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Abstract: On the basis of the force and safety factor analysis of traditional retaining walls, a new
analytical method of force and displacement of the slope is suggested, the numerical theoretical
solution of the stress distribution of the sliding body can be obtained under the conditions, which
the stresses distribution are satisfied with the differential equilibrium equations, the boundary
conditions, the compatibility equation and the macroscopic equilibrium equations. The interface
stresses between the sliding body and the retaining wall is continuous, and the theoretical solution of
retaining wall stress distributions can be obtained, while the stress differential equilibrium equation,
the compatibility equation, macroscopic force, and moment balance equations are satisfied. The
strain and displacement solutions can be obtained by using Duncan Chang and Hooke constitutive
equations for the slope and the retaining wall, respectively. The transfer station of landfill in the
Guandukou Town of Badong County is taken as an example, the results of the sliding body and
retaining wall analysis show: The stress and strain solutions of a slope and a retaining wall can be
obtained by the proposed method. The anti-slip force of the retaining wall calculated by the method
in this paper contains the positive pressure and shear force along the contact surface and varies
with the deformation of the slope, in addition, the numerical theoretical solution of the retaining
wall shows that the retaining wall shape and material can be optimized according to the calculation
results. It is feasible for the proposed analysis method of slope with retaining wall design to be run
many years.

Keywords: numerical theoretical solution; equilibrium equation; stress and strain distribution; slope;
retaining wall

1. Introduction

A retaining wall is a structure used to support roadbed fill or hillside soil to prevent the
deformation and destabilization of the fill or soil. Retaining walls can stabilize embankment
and graben slopes, reduce the height of excavated slopes, reduce the amount of earth and
stone excavation and floor space, protect the foot of roadbed slopes, prevent water from
washing the roadbed, prevent the slope cover from sliding, and prevent landslides, and
they are often used for the remediation of landslides and other disasters.

To reduce the risk of hazards arising from damaged slopes and retaining walls, ef-
fective protection techniques have been proposed on the basis of stability analysis of
slopes and retaining walls, and a series of studies have been conducted by domestic and
foreign scholars mainly in terms of theoretical research, numerical analysis, and model
tests. Chen [1] introduced the design points of various retaining walls and the force char-
acteristics and summarized the advantages and disadvantages. Zhao [2] discussed the
design process of weighted retaining walls under the influence of various factors, such as
groundwater and fill material behind the wall. Li [3], from drain simulation theory, estab-
lished three-dimensional steady and unsteady seepage models of the fill behind retaining

Appl. Sci. 2023, 13, 5806. https://doi.org/10.3390/app13095806 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13095806
https://doi.org/10.3390/app13095806
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13095806
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13095806?type=check_update&version=2


Appl. Sci. 2023, 13, 5806 2 of 25

walls considering the action of drains. Xu [4] experimentally simulated the soil pressure
distribution law of retaining walls when sandy soil was used as fill. Dawson EM, Roth WH,
and DrescherA [5] established a computational model that integrates retaining wall and
slope information and analyzed the stability of the slope of a highway section with limit
equilibrium theory and finite element software.

The active earth pressure calculation method for retaining walls is a traditional topic
in the field of geomechanics. To date, there are problems in the accurate calculation
of the active earth pressure, which are mainly reflected in the magnitude of the active
earth pressure, the location of the action point, the deformation and damage mode of the
retaining wall, the need to make assumptions about the sliding and cracking surface, and
the established calculation model resulting in limited applicability. Coulomb earth pressure
theory assumes that a sliding surface is flat, the fill behind the wall is cohesionless soil, and
the earth pressure is triangularly distributed to obtain the active earth pressure calculation
formula. Rankin’s earth pressure theory takes semi-infinite space soil as the object of study
and assumes that the wall is rigid, the back of the wall is vertical and smooth, the surface of
the fill behind the wall is horizontal, and the earth pressure distribution is triangular, and
the corresponding theoretical solution is obtained from the ultimate equilibrium state. For
cohesive soil, the pressure can be calculated directly by Rankin’s theory, but the results are
too conservative. Terzaghi [6] considers that the active earth pressure on a rigid retaining
wall is related to the form of wall motion, and there are obvious differences in its active
earth pressure under three different modes of motion: the wall is moving horizontally and
rotating around the top and bottom of the wall. Mao [7] explained the deficiencies of the
Coulomb earth pressure calculation theory from a mechanical point of view and clarified
that the wall surface and slip crack surface could not reach the ultimate equilibrium state
at the same time. Kezdi [8] studied the motion mode of a retaining wall rotating around
the bottom of the wall. Handy RL [9] applied the basic principle of the soil arch effect,
assumed the slip crack surface to be a Rankin slip crack surface, and combined it with the
differential unit method to study the stress distribution of the soil behind the retaining wall.
Wang and Sun [10] improved the active earth pressure assumption and proposed a new
calculation method. Chen [11] analyzed the stress state of a retaining wall by taking three
basic deformation modes of the wall as the research object. He [12] studied the calculation
method of layered soil.

At present, the stability of retaining walls is mainly evaluated to maintain safety, and
although it has been applied in engineering practice for a long time, some retaining walls
can still be damaged when the shear and overturning strengths are satisfied. Zeng and
Zhou [13] analyzed the types of overturning failures of retaining walls and concluded that
the overturning resistance of a retaining wall is related to the ultimate bearing capacity of
the foundation. Gan et al. [14] analyzed the problems in the expressions of the overturning
stability equation in the current code. Huang et al. [15] studied the overturning stability of
retaining walls under earthquake action by the proposed dynamic method. Huang [16,17]
noted that the traditional theory is too simple.

With the development of numerical analysis methods, different calculation meth-
ods have been proposed [18–23], and recently, the partial strength reduction method for
progressive damage processes has been widely applied.

2. Research and Significance

From the comprehensive analysis of a large number of domestic and foreign studies,
it can be seen that current research on slopes and retaining walls mainly focuses on soil
pressure and seepage under certain assumptions. In this paper, based on the traditional
research on soil pressure and the anti-slip and overturning stability of retaining walls, a
new method for force and displacement analysis of slopes and retaining walls is proposed,
which can obtain the solutions of stress distribution at each point inside the slopes and
retaining walls under the corresponding boundary conditions. On this basis, Duncan
Tensor and Hooke’s principal structure models are adopted for the slope and retaining wall,
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respectively, to obtain the strain and displacement solutions for the slope and retaining
wall. The new theoretical solutions proposed in this paper can be used not only to study the
damage forms of retaining wall overturning and foundation sliding processes but also to
study the damage forms of retaining wall tensile bulging. It can provide a theoretical basis
for the design of slope control engineering, and according to the different forms of stress,
different forms, and materials of retaining walls can be adopted, and more economical,
reasonable, and effective control methods can be derived.

3. Problem Formulation
3.1. Side Slope Problems

For a long time, the finite unit method has been applied in slope analysis. The
calculation block diagram used in the finite element calculation is shown in Figure 1, and
its boundary conditions are often of two types. The first type is displacement boundary
conditions. The horizontal and bottom vertical displacements around the perimeter in
Figure 1 are equal to zero; that is, when the displacement on the left (point i) is equal to
zero, the displacement on the right (point j) must also be equal to zero. According to the
definition of the displacement calculation:

ui − uj =
∫ j

i
εi→jdl (1)

where ui, uj denotes the displacements at points i and j in the figure, εi→j denotes the strain
in the ij segment, and dl denotes the integration along the i to j segments. From Equation (1),
it can be seen that to make the ij segment displacement integral equal to zero, only the
integration of strain in the ij segment is equal to zero; however, in the horizontal segment
surface immediately below the bottom edge, the site should be dominated by compressive
strain, and it is unlikely to produce tensile and compressive strain resulting in the sum of
the ij segment displacement integral that is equal to zero.

Figure 1. Displacement boundary condition chart of slope analysis.

The second type is the stress boundary condition. The boundary condition for the nu-
merical analysis of the slope is shown in Figure 2. The far-field stress boundary condition is
calculated according to elastic mechanics. At the peripheral stress boundary, the expression
of the boundary condition is as follows.

σxx|x=0 = σzz|x=0 =
υ

1− υ
γyy; σyy

∣∣
x=0 = γyy; τxy

∣∣
x=0 = τyz

∣∣
x=0 = τxz|x=0 = 0 (2)

where υ, γy are the Poisson ratio and specific gravity of the geological material and
σxx, σyy, σzz, τxy, τyz, τxz are the positive and shear stresses, respectively.
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Figure 2. Stress boundary condition chart of slope analysis.

The physical meaning of Equation (2) is.

σxx|x=0 = σzz|x=0 = σ3; σyy
∣∣
x=0 = σ1; τxy

∣∣
x=0 = τyz

∣∣
x=0 = τxz|x=0 = 0 (3)

where σi, i = 1, 2, 3 is the principal stress, and the corresponding y-value magnitude can
be calculated by substituting Equation (3) into any current strength criterion. According
to the inequality, when the numerical calculation results in the y-axis value greater than
the y-value obtained according to the strength criterion, the damage has occurred at the
site, i.e., with the increase in the calculated depth, the damaged area becomes increasingly
large; however, the site becomes increasingly stable with increasing depth, which is not
compatible with the site. A correct boundary condition corresponds to a correct solution; if
the boundary condition is incorrect, the solution is incorrect.

3.2. Retaining Wall Problem

It can be seen from the traditional retaining wall design that the active earth pressure
acting on the retaining wall is calculated with only the normal stress or horizontal force.
From a mechanical point of view, even a vertical surface has both horizontal and vertical
stress, so this stress calculation needs to be improved. In addition, the active earth pressure
acting on the retaining wall is calculated with a damage angle of (45

◦
+ ϕ/2). The authors

think this damage angle may only be suitable for old clay and gravel soils because not
many soil slopes of 45

◦
are stable in the southern part of China.

To address the above problems, this paper applies the slip surface boundary method [19,20]
and proposes a new numerical theoretical solution to obtain the stress and strain distribution
of the slip body and retaining wall, based on which the stability evaluation description of the
slip body and retaining wall is implemented.

4. Numerical Theoretical Solutions for Side Slopes and Retaining Walls
4.1. Basic Methods

For any material or object under the influence of boundary stress, when its shape is
determined, its stress theory solution is well defined, and the result of the stress solution
changes with a change in the boundary conditions.

Assuming that the medium satisfies the basic assumptions of elastodynamics and
the stress solution satisfies the stress boundary, equilibrium, and coordination equations,
the corresponding stress distribution solution is obtained. The method is based on elastic
mechanics but can solve the problem of contact surface stress discontinuity. The method
is applicable to the solution of the stress distribution in arbitrary geometry (including
two-dimensional and three-dimensional problems); when the boundary conditions of the
research object and the boundary stress distribution are not equal, the stress discontinuity
solution can be obtained, and on this basis, the displacement discontinuity solution can
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be obtained to solve the problem of stress-strain discontinuity in the damage process. The
basic ideas and methods are as follows:

(1) Establish descriptive equations for geometric features associated with the object of
study based on precisely measured macroscopic geometric features;

(2) When analyzing the distribution of the specific gravity of the object of study, establish
the equation of its associated specific gravity distribution;

(3) When analyzing the stress characteristics of the research object, the corresponding
boundary condition stress equations are established according to the boundary condi-
tions in different cases;

(4) The representation of the stress equation is selected, and the corresponding constant
coefficients are calculated, provided that the corresponding equilibrium equation,
stress boundary condition equation, and coordination equation are satisfied for the
object of study;

(5) In the specific analysis of the force characteristics of the object of study, the damage
characteristics are determined by combining the current strength code; the defor-
mation characteristics of the object of study can also be compared with the relevant
principal structure equations to obtain the behavior characteristics.

4.2. Example of a Two-Dimensional Slope Retaining Wall

Using the basic ideas presented above, the study of the theoretical solution to the
two-dimensional slope plane strain retaining wall problem, as an example, is illustrated
as follows:

For (i), based on the precisely measured macroscopic geometric features, the geometric
characteristic descriptive equations associated with the object of study are established as in
Figure 3, and they can be written in the form of y = kx + b to represent the geometric char-
acteristic descriptive equations for the boundaries of AB, BC, CD, DA, and FB, respectively.
(Note: if the boundaries are in the form of curves, they can be described by the equations
of curves).

Figure 3. Calculation model of slope and retaining wall.

For (ii), when analyzing the weight distribution of the study object, its associated
weight distribution equation is established as γw,x, γw,y.

For (iii), when analyzing the stress characteristics of the research object, the stress
equations for the boundary conditions relative to the boundary conditions are established
according to the boundary conditions in different cases; for the planar problems related to
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Figure 3, such as horizontal stress (px
AB) and vertical stress (py

AB) on the AB boundary
surface, the expressions are

px
AB = lσxx

AB + mτyy
AB (4)

pAB
y = mσyy

AB + lτxy
AB (5)

where l, m is the outer normal direction cosine on the AB boundary and σxx
AB, σyy

AB, τxy
AB is

the boundary stress on the AB side. Under the condition of stress continuity, Equations (4) and (5)
can describe all the different boundary condition stresses corresponding to Figure 3.

In the case of stress discontinuity, the stress at the discontinuity is not equal; how-
ever, the boundary condition stress forces need to be balanced along the horizontal and
vertical directions.

For (iv), the representation of the stress equation is chosen, and the corresponding
constant coefficients are calculated in the case that the object of study satisfies the cor-
responding equilibrium, stress boundary conditions, and coordination equations; in the
two-dimensional condition, the stress expression is written (note: it can be changed accord-
ing to different situations) as follows:

σxx = a1,1x + a1,2y + a1,3x2 + a1,4xy + a1,5y2 + a1,6x3 + a1,7x2y + a1,8xy2 + · · · (6)

σyy = a2,1x + a2,2y + a2,3x2 + a2,4xy + a2,5y2 + a2,6x3 + a2,7x2y + a2,8xy2 + · · · (7)

τxy = a3,1x + a3,2y + a3,3x2 + a3,4xy + a3,5y2 + a3,6x3 + a3,7x2y + a3,8xy2 + · · · (8)

The corresponding specific gravity equation (note: other representations are also
possible) is written as follows:

γw,x = γ0,x + a4,1x + a4,2y + a4,3x2 + a4,4xy + a4,5y2 + a4,6x3 + a4,7x2y + a4,8xy2 + · · · (9)

γw,y = γ0,y + a5,1x + a5,2y + a5,3x2 + a5,4xy + a5,5y2 + a5,6x3 + a5,7x2y + a5,8xy2 + · · · (10)

where a1,i, a2,i, a3,i, a4,i, a5,i is the constant coefficient term, i is taken as zero and an integer,
σxx, σyy, τxy is the stress and shear stress in the x- and y-axis directions, respectively, and
γw,x, γw,y is the specific gravity in the x- and y-axis directions, respectively.

Under gravity conditions, the general solution of the above stresses satisfying the
equilibrium equation can be expressed as

∂σxx

∂x
+

∂τxy

∂y
= 0 (11)

∂τxy

∂x
+

∂σyy

∂y
+ γw,y = 0 (12)

Then, the corresponding coefficients are zero, which is a necessary condition for the
stress balance equation (note: Equations (11) and (12) can also be used to study the specific
gravity relationship), and the following relationship can be obtained from Equation (11):

a1,1 + a3,2 = 0 (13)

2a1,3 + a3,4 = 0 (14)
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a1,4 + 2a3,5 = 0 (15)

3a1,6 + a3,7 = 0 (16)

2a1,7 + 2a3,8 = 0 (17)

a1,8 + 3a3,9 = 0 (18)

. . .

From Equation (12), we have:

a3,1 + a2,2 = 0 (19)

2a3,3 + a2,4 = 0 (20)

a3,4 + 2a2,5 = 0 (21)

3a3,6 + a2,7 = 0 (22)

2a3,7 + 2a2,8 = 0 (23)

a3,8 + 3a2,9 = 0 (24)

. . .

By taking the specific gravity as a constant (γw,x = 0, γw,y 6= 0 = γ), the relative
satisfaction of the boundary conditions, equilibrium equations, etc., can be solved for all
constant coefficients, and when they are substituted into the stress expression, the stress
solution of the object of study can be solved by Equations (6)–(8).

For (v), the damage characteristics of the object of study are determined by combining
the current strength criterion with the specific analysis of its force characteristics; the
corresponding intrinsic structure model is selected, the deformation characteristics are
studied, and the behavior associated with them is further clarified by comparison with
the field. The analysis process is as follows: first, the calculation process expressed in the
paper is used to obtain the stress theory solution and then calculate the corresponding
principal stress magnitude and substitute it into the strength criterion (e.g., the Moore–
Coulomb criterion, Griffith criterion, etc.), to determine the damage state point, and then it
is combined with the current strength theory to further determine the damage direction
to determine the stress damage path. When the damage driving force is greater than
its strength (i.e.,: stress discontinuity), there exists stress discontinuity and displacement
discontinuity. While solving the stress discontinuity solution according to the above
basic methods ((i) to (iv)), the damage path of the study object can be determined. The
displacement continuity is solved by using coordinate rotation while considering the stress
continuity, calculating the corresponding principal strain with the principal equation, and
using the principal strain to obtain the strain at any point of the object of study. To solve the
stress-strain problem under the premise of stress discontinuity, it is necessary to consider
the deformation characteristics for calculation. By following the above solution steps,
the stress-strain solution of the object of study during the whole damage process can be
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solved, and the relevant physical–mechanical parameters in the theory can be corrected
(i.e., inverse analysis) by comparing the actual situation in the field.

4.3. Examples

The stress theory solution of the research object is obtained by the above basic method
and is used as an example for the retaining wall of the slope of a waste transfer station.
The slope model is established, and ABCDEF in Figure 3 is the object of study. When
analyzing the model, considering the interrelationship between the boundary conditions
and the theoretical solution, the boundary conditions of the model in Figure 3 are described
as follows:

From the stress expression, which is a constant term, to y4, there are 42 constant
coefficients, which can be reduced to 22 constant coefficient expressions by the equilibrium
Equations (11) and (12), and then based on the stress conditions on the given different
boundaries, the corresponding constant coefficients can be determined.

The stress boundary conditions are satisfied at the CD and AD boundaries and are
described as

px
DC = lDCσxx

DC + mDCτyy
DC = 0 (25)

pDC
y = mDCσyy

DC + lDCτxy
DC = 0 (26)

Ten equations can be obtained using the DC boundary conditions, and the same AD
side equation is consistent with the above Equations (25) and (26). The slope area of this
study is composed of backfilled clay, and the angle between the BC side and the horizontal
is (45

◦
+ ϕ/2) (ϕ denotes the friction angle within the soil) according to the traditional

assumption that the surface has been damaged. The tangential stress along the surface is
discontinuous, but the normal stress is continuous, and the tangential stress is in accordance
with the strength discount method. Then, the relationship between the tangential and
normal stresses is as follows:

τBC
N =

(
C + σBC

N tanϕ
)

/ f (27)

where τBC
N , σBC

N are the tangential and normal stresses on the BC side and C, ϕ, f are the
cohesion, friction angle, and strength discount factor of the soil, respectively. The stress on
the AB side is continuous; then, the equilibrium equation of the ABCD slip is seen below.

The forces are balanced in the horizontal direction as follows:∫
AB

pAB
x dl +

∫
BF

pBF
x dl = 0 (28)

Vertical direction force balance:∫
AB

pAB
y dl +

∫
BF

pBF
y dl = WABCD (29)

where WABEF is the weight of the retaining wall unit width ABCD.
A computational model is established for the retaining wall, and ABEF in Figure 3

is taken as the object of study. For the analysis of the retaining wall model, the boundary
conditions of the retaining wall AB and the continuity of the slip body boundary stress
are considered, and the boundary conditions of the retaining wall model in Figure 3 are
studied as follows.

Similarly, the stress expression, which is a constant term, is set to y4, and the same pro-
cess as that used to obtain ABCD is used to obtain the corresponding constant coefficients.

The stress boundary conditions are satisfied at the EF boundary, and the equations are
of the same form as the DC and AD boundary Equations (25) and (26). However, the AB
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boundary conditions are equal for the sliding body and the retaining wall stress boundary
conditions; then, we have:

pAB
x,h = pAB

x,d (30)

pAB
y,h = pAB

y,d (31)

where px,h, px,d and py,h, py,d are the horizontal and vertical stresses of the sliding body
and retaining wall at the AB boundary, respectively. The 20 equations can be obtained by
using the AB and EF boundary conditions. In this study, the retaining wall is completely
connected to the foundation, i.e., no damage occurs, and the stress is continuous. Then, the
equilibrium equation of the ABEF slider is as follows.

The forces are balanced in the horizontal direction as follows:∫
AB

pAB
x dl +

∫
BF

pBF
x dl = 0 (32)

Vertical direction force balance:∫
AB

pAB
y dl +

∫
BF

pBF
y dl = WABEF (33)

where WABEF is the weight of the retaining wall unit width ABEF.

4.4. Computational Analysis
4.4.1. Example of a Waste Transfer Station Project

The Shennong Creek Area Garbage Transfer Station Project is located in Fengjia Dagou,
Group 1, Wulidui Village, Shennong Creek Area, Guandukou Town, Badong County, Hubei
Province, and National Highway 209 crosses the west side of the site. The project covers an
area of 1443.06 m2, and the basic features of the garbage transfer station are as follows: the
platform elevation is 283 m, the bottom elevation of the retaining wall is 274.8~283 m, and
the slope height is 0~8.2 m (see Figures 4 and 5). The surface layer of the waste transfer
station is red clay and was formed according to the I-I section (see Figure 5). The lower
part of the transfer station is composed of T2b2 sandstone with high strength, uniaxial
compressive strength 40~60 MPa, and rock inclination 260–300, and its retaining wall
foundation is located above the weathered sandstone.

Figure 4. Plane plan of the transfer station area.
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Figure 5. Section I-I of transfer station area.

4.4.2. Calculating the Model Dimensions

According to the I-I profile of the Guandukou waste transfer station, the specific
gravity of the backfill clay of the waste transfer station is set to 19.6 kN/m3, the friction
angle is 18◦, and the basic dimensions of the ABCD area of the slope are AB = 6.8 m,
BC = 10.48 m, CD = 6.14 m, and DA = 2.12 m. The retaining wall ABEF is C25 plain concrete,
and the basic dimensions are AB = 6.8 m, BF = 4.2 m, EF = 5.8 m, AE = 1.62 m, EF = 5.8 m,
and AE = 1.62 m (see Figure 3). The specific gravity is set to 25kN/m3.

4.4.3. Analysis of the Calculation Results
Stress Calculation Results of the Slope and Retaining Wall

According to the calculation of the slope retaining wall model, the coordinates corre-
sponding to each point in the model are determined, the geometric boundary descriptive
equations are established, the conditions associated with each boundary are determined,
and the correlation coefficients under different discount factors ( f = 1.00, 1.50, 2.00) are
solved. The correlation coefficients are solved under different discount factors. The obtained
coefficients are substituted into Equations (6)–(8) to obtain the distribution of σxx, σyy, τxy
(see Figures 6–8) and the distribution of the principal stress σ1, σ3 (see Figures 9–11) (Note:
Stress and cohesion are in kPa) at any point according to the corresponding coordinate
points. Assuming that the peak stress of the retaining wall satisfies the Moore–Coulomb
criterion, its friction angle is set to ϕ = 40

◦
. According to the stress distribution characteris-

tics of the retaining wall, the corresponding distribution of the cohesive force C values can
be calculated, as shown in Figure 12. According to the magnitude of the C values, it can be
determined where the retaining wall will be damaged first.

Slope Strain Calculation Results

Using the intrinsic structure relationship, the strain of the clay slope body is obtained
according to the test, and it satisfies the Duncan–Zhang intrinsic structure model, whose
basic equation is

σ1 − σ3 =
ε1

a1 + b1ε1
⇒ ε1 =

a1(σ1 − σ3)

1− b1(σ1 − σ3)
(34)

σ1 − σ3 =
ε3

a2 + b2ε3
⇒ ε3 =

a2(σ1 − σ3)

1− b2(σ1 − σ3)
(35)

where ε1, ε3 represents the first and third principal strains, respectively. According to
the test results, a1 is 0.0002, a2 is 0.00012099, b1 is −0.000056, and b2 is 0.0002099. The
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distribution characteristics of the principal strains of the slope under different reduction
factors can be obtained (see Figures 13 and 14 and Section 4.4.3.3).

Figure 6. (a) Stress σxx distribution of the sliding body and retaining wall when f = 1.00, (b) stress
σyy distribution of the sliding body and retaining wall when f = 1.00, (c) stress τxy distribution of the
sliding body and retaining wall when f = 1.00.

Figure 7. (a) Stress σxx distribution of the sliding body and retaining wall when f = 1.50, (b) stress
σyy distribution of the sliding body and retaining wall when f = 1.50, (c) stress τxy distribution of the
sliding body and retaining wall when f = 1.50.
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Figure 8. (a) Stress σxx distribution of the sliding body and retaining wall when f = 2.00, (b) stress
σyy distribution of the sliding body and retaining wall when f = 2.00, (c) stress τxy distribution of the
sliding body and retaining wall when f = 2.00.

Figure 9. (a) Stress σ1 distribution of the sliding body and retaining wall when f = 1.00, (b) stress σ3

distribution of the sliding body and retaining wall when f = 1.00.
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Figure 10. (a) Stress σ1 distribution of the sliding body and retaining wall when f = 1.50, (b) stress σ3

distribution of the sliding body and retaining wall when f = 1.50.

Figure 11. (a) Stress σ1 distribution of the sliding body and retaining wall when f = 2.00, (b) stress σ3

distribution of the sliding body and retaining wall when f = 2.00.

For a two-dimensional problem, the expression for the strain (εij) in either direction of
the rotation (rotation angle φ) is

εxx = ε1cos2φ + ε3sin2φ (36)

εyy = ε1sin2φ + ε3cos2φ (37)

γxy = −
(
εxx − εyy

)
tan(2φ) (38)

where εxx, εyy, γxy indicates the strain and φ indicates the rotation angle.
The rotation angle φ is determined by the following equation:

tan2φ =
−2τxy

σx − σy
⇒ φ =

1
2

arctan
( −2τxy

σx − σy

)
(39)

The calculated strain distribution obtained for each point of the sliding body is shown
in Figures 16–18
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Figure 12. (a) Distribution diagram of the cohesive force C of the retaining wall when f = 1.00,
(b) distribution diagram of the cohesive force C of the retaining wall when f = 1.50, (c) distribution
diagram of the cohesive force C of the retaining wall when f = 2.00.

Figure 13. (a) Principal strain ε1 distribution of the sliding body when f = 1.00, (b) principal strain ε3

distribution of the sliding body when f = 1.00.
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Figure 14. (a) Principal strain ε1 distribution of the sliding body when f = 1.50, (b) principal strain ε3

distribution of the sliding body when f = 1.50.

Figure 15. (a) Principal strain ε1 distribution of the sliding body when f = 2.00, (b) principal strain ε3

distribution of the sliding body when f = 2.00.

Results of the Strain Calculation for the Retaining Wall
Calculating the retaining wall strain can be considered a plane strain problem when

εz = 0 and σz 6= 0. The general form according to Hooke’s law is expressed as follows:

εxx =
1
E
[σxx − µ(σyy + σzz)] (40)

εzz =
1
E
[σzz − µ(σxx + σyy)] (41)

γxy =
τxy

G
, γyz =

τyz

G
, γxz =

τxz

G
(42)

where G = E
2(1+µ)

.
E denotes the modulus of elasticity and is set to 300 MPa, G expresses the shear

modulus, and µ denotes the Poisson ratio, which is 0.11.
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Figure 16. (a) Strain εxx distribution of the sliding body when f = 1.00, (b) strain εyy distribution of
the sliding body when f = 1.00, (c) strain γxy distribution of the sliding body when f = 1.00.

According to the above process, the strain distribution solutions of the retaining wall
can be obtained, as shown in Figures 19–21. The corresponding principal strains are shown
in Figures 22 and 23.

Retaining Wall Stability Analysis

From the calculation results of the retaining wall, it can be seen that the maximum
tensile stress occurs at the corner of the wall and the slip body reduction factor becomes
increasingly large (f = 100,473.17 kPa; f = 150,500.82 kPa; and f = 200,530.71 kPa), but
its value falls within the strength range of C25 plain concrete; the absolute value of the
compressive stress of the retaining wall increases with the slip body reduction factor and
becomes increasingly larger (−537.74 kPa, −600.51 kPa, and −640.35 kPa), but it also falls
within the strength range of plain concrete and foundation rock; for the C25 plain concrete
retaining wall, the absolute value of the compressive stress increases with the slip body
reduction factor. The absolute value of the compressive stress of the retaining wall increases
with the discount factor of the sliding body (−537.74 kPa, −600.51 kPa, and −640.35 kPa),
but it also falls within the strength range of plain concrete and foundation rock; for the C25



Appl. Sci. 2023, 13, 5806 17 of 25

plain concrete retaining wall, the maximum value of the cohesion of the back-calculated
points is 323.76 kPa under the condition that the friction angle is equal to 40 degrees, which
also falls within the strength range of C25 plain concrete. The maximum value of cohesion
is 323.76 kPa, which also falls within the cohesion value range of the C25 plain concrete
strength, and the corresponding principal strain of the retaining wall is 10−3 level, which is
within the peak strain range. Through the stress and deformation analysis of the retaining
wall, the stress and strain at the point of the retaining wall are within the strength range,
which means that the conditions under which damage occurs do not exist for the retaining
wall. For the above problem, the finite unit method and Ansys software were used to
calculate the error. The deviation in the stress-strain calculation for the backfill clay at the
transfer station was less than 12%, and the deviation in the retaining wall result was less
than 5%. Based on the analysis of the regulated retaining wall and the analysis results
presented in this paper, the whole retaining wall is in a stable state, which is consistent
with the results of many years of field operation.

Figure 17. (a) Strain εxx distribution of the sliding body when f = 1.50, (b) strain εyy distribution of
the sliding body when f = 1.50m, (c) strain γxy distribution of the sliding body when f = 1.50.
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Figure 18. (a) Strain εxx distribution of the sliding body when f = 2.00, (b) strain εyy distribution of
the sliding body when f = 2.00, (c) strain γxy distribution of the sliding body when f = 2.00.
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Figure 19. (a) Strain εxx distribution of the retaining wall when f = 1.00, (b) strain εyy distribution of
the retaining wall when f = 1.00, (c) strain γxy distribution of the retaining wall when f = 1.00.
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Figure 20. (a) Strain εxx distribution of the retaining wall when f = 1.50, (b) strain εyy distribution of
the retaining wall when f = 1.50, (c) strain γxy distribution of the retaining wall when f = 1.50.



Appl. Sci. 2023, 13, 5806 21 of 25

Figure 21. (a) Strain εxx distribution of the retaining wall when f = 2.00, (b) strain εyy distribution of
the retaining wall when f = 2.00, (c) strain γxy distribution of the retaining wall when f = 2.00.
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Figure 22. (a) Strain ε1 distribution of the retaining wall when f = 1.00, (b) strain ε1 distribution of
the retaining wall when f = 1.50, (c) strain ε1 distribution of the retaining wall when f = 2.00.
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Figure 23. (a) Strain ε3 distribution of the retaining wall when f = 1.00, (b) strain ε3 distribution of
the retaining wall when f = 1.50, (c) strain ε3 distribution of the retaining wall when f = 2.00.

5. Conclusions

Based on the literature [20] and the boundary conditions in this paper, the stress
and strain distribution characteristics of backfill clay and retaining walls at a transfer
station were obtained, and the following conclusions can be obtained from the solution
characteristics:

(1) The backfill clay and retaining wall stresses at the transfer station are nonlinearly
related to the coordinates. The calculation method proposed in this paper can provide
a theoretical basis for the design of retaining wall anti-slip calculations and provide a
design basis for slope stress monitoring. According to different retaining wall forms
and materials, new retaining wall prevention and control methods can be derived.

(2) The numerical theoretical solution presented in this paper satisfies the basic assump-
tions of elastodynamics and is obtained under the assumption of continuous, isotropic,
and continuous homogeneous stresses in the object of study. The results show that
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the numerical theoretical solutions corresponding to different boundary conditions
are also very different, i.e., the numerical theoretical solutions and the boundary
conditions are closely related.

(3) Through the basic idea of this paper, it can be seen that the corresponding numerical
theoretical solution can be obtained for any material (or object) given the boundary
conditions, macroscopic characteristics, and specific gravity distribution of the object
under study; the method can be applied to the study of stress distribution and damage
processes of slopes, road foundations, tunnels, dams and other related materials under
dynamic and static loading and unloading.

(4) In this paper, the shear stress problem with stress-strain discontinuity at the damaged
surface is solved by applying the strength discount method, and it is noted that normal
stress is continuous in this damaged surface region.

(5) This paper shows the practicality of the retaining wall design through the numerical
theoretical solution results and provides a new point strength design method for a
slip-resistant design.

(6) This paper shows the results of numerical theoretical solutions for retaining walls
and slopes in two-dimensional planes. Considering the soil inhomogeneity in three-
dimensional space, subsequent work will concentrate on how to apply it to three-
dimensional space.
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