in di-
minished model performance. To tackle these issues, Gao et al. [45] introduced a hybrid
attention mechanism to enhance the handling of instance tasks and address the issue
of feature sparsity, thereby adapting to the challenges of FSRE tasks. Han et al. [17] in-
vestigated the impact of task difficulty on model performance in few-shot tasks. Their
work introduced a combination of prototype networks and relationship prototype con-
trastive learning, providing an effective solution to address the difficulty of FSRE tasks.
Wang et al. [46] introduced a rule-based discriminative knowledge method to address the
prediction confusion issue in FSRE. This approach utilizes a logical perception reasoning
module and a distinctiveness discovery module to enhance prediction accuracy.

Furthermore, some researchers have attempted to introduce external knowledge
to enhance the accuracy of RE. Yang et al. [47] leveraged external knowledge bases to
extract inherent concepts of entities. They used a concept attention module to select
the entity concepts that are most semantically similar to the sentence and employed a
self-attention fusion module to combine them with entity-embedding vectors, enhancing
entity representations and improving the accuracy of RE. Peng et al. [48] introduced an
innovative method known as the Entity-Masked RE Contrastive Pre-training Framework.
This approach aims to leverage contextual information and entity type information for
RE by studying and analyzing the impact of contextual context and entity mentions on
RE performance. Dong et al. [49] improved the performance of RE by utilizing context
information and label-agnostic and label-aware knowledge provided by relation labels.
Although the previous model performed well, its ability to handle outlier samples in FSRE
tasks is limited. This paper adopts a contrastive–center loss function to improve the model’s
capability in managing outlier samples by enhancing both the clustering of similar samples
and the separation of dissimilar ones.
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3. Problem Formulation

In the context of FSRE, the conventional approach involves meta-learning, encompass-
ing two fundamental phases: meta-training and meta-testing. During the meta-learning
phase, the model acquires the ability to learn, and then during the meta-testing stage, it
leverages the knowledge acquired from the meta-training set to rapidly generalize to new
relation categories. This process is usually conducted on a per-task basis and follows the
N-way-K-shot setting. In each task, the training data are classified as two segments, the
support set S and the query set Q, with non-overlapping relation types between S and
Q. The meta-training stage includes an auxiliary dataset called Tbase, which contains a
diverse set of base classes for model training, and these base classes do not overlap with
the novel classes. During the meta-training stage, N relation categories are randomly
sampled from Tbase, with each category containing K instances, to construct the support set
S =

{
S i

j ∈ R2d, i = 1, 2, . . . ,N ; j = 1, 2, . . . ,K
}

. Then, a random selection of M instances
is drawn from the remaining instances within these N categories to create the query set
Q =

{
Ql ∈ R2d, l = 1, 2, . . . ,M

}
. Predicting the relations among instances within the

query set Q is the primary objective of this task. The model undergoes iterative training,
where the disparity between the anticipated labels within the query set Q and the actual
labels serves as informative feedback signals.

4. Methodology
4.1. Framework

In order to better leverage the interactive information among prototypes, we propose
a prototype network model for FSRE, termed multi-head self-attention and contrastive–
center loss (SACT). To enhance the representational power of the prototype network in
scenarios with only a limited number of support instances, we introduce a multi-head
self-attention mechanism, facilitating the utilization of the interaction information in each
prototype. This approach combines the relationship information and employs an adaptive
prototype space fusion technique to generate more enriched prototypes. Additionally, we
design a contrastive–center loss to assist the model in effectively aggregating samples from
the same category while distinguishing differences between different categories, enabling
the model to learn a more discriminative metric space.

In this section, we will provide a detailed exposition of the primary framework of the
proposed model, SACT, as illustrated in Figure 3. The framework comprises the following
modules: (1) Input: Initially, the sampled support set, query set, and relation information
are input into the sentence encoder. (2) Sentence Encoder: This is responsible for encoding
the input support and query sets into corresponding sentence representations. Simultane-
ously, the relationship information is transformed into relationship representations, and
their final representation is obtained through additive operations. (3) Prototype Enhance-
ment: By averaging the sentence representations for each relation class in the query set,
basic prototypes are obtained. These prototypes are then enhanced using a multi-head
self-attention mechanism to generate more expressive prototype representations. Finally,
an adaptive prototype fusion mechanism combines the representations of the relation-
ship information and enhanced prototypes to form the ultimate prototype representation.
(4) Contrastive–Center Loss: This module compels the prototype network to learn a more
discriminative metric space in the semantic domain. It introduces the contrastive–center
loss function, aiding the model in effectively aggregating samples from the same category
and distinguishing differences between the different categories. Subsequently, we will
delve into detailed explanations of the latter three components in the following sections.



Appl. Sci. 2024, 14, 103 7 of 22

Figure 3. The architecture of our proposed SACT for the FSRE task. SACT first introduces the
input relation information, support set, and query set into a BERT encoder to obtain the relationship
information representation in the upper part of the sentence encoder module and the sentence
representations in the lower part. Subsequently, the prototype network is further enhanced through
a multi-head self-attention mechanism and optimized using the contrast–center loss function. In
the diagram, relationship information is represented by triangles, the support set is denoted by
circles, circles with question marks represent the query set, and pentagrams symbolize prototype
representations.

4.2. Sentence Encoder

In this section, we will provide a detailed overview of the structure and functional-
ity of the sentence encoder. By introducing the sentence encoder, we encode the input
instances and relationship information into low-dimensional vector representations, laying
the foundation for subsequent processing and analysis. The encoder layer comprises two
primary components: (1) Sentence Representation: Utilizing a pre-trained language model
to encode each word in the input instances, we obtain the sentence representation. (2) Rela-
tionship Representation: By employing the encoder to represent relationship information,
we obtain two vector representations for the relationship. This process involves encoding
the relationship information to acquire a relationship-level representation and directly
concatenating them to form the final relationship representation.

4.2.1. Sentence Representations

The existing research utilizes various types of encoders, including CNN, RNN, LSTM,
and others, for the extraction of features from sentences, each with its own strengths and
limitations. CNNs can capture local features and semantic information in sentence feature
extraction to extract useful features from them, but there are limitations in processing long
text and entity context information. In contrast, RNNs can capture context information by
memorizing previous inputs and handle variable-length input sequences but process long
texts only in a forward manner. LSTMs, on the other hand, effectively capture bidirectional
dependency information in sequences, which is crucial for RE tasks. However, both RNNs
and LSTMs suffer from issues, like gradient vanishing and exploding.

With the advancement of pre-trained language models like Transformer and BERT [50],
they acquire richer semantic information through pre-training on extensive data to provide
more accurate and comprehensive representations for sentences in the support and query
sets. Compared to other encoders, the BERT encoder simultaneously trains bidirectional
language representations, extracting features for each word in the input sequence in parallel.
By leveraging contextual information from surrounding words during feature extraction,
BERT more effectively captures global context information. Therefore, this paper employs
BERT as the sentence encoder to encode sentences from the input S and Q. Specifically,
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the input sentences are preprocessed by tokenizing the sentences and splitting them into
individual tokens or words, each of which usually represents a word called tokens, thus
making the sentences easier to process by the model. On the basis of tokenization, [CLS] and
[SEP] tokens are appended to the commencement and termination of sentences, respectively,
to signify the start and finish of the sentence. Two pairs of special tokens, [e1] and [/e1]
for the subject entity, and [e2] and [/e2] for the object entity, are inserted before and after
the corresponding entities. For example, in the sentence “The hacker gained access to
sensitive information by executing a media-less attack on Android”, the given sentence
is processed as “[CLS] [e1] The hacker [/e1] gained access to [e2] sensitive information
[/e2] by executing a media-less attack on Android. [SEP]”. Next, this paper employs BERT
to encode the preprocessed sentences, obtaining vector representations for the sentences,
as illustrated in Figure 4. Subsequently, these vectors are concatenated to the positions
corresponding to “[e1]” and “[e2]” to acquire sentence representations that incorporate
entity information.

Figure 4. An example of sentence representation generated by the sentence encoder. It illustrates
how an input sentence is transformed into a numerical representation that can be utilized for fur-
ther processing.

4.2.2. Relation Representations

In the case of each piece of relation information, SACT concatenates the relation
name and relation description in the format of “Relation Name: Relation Description”.
This sequence is then input into the BERT encoder, and it is encoded to generate two
components of the relation representation: the [CLS] token embedding and the average
embedding of all the tokens. These components are denoted as

{
R1

i ∈ R2d; i = 1, 2, . . . , N
}

,{
R2

i ∈ R2d; i = 1, 2, . . . , N
}

, respectively. This paper concatenates the two components of

the relation representation directly, represented as R1
i and R2

i , to generate the final relation
representation. This concatenation is performed without introducing additional linear
layers or parameters, thereby preserving more of the original information, as shown in
Equation (1):

Rfinal
i = R1

i ⊕R2
i (1)

4.3. Prototype Enhancement Module

The prototype network creates a prototype representation for each instance and uti-
lizes the distance between the prototype vector and the query instances for classifying the
query set. Typically, a straightforward averaging of the representations of the support set
instances is used to obtain the prototype vector. However, this method overlooks effective
interaction information among the prototypes. Additionally, relationship information is
crucial for obtaining improved class prototypes. Therefore, to enhance the representa-
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tional capacity of the prototypes, we introduce a multi-head self-attention mechanism
and relationship information. By merging the relationship information with the enhanced
prototype representations, a more comprehensive and expressive prototype representation
is formed, providing stronger support for the classification tasks.

4.3.1. Basic Prototype

To obtain sentence representations for the support set, the support set is provided as
input to the sentence encoder. Following the conventional prototype network approach,
SACT simply averages the sentence representations of the support set to derive the basic
prototype pbasic

i , calculated as shown in Equation (2):

Pbasic
i =

1
|K|

K
∑

m=1
Γ(sm

i ) (2)

where Γ represents the sentence encoder, K denotes the total samples for the i-th relation
within M, Sm

i represents the embedding of the m-th support set for the i-th relation, and
pbasic

i represents the basic prototype of relation i.

4.3.2. Enhanced Prototype

In the prototype space, similar data points may be assigned to adjacent prototype
vectors, and there might be some correlation between these similar prototypes. However,
the basic prototypes obtained from Equation (2) overlook interactions between classes. To
explore the inherent relationships between the class prototypes, SACT introduces a multi-
head self-attention mechanism to consider the influence of different prototypes on each
other. Self-attention allows each prototype to focus on different regions in the embedding
space and gather information from other prototype vectors. The key idea behind multi-
head self-attention is to utilize multiple self-attention operators to simultaneously process
features from different subspaces. Each self-attention operator can capture different focal
points in the input sequence and assign distinct weights to each focal point. By employing
multiple self-attention operators, the model can concurrently focus on different parts of
the input and merge their features together to enhance the contextual information for local
features. This allows our model to better handle few-shot unknown categories and achieve
accurate classification when facing new query instances.

When the prototype network encounters FSRE, it may produce considerable noise for
classes with limited samples due to insufficient training. To mitigate the impact of noise
and enhance the expressiveness of the prototype network, SACT employs an information-
aggregation approach. Considering each prototype as a head of the self-attention mecha-
nism, we calculate the attention weights between each head and the others. This allows us
to obtain interaction information from different prototypes. Such interaction information
can be regarded as a form of global contextual information, aiding the model in better un-
derstanding the relationships and interactions between various prototypes. Consequently,
when dealing with unknown categories, the model can more effectively capture their asso-
ciations and common features. Finally, by aggregating the features from multiple heads, we
synthesize these rich interactive pieces of information to obtain a comprehensive prototype
representation. The prototype enhancement process, as shown in Figure 5, takes the basic
prototypes obtained from Equation (2) as input to a multi-head self-attention model. By
applying a linear transformation to the input prototype vectors, SACT obtains the query Q,
key K, and value V matrices as described in Equation (3):

Query = WQ × pbasic
i

Key = WK × pbasic
i

Value = WV × pbasic
i

(3)
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where WQ, WK, and WV are the learnable matrices in different linear transformations. Next,
SACT computes the correlation between query and key, which involves calculating the
attention scores represented by the sparse matrix αi,j using vector dot products:

αi,j = softmax

([
WQ × pi

]
×
[
WK × pj

]T

√
dk

)
(4)

where
√

dk is the dimension of the prototype vectors, and pi and pj are the basic prototypes
for the i-th and j-th classes, respectively. The basic prototypes are inputted into the self-
attention matrix to obtain the enhanced prototypes, and the basic prototypes are integrated
with the enhanced prototypes to obtain a more enriched prototype representation. The
enhanced prototypes penhanced

i are denoted as in Equation (5):

penhanced
i = pbasic

i + Wv × pi × αi,j (5)

Figure 5. Schematic diagram of the prototype enhancement process. The initial prototypes of N
categories are input into a multi-head self-attention mechanism to obtain enhanced prototypes. These
enhanced prototypes are then combined with the initial prototypes to form the final prototypes.

4.3.3. Final Prototype

To further enhance the expressiveness and discriminability of prototypes, SACT ad-
justs the positions of the prototypes by utilizing relation information to better represent
the features of the data. Inspired by adaptive prototype space fusion [51], SACT com-
bines the relation information with the enhanced prototypes to obtain the final prototype
representation, as shown in Equation (6):

pfinal
i = ε × penhanced

i + β ×Rfinal
i (6)

where ε and β are two learnable weights that depend on the importance of the relation
information and the prototype representation to the final prototype.

4.4. Contrastive–Center Loss

Neural networks employ a loss function to measure the discrepancy between the
model’s output and the ground truth. The model’s weights are then adjusted based on
this disparity to update the network. However, defining an appropriate loss function is
a challenging problem when tackling FSRE tasks where the goal is to generate separable
representations for new classes. This paper introduces a novel loss function, namely, the
contrastive–center loss function, designed to enhance the discriminability of samples from
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different relationship categories by encouraging both aggregation and dispersion in the
feature space. It aims to tightly cluster samples of the same relationship category in the
feature space while dispersing samples from different relationship categories, thereby
improving the model’s distinctiveness and classification performance. This enhancement
makes a significant contribution to achieving better relationship classification results with
the model.

The center loss function was initially introduced by Wen et al. [52] in 2016 to address
face recognition tasks. Unlike the traditional cross-entropy loss function, the center loss
function calculates the distance of each sample from its respective class center. It penalizes
the distance between the current sample’s feature vector and its assigned class center
vector during each forward pass, aiming to minimize the distance within the same category.
Equation (7) represents the distance in the center loss function:

Lcenter =
1
2

n

∑
i
∥si − cki∥2

2 (7)

where Lc represents the center loss. Si denotes the i-th training sample. ki represents
the label of Si. cki ∈ Rd signifies the feature center of the ki class’s deep feature in each
mini-batch, where d denotes the feature dimension. In the training of deep neural networks,
using a single loss function might not fully optimize the model. Therefore, Wen et al. [52]
combined softmax with center loss to train the network when addressing facial recognition
problems. The formula is as described in Equation (8):

L = Lso f tmax + λLcenter (8)

where L represents the final loss function of the network, Ls stands for softmax loss, and λ
is used to adjust the weighting between the two.

However, the center loss is primarily focused on adjusting the distances between
samples of the same class to bring them closer together, without considering the distances
between different classes. In this paper, using a prototype network to address FSRE, SACT
aims for not only the reduction in intra-class distances but also to enhance inter-class
distances, making the feature distributions between classes more discriminative. Merely
shifting feature vectors toward class centroids proves inadequate for this task. Therefore,
SACT combines the advantages of contrastive loss and center loss to propose a new loss
function, the contrastive–center loss function, as shown in Figure 6. Specifically, the training
samples are compared with their corresponding class centers and non-corresponding class
centers, penalizing the contrast between them. This encourages intra-class compactness
while promoting inter-class separability, as shown in Equation (9):

Lct−center =
1
2

m

∑
i=1

∥∥si − cyi

∥∥2
2(

∑k
j=1,j ̸=yi

∥∥si − cyi

∥∥2
2

)
+ δ

(9)

where Lct−center represents the contrastive–center loss function, and m denotes the amounts
of samples in a mini-batch. In the experiments conducted in this paper, a constant δ is
introduced to avoid division by zero. Specifically, the default value of δ was set to 1 in
this paper.

During the training process, the class centers cyi are continually updated in each
mini-batch. In contrast to the center loss, our approach induces a more discrete distribution
of class centers through the contrastive–center loss. When the distances between different
categories are too small, it can negatively impact the effectiveness of classification and
should be penalized. In this manner, the prototype network can better learn the similarity
relationships among the samples, clustering similar samples together to enhance the relia-
bility of the prototype network. By updating the class centers, the network is better able to
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learn the feature representations for each category, thereby improving the performance of
the classification task.

To obtain a more comprehensive and refined model optimization performance, SACT
combines these two loss functions, cross-entropy loss and contrastive–center loss, and
jointly trains the model to produce more discriminative feature representations and create
clearer class boundaries in the feature space, as shown in Equation (10):

L f inal = − log(pi) + γLct−center (10)

where pi stands for the probability of the query instance being part of class i, and γ serves
as a hyperparameter that regulates the weight allocation between the two loss functions
during training.

Figure 6. Diagram of the contrastive–center loss. In the upper-left corner, we have the basic prototype
representations. Through the influence of the center loss function, you can observe a significant
reduction in the distance between positive samples. After being affected by the contrastive loss
function, there is some increase in the distance between class centers and negative samples. However,
the contrast–center loss function used by SACT not only reduces the distance between positive
samples but also increases the distance between centers and negative samples.

5. Experimental Settings
5.1. Dataset

To validate the effectiveness of SACT, the authors of this paper followed previous
research and evaluated SACT on two commonly used FSRE datasets, FewRel 1.0 [42]
and FewRel 2.0 [43]. FewRel 1.0, made available by Tsinghua University, is an expansive
dataset designed for FSRE and is sourced from Wikipedia. It encompasses 100 distinct
relations, each with 700 annotated instances. The dataset comprises training, testing, and
validation subsets, featuring 65, 16, and 20 unique relations, respectively. Notably, there
is no overlap in the relations between the training, testing, and validation sets. Please be
aware that the validation set is not publicly accessible, but researchers can obtain the test
scores by submitting their models via official testing scripts. However, it is worth noting
that all the instances in the FewRel 1.0 dataset originate from a single domain’s corpus.
In real-world scenarios, data often span various domains such as medicine, education,
biology, and cybersecurity, each with distinct syntax and content. These differences can
potentially influence the performance of the model. To assess the performance of SACT in
cross-domain scenarios, this paper also utilizes the FewRel 2.0 dataset. FewRel 2.0 extends
upon FewRel 1.0 by including 25 additional relations from the biomedical domain, with
each relation consisting of 100 instances as its validation set. The details of the dataset are
provided in Table 1.

The authors of this paper evaluated the model’s accuracy in the following four FSL
task settings: 5-way-1-shot, 5-way-5-shot, 10-way-1-shot, and 10-way-5-shot.
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Table 1. Details of the FewRel 1.0 dataset.

Corpus Task #Relation #Entity #Sentences #Test

FewRel 1.0
Train 64 89,600 44,800 -

Validation 16 22,400 11,200 -
Test (unpublished) 20 28,000 14,000 10,000

FewRel 2.0 Validation 10 2000 1000 -
Test (unpublished) 15 3000 1500 10,000

5.2. Baselines

The authors of this paper compared SACT against the following baseline models:
(1) Proto-CNN [41]: Utilizes a CNN-based encoder in a prototype network. (2) Proto-
HATT [45]: Introduces an attention mechanism at both the instance level and feature level,
which is built upon the prototype network. (3) MLMAN [44]: Utilizing an innovative
hierarchical network, performs feature matching between different levels and subsequently
aggregates the results. Takes into account both local and instance-level matching informa-
tion simultaneously. (4) Proto-BERT [41]: Employs a prototype net-work with BERT as
the sentence encoder. (5) TD-Proto [16]: Incorporates textual descriptions of entities and
relationships into the prototype network. (6) ConceptFERE [47]: Introduces the inherent
concept of entities as external knowledge and fully leverages their essential attributes.
(7) HCPR [17]: Utilizes a contrastive learning framework with relation label information
(8) DRK [46]: Adopts a rule-based discriminative knowledge approach to mitigate adverse
effects stemming from entity type feature confusion. (9) DAPL [53]: Utilizes the shortest
dependency path information between entities in the prototype network. (10) SimpleF-
SRE [18]: Concatenates the two representations of relational information and directly incor-
porates them into the prototype representation. (11) CP [48]: Utilizes the entity-masking
contrast pre-training framework by randomly masking entity references. (12) MapRE [49]:
Combines label-agnostic semantic information with label-aware information to consider
the semantic knowledge of the relationship. (13) LPD [54]: Improves the utilization of
textual labels by employing a random deletion approach for relationship label prompts.
(14) CBPM [20]: Utilizes adaptive local loss based on relational similarity in a network
prototype. (15) BERT-Pair [43]: BERT model based on sequence.

5.3. Implementation Details

The experiments in this paper were conducted in the Python 3.7.13 environment,
employing PyTorch 1.9.1. The instance encoder employed in this paper utilized “bert-
base-uncased” as the pre-trained parameters for the BERT model and used AdamW as the
optimizer for SACT. This paper employed two different backbone models, namely, BERT
and CP, for comparison with other baseline models to showcase the efficacy of SACT. The
specific hyperparameter settings are detailed in Table 2.

Table 2. List of specific hyperparameter settings.

Parameter Value

Encoder BERT

Backend model Bert /cp
Learning_rate 1 × 10−5/5 × 10−6

Max_length 128
Hidden_size 768
Batch_size 4
Optimizer AdamW

Validation_step 1000
Max training iterations 30,000
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5.4. Main Results

The authors of this paper conducted a comprehensive evaluation of SACT on both
the FewRel 1.0 and FewRel 2.0 datasets, utilizing accuracy as the primary performance
metric. The authors of this paper employed the traditional FSRE setting, specifically the
N-way-K-shot setting, and the results are presented in Tables 3 and 4. Table 3 displays the
outcomes of SACT on the validation and test sets of FewRel 1.0. In terms of the encoders,
this paper includes models based on both CNN encoders and BERT encoders. For the part
based on BERT encoders, the upper section corresponds to the BERT-based backend model,
while the lower section corresponds to the CP-based backend model. Based on the data in
Table 3, the authors of this paper draw the following conclusions:

Table 3. Accuracy (%) of FSRE on the FewRel 1.0 validation/test set.

Encoder Model 5-Way-1-Shot 5-Way-5-Shot 10-Way-1-Shot 10-Way-5-Shot

CNN
Proto-CNN 72.65/74.52 86.15/88.40 60.13/62.38 76.20/80.45
Proto-HATT 75.01/— — 87.09/90.12 62.48/— — 77.50/83.05

MLMAN 79.01/— — 88.86/92.66 67.37/75.59 80.07/87.29

BERT

Proto-BERT 84.77/89.33 89.54/94.13 76.85/83.41 83.42/90.25
TD-proto — —/84.76 — —/92.38 — —/74.32 — —/85.92

ConceptFERE — —/89.21 — —/90.34 — —/75.72 — —/81.82
DAPL — —/85.94 — —/94.28 — —/77.59 — —/89.26

HCRP (BERT) 90.90/93.76 93.22/95.66 84.11/89.95 87.79/92.10
DRK — —/89.94 — —/92.42 — —/81.94 — —/85.23

SimpleFSRE 91.29/94.42 94.05/96.37 86.09/90.73 89.68/93.47
Ours (BERT) 92.31/94.83 94.05/97.07 86.92/90.46 89.36/93.65

CP — —/95.10 — —/97.10 — —/91.20 — —/94.70
MapRE — —/95.73 — —/97.84 — —/93.18 — —/95.64

HCRP (CP) 94.10/96.42 96.05/97.96 89.13/93.97 93.10/96.46
LPD 93.51/95.12 94.33/95.79 87.77/90.73 89.19/92.15

CBPM — —/90.89 — —/94.68 — —/82.54 — —/89.67
Ours (CP) 96.48/97.14 97.93/97.98 93.88/95.24 95.61/96.27

Table 4. Accuracy (%) of FSRE on the FewRel 2.0 domain adaptation test set.

Model 5-Way-1-Shot 5-Way-5-Shot 10-Way-1-Shot 10-Way-5-Shot

Proto-CNN * 35.09 49.37 22.98 35.22
Proto-BERT * 40.12 51.50 26.45 36.93
BERT-PAIR * 56.25 67.44 43.64 53.17

Proto-CNN-ADV * 42.21 58.71 28.91 44.35
Proto-BERT-ADV * 41.90 54.74 27.36 37.40

HCRP 76.34 83.03 63.77 72.94
Ours (CP) 81.28 88.92 68.18 79.03

* Representative results from FewRel rankings.

The BERT encoder exhibits greater competitiveness compared to the CNN encoder.
Figure 7 illustrates the outcomes of the three CNN-based encoder models compared to
SACT on FewRel 1.0. The figure distinctly shows that the precision of the models when
using BERT as an encoder significantly outperforms the models using CNN as an encoder.
In terms of the average accuracy, BERT-based models achieve an impressive 83.42%, while
CNN-based models lag at 71.74%. This demonstrates the superiority of BERT as an in-
stance encoder, as it can more effectively capture and represent the semantic information
of instances.

SACT has achieved significant improvements in few-shot relation extraction tasks.
Figure 8 illustrates the comparative analysis between SACT and the suboptimal model
(HCPR) on the FewRel 1.0 dataset under the 1-shot setting (specifically, 5-way-1-shot and
10-way-1-shot settings). As depicted in the diagram, SACT demonstrates notably high
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accuracy in the 1-shot setting, surpassing the baseline models. Specifically, in the two
few-shot settings, SACT (BERT) and SACT (CP) achieved accuracy improvements of over
0.72% and 1.27%, respectively, compared to the currently best-performing models. This
result indicates that SACT performs well in the few-shot scenario. In other words, the
SACT (CP) model demonstrates superior performance and generalization when dealing
with a limited number of samples.

Figure 7. Comparison of three CNN encoder-based models with SACT on the FewRel 1.0 dataset.

Figure 8. Comparison between HCPR and SACT in 1-shot setting.

SACT demonstrates greater robustness compared to previous methods. Figures 9 and 10
provide a comparative analysis of SACT alongside other BERT-based and CP-based models
on the FewRel 1.0 dataset. The SACT model incorporates prototype refinement through a
multi-head self-attention mechanism and incorporates a contrast–center loss in its design.
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As evident from the figures, this strategy confers substantial advantages to SACT when
compared to other BERT-based and CP-based models. In the four meta-tasks based on
BERT, SACT achieved accuracies of 94.83%, 97.07%, 90.46%, and 93.65%, respectively. In
the four meta-tasks based on CP, SACT achieved accuracies of 97.14%, 97.98%, 95.24%,
and 96.27%, respectively. Therefore, the SACT model has attained the SOTA level in the
contemporary research field. This result signifies significant accomplishments in the model
design and optimization strategies, providing an effective solution for RE tasks.

Figure 9. Comparison of SACT with other BERT-based models on the FewRel 1.0 dataset.

Figure 10. Comparison of SACT with other CP-based models on FewRel 1.0 dataset.
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SACT demonstrates outstanding expressiveness compared to other prototype net-
works. Figure 11 illustrates the comparison between SACT and the existing prototype
network models on the FewRel 1.0 dataset. Through this comparison, we observe a signifi-
cant improvement in SACT’s performance across all configurations, particularly excelling in
enhancing model accuracy. This outcome strongly validates the effectiveness and superior-
ity of our proposed approach, providing compelling evidence that our method enhances the
expressiveness of prototype networks and propels the development of prototype network
models in various application domains.

Figure 11. Comparison of SACT with other prototype network models on FewRel 1.0 dataset.

5.5. Domain Adaptation Results

In the general domain, the SACT model achieved excellent performance. To assess
the domain adaptability of the SACT model, its performance was tested in the biomedical
domain using the FewRel 2.0 dataset as the test set. Figure 12 shows a comparative
analysis between SACT and the other models on the FewRel 2.0 dataset. The figure
conspicuously illustrates that SACT outperforms the other models on the FewRel 2.0
dataset. The performance of the SACT model exhibits a noteworthy superiority over
the other models, which signifies that SACT has a higher accuracy and generalization
ability on the RE task. As evident from the outcomes presented in Table 4, the SACT
model has demonstrated substantial accuracy enhancements of 4.94%, 5.89%, 4.41%, and
6.09% across four tasks within the biomedical domain when compared to the runner-up
model (HCPR). These findings furnish compelling evidence for the effectiveness and robust
domain adaptability of SACT.
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Figure 12. Comparison of SACT with other models on the FewRel 2.0 dataset.

5.6. Ablation Study

To validate the impact of the multi-head self-attention mechanism on prototype net-
work enhancement and the effectiveness of the contrastive–center loss function, a thorough
set of ablation experiments was conducted on the FewRel 1.0 dataset. These experiments
covered both the 5-way-1-shot and 10-way-1-shot scenarios. The experimental outcomes
are presented in Table 5. In these experiments, the authors of this paper designed several
experimental variants. Here, ‘w/o modification prototype’ indicates that only the basic
prototype network was used without introducing the multi-head self-attention mechanism
to enhance the prototype network. In addition, ‘w/o Contrastive-center loss’ represents
experiments using the loss function opposite to the contrastive–center loss.

Table 5. The outcomes of the ablation analysis for SACT.

Model 5-Way-1-Shot 10-Way-1-Shot

SACT 96.48 93.88
w/o modification prototype 94.89 87.07
w/o Contractive-center loss 94.86 87.47

The multi-head self-attention mechanism and the contrastive–center loss function, as
evidenced by the data in Table 5, play crucial roles in improving model accuracy. In both
task settings, the simultaneous removal of both the multi-head self-attention mechanism
and the contrastive–center loss function resulted in a substantial decline in the model’s
performance. This further validates the effectiveness of SACT. Specifically, substituting
the initial prototype network with the prototype network enhanced by the multi-head
self-attention mechanism resulted in a reduction in model accuracy by 1.59% and 6.81%
in the 5-way-1-shot and 10-way-1-shot scenarios, respectively. The importance of the
multi-head self-attention mechanism is clearly demonstrated. Furthermore, replacing
the contrastive–center loss function with the cross-entropy (CE) loss function results in a
discernible decrease in model accuracy by 1.62% and 6.41%, respectively, under identical
conditions. This further substantiates the efficacy of the contrast–center loss function.

Furthermore, compared to the 5-way-1-shot setting, the decline in model accuracy was
more pronounced in the 10-way-1-shot setting, as further observation reveals. This may be
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attributed to the fact that the 10-way-1-shot task setting involves a greater variety of tasks,
providing the model with a broader range of task samples. The importance of the multi-
head self-attention mechanism and contrastive–center loss function is further validated by
this observation. These mechanisms empower the model to adapt and learn different types
of tasks, effectively capturing both the commonalities and differences among them.

6. Conclusions

This paper introduces SACT, a novel FSRE model. SACT incorporates a multi-head self-
attention mechanism to capture inherent relationships among different category prototypes,
addressing the limited generalization capabilities of traditional prototype networks when
faced with new relationships. In addition, SACT employs an adaptive prototype fusion
technique that combines relational information with enhanced prototypes, enhancing the
overall performance of the prototype network. Moreover, SACT introduces a novel loss
function, the contrastive–center loss. It effectively tightens the feature vectors of samples
from the same class by maximizing the angle between negative pairs. This enhances
sample distribution, improving intra-class closeness and inter-class distinguishability.
This innovative loss function boosts the learning capacity of our model, offering a fresh
perspective for RE research. The experimental results on the FewRel 1.0 and FewRel
2.0 datasets present the superior performance of SACT. SACT not only holds significant
relevance for FSRE but also carries broad potential implications for the fields of NLP and
RE. It provides valuable insights for future research endeavors in these domains.

However, there are still some limitations to acknowledge. Firstly, SACT does not
consider the “none of the above” category, leading to insufficient classification capabilities
for similar relationships. Secondly, the model relies solely on predefined relationship
categories, making it inflexible to adapt to new or unknown relationship types. In future
research, we plan to integrate the SACT model with other large-scale language models
possessing robust text comprehension and representation learning capabilities, such as
ChatGPT-4, to address SACT’s limitations and enhance its classification capabilities for
similar and unknown relationship categories. Additionally, we will explore how to apply
the SACT model to other NLP tasks, such as few-shot named entity recognition and
few-shot text classification.
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