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Abstract: A Tm,Ho:YAP laser at cryogenic temperature is demonstrated for the first time with
simultaneous emission at 2000 nm and 2119 nm. The feasibility of switching wavelength and
achieving balanced output powers at two widely separated wavelengths has been confirmed by
investigating the temperature dependence of the laser spectra. The optimal temperature for balanced
output evidently diminishes as the pump power density increases, thereby manifesting a rate of
change quantified at 1.19 K/W. At the optimal temperature of 43.1 K, the optical-to-optical conversion
efficiency of the Tm,Ho:YAP simultaneous dual-wavelength laser (SDWL) with a pump power of
11.8 W is 12.7%, corresponding to a slope efficiency of 15.8%.

Keywords: dual-wavelength laser; Tm,Ho:YAP; cryogenic temperature; infrared lasers

1. Introduction

The simultaneous dual-wavelength laser (SDWL) [1] has been regarded for its applica-
tions in differential lidar [2–4], terahertz generation [5–7] and medical diagnosis [8–10]. The
SDWL in a wavelength range around 2 µm holds great potential because of its human-eye
safety and good transparency features [11–13].

Tm and Ho co-doped laser materials have been identified as prospective candidates
for realizing a 2 µm SDWL because they possess many sharp fluorescent lines with the
transitions of the splitting energy level in 5I7 and 5I8. Tm and Ho co-doped dual-wavelength
fiber lasers operating at room temperature have been successfully demonstrated through
the use of a cascaded fiber Bragg grating array [14] and a spatial filter [13]. In typical
all-fiber dual-wavelength laser systems, the wavelength spacing is usually less than 10 nm.

Recently, a solid-state laser utilizing Tm,Ho:GdYTaO4 crystal with a wavelength
separation of 120 nm has been developed. Different lasing wavelengths and maximum
output powers were realized by adjusting the concentration ratio of Tm and Ho ions [15].
Another work has demonstrated the feasibility and potential of using a Tm,Ho:YAG ceramic
in diode-pumped dual-wavelength lasers, which can lead to high beam quality and high
power density [16]. Moreover, recent research has reported a cryogenic SDWL operation
of Tm:YLF using a modular setup around 2 µm. As the pump power increases, the
output wavelength combination can transition from 1876 nm and 1901 nm to 1901 nm and
1912 nm [17].

However, there is a lack of sophisticated technological methodologies for the gen-
eration of 2 µm dual-wavelength solid-state lasers, which forces researchers to rely on
specific laser crystals with particular doping concentrations or pumping powers to achieve
simultaneous dual-wavelength output. Moreover, balancing the power ratio between
the dual-wavelength components of the laser output remains a challenge for stable and
consistent performance.

Currently, the growth techniques of Tm,Ho:YAP have become highly mature, and their
structural anisotropy allows them to produce polarized emission spectra with multiple
emission peaks, which provides strong support for the generation of multi-wavelength laser
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oscillation. Li et al. founded that laser output with wavelengths of 2000 nm and 2119 nm
can be achieved by Tm,Ho:YAP under CW and Q-switched modes, respectively [18].
However, achieving the simultaneous output of these two wavelengths has been a long-
standing challenge.

For solid-state laser, the achievement of dual wavelength relies on controlling the
gain and loss of different transition lines in the resonator to maintain a balance of net gain,
thereby meeting the laser’s threshold conditions. The threshold pump power is influenced
by several factors, including the reflectivity of the output mirror, intracavity round-trip
loss, the stimulated emission cross-section, and the overlap of pump and oscillating light.
Thus, SDWL generation can be attained by regulating the aforementioned parameters.

Adjustment of the output mirror reflectivity can be achieved by applying a spe-
cific coating or utilizing an F-P filter as the output mirror, as demonstrated in previous
studies [19,20]. For strongly gain-enhanced transition lines, the reflectivity of the output
mirror at the two wavelengths needs to be determined based on the threshold conditions
for dual-wavelength pumping, ensuring similar or equal threshold pump powers. For
weakly gain-enhanced transition lines, it is essential to suppress the adjacent, strongly
gain-enhanced transition lines. This ensures that the threshold pump power for the weakly
gain-enhanced transition line is lower than that of the adjacent, strongly gain-enhanced
transition line, ultimately facilitating dual-wavelength laser output. However, when the
wavelengths of the dual-wavelength laser are close, controlling the threshold via coating
becomes a major challenge.

For the design requirement of an SDWL with a small wavelength separation, the
threshold pump power can be controlled by changing the intra-cavity losses of different
wavelengths through the insertion of either an etalon or a birefringent filter within the
resonant cavity [21,22]. Etalons are generally used for dual-wavelength lasers with fre-
quency intervals smaller than 10 nm, while birefringent filters are more commonly used
for dual-wavelength generation with frequency intervals of several tens of nanometers.
However, since the method involves the insertion of elements to control losses, it may have
some impact on the efficiency of the laser output.

Under fixed resonant cavity parameters, by altering the stimulated emission cross-
sections, it is possible to control the threshold pump power at different wavelengths and
thus achieve dual-wavelength laser emission. One approach to modifying the stimulated
emission cross-sections is to change the angle between the laser propagation direction and
the crystal axis, or to adjust the cooling temperature of the crystal [23–25]. The technique
of achieving dual-wavelength lasers through cryogenic temperature tuning exploits the
Stark splitting of the laser’s upper and lower levels, which is induced by the unique
lattice structure of the crystal. Further investigation of this technique shows potential for
generating dual-wavelength lasers that are difficult to produce with conventional crystals,
thus meeting the demands of various application scenarios.

In this work, we report for the first time a temperature-controlled cryogenic Tm,Ho:YAP
laser with balanced output at 2000 nm and 2119 nm and conducted a detailed study of
the dual-wavelength balancing process for the SDWL. This temperature-controlled gain
balancing method for two resonant waves originating from transitions of different energy
levels enables the use of a single, mature and reliable laser gain medium to achieve more
universally applicable dual-wavelength laser outputs.

At an incident pump power of 11.8 W, a balanced output power of ∼1.51 W was
generated, corresponding to an optical-to-optical conversion efficiency of 12.7% and a
slope efficiency of 15.8%. Moreover, the beam-quality factors of the two wavelengths were
M2

2000 = 1.39 and M2
2119 = 1.30, respectively. We experimentally obtained the optimal

temperature for balancing the output powers of the two wavelengths. Considering the local
heating effect from the pump absorption, the optimum temperature for the simultaneous
dual-wavelength emission was experimentally found to vary with pump intensity.
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2. Experimental Setup

The Tm,Ho:YAP laser crystals employed in this study were grown using the Czochral-
ski technique at the Shanghai Institute of Optics and Fine Mechanics. The crystals were
grown along the crystalline c-axis for YAlO3, while the laser crystal sample containing
5 at.% thulium and 0.3 at.% holmium was cut along the α-axis. The crystal dimensions
were measured to be 4 mm× 4 mm× 8 mm, with plane-parallel ends. Both end faces of the
crystal were coated with a reflectivity of less than 0.5% at both 790–800 nm and 1.9–2.2 µm.

A schematic drawing of the laser setup used in these experiments is shown in Figure 1.
A laser diode (nLight NL-PPS50-10030, Washington, DC, USA) with a maximum output
power of 20 W and a central output wavelength of 794.1 nm was employed for pumping
the Tm,Ho:YAP laser. The pump beam was coupled to a fiber with a core diameter of
100 µm and a numerical aperture of 0.22, and afterwards was re-focused on the crystal’s
center using collimation and focus lenses, both having focal lengths of 75 mm. A pump
spot with a diameter of approximately 850 µm was placed on the center of the laser crystal
with an overall coupling efficiency of approximately 80%. To ensure maximum laser output
efficiency based on previous experimental results [18], we utilized a plane output coupler
coated with partial reflectance (PR; R = 70%) for wavelengths ranging from 1.9 µm to
2.2 µm. Meanwhile, a plano-concave mirror with a 300 mm radius of curvature was used
as the front mirror (M) with a high-transmittance coating (HT; T > 98.0%) at 790–798 nm as
well as a high-reflective coating (HR; R > 99.5%) at 1.9–2.2 µm. The overall cavity length of
the resonator was approximately 90 mm.
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uum was approximately 1.2 × 10−3 Pa, even though there was no accurate pressure sensor 
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Figure 1. Experimental setup. (a) Schematic diagram of the Tm,Ho:YAP SDWL, with the temperature-
controlled crystal mounted in an oxygen-free copper holder. (b) Photograph of the cryostat with a
pair of plane-parallel optical windows.

The laser crystal was mounted in an oxygen-free copper holder with indium foil to
improve the heat-spreading efficiency and was placed in a vacuum chamber. We attached
the copper block to the cold finger of the temperature-controlled cryostat (Janis Research
SHI-4-2, Woburn, MA, USA) with a temperature-control stability better than 0.05 K. A
calibrated copper-constantan thermocouple was affixed directly to the crystal block to
enable direct monitoring of temperature. Two plane-parallel optical windows coated with
99.5% transmittance at a wavelength of around 2 µm were placed in the vacuum chamber.
The pressure gauge of the molecular pump indicated that the amount of vacuum was
approximately 1.2 × 10−3 Pa, even though there was no accurate pressure sensor in the
vacuum chamber.

3. Results
3.1. Laser Spectra

Initially, we investigated the temperature dependence of the laser spectra for the
Tm,Ho:YAP crystal in order to gain a comprehensive understanding of the dual-wavelength
output and the switching and balancing processes. The laser spectra were recorded using
an optical spectrum analyzer (Horiba i550, Kyoto, Japan) with a 0.1 nm resolution.
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As shown in Figure 2, when the pump power is maintained at approximately 5.0 W,
precise temperature adjustment will alter the output wavelength of the laser. The laser
wavelengths can switch between 2000 nm and 2119 nm, or simultaneously emit both
wavelengths with varying intensity levels.
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Figure 2. The switchable and intensity-controllable laser spectra.

At cryogenic temperatures, the Tm,Ho:YAP laser operates as a three-level system,
where Tm3+ serves as a sensitizing ion. Tm3+ in 3H6 (ground state) absorb pump light at
794.1 nm and transition to the excited-state 3H4 level. Subsequently, they return to the 3F4
level through a rapid cross-relaxation process. The energy of Tm3+ in 3F4 level is similar in
magnitude to that of Ho3+ in 5I7. When the population of the 3F4 level increases sharply,
an energy-transfer process (ET: Tm3+ + 3F4 ↔ Ho3+ + 5I7) occurs between Tm3+ and Ho3+,
leading to a continuous increase in the population of Ho3+ at the 5I7 level.

Once a population inversion is established between the excited state and the ground
state of Ho3+, a 2 µm laser can be achieved with 5I7–5I8 transition. Finally, it should be
noted that the generation of dual wavelengths is a result of the energy-level splitting that
occurs in both 5I7 and 5I8, as indicated in Figure 3. Additionally, the population at the
splitting energy level follows a Boltzmann distribution, with the Boltzmann occupancy
factor changing with temperature. Therefore, the rate of spontaneous emission at 2119 nm
increases with temperature, while the value at 2000 nm is reduced.
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It is worth noting that although the laser crystal was cooled as a whole, the two laser
wavelengths actually originated from different areas of the gain medium excited by the
pump beam. As is well known, when longitudinal diode pumping is used, the temperature
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distribution inside the gain medium is typically non-uniform and Lorentzian-shaped. This
suggests that the amount of fluorescence at the 2000 nm and 2119 nm wavelengths in
Tm,Ho:YAP is not homogeneous, but rather depends on local temperature. Therefore, the
rate of spontaneous emission at the 2119 nm wavelength is likely to be higher in the central
part of the pump beam where the temperature is higher, whereas the rate of spontaneous
emission at 2000 nm is superior in the surrounding area, where the temperature is lower.

According to the change process of the spectrum in Figure 2, prior to the temperature
exceeding 49 K, there is only a single wavelength output of 2000 nm. However, as the
temperature increases from 49 K to 53 K, the intensity of the 2000 nm wavelength com-
ponent gradually diminishes, while the intensity of the 2119 nm wavelength component
progressively augments. Once the temperature surpasses 53 K, only a single wavelength
output of 2119 nm is present.

We believed that the optimal temperature for balanced output powers at two emission
wavelengths was approximately 51 K, which was to be precisely determined in the fol-
lowing power measurement experiment. The spectral positions of these two components
remained almost unchanged as the temperature increased, with the root-mean-square error
of the peak position fluctuations for both wavelengths not exceeding 0.2 nm. This indicates
that the wavelengths of the Tm,Ho:YAP SDWL under temperature control exhibit good
stability, which would make them more suitable for use in gas-detection applications.

3.2. Output Power of the Tm,Ho:YAP SDWL

The spectral measurement results indicate that the power of each wavelength will
change with temperature variation, and there should exist an optimal temperature point at
which the output power of two wavelengths is equal. The signal transmission fiber and PbS
detector of the spectrometer cannot guarantee a completely consistent intensity response
for the two wavelengths. Consequently, the peak intensities of the laser spectrum cannot
be used to accurately determine the power ratio of the dual wavelengths. Therefore, at this
stage, a power meter was employed to conduct a detailed analysis of the balancing process
for the SDWL.

The power meter used in the experiment was Coherent PM2, and, subsequently,
the laser oscillation threshold with respect to incident pump power was found to be
around 0.8 W. To explore the dynamics of the Tm,Ho:YAP SDWL, we utilized IR bandpass
filters (T ≈ 0.04% at 2000 nm and T ≈ 61% at 2119 nm) to separate and record the output
performance for each wavelength.

Figure 4 depicts the temperature dependence of the output powers at 2000 and 2119 nm
for three different pump powers of 2.95 W, 4.98 W and 7.03 W. We determined optimal
temperature values of approximately 52.7, 50.2 and 47.7 K, and obtained an SDWL with
0.03, 0.15 and 0.25 W output powers at both 2000 nm and 2119 nm.
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Furthermore, we also observed that the optimal temperature point is almost located
at the central position of the dual-wavelength temperature-change process. Taking the
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dual-wavelength change process at a pump power of 4.98 W as an example, the critical
temperature point for transitioning from a single 2000 nm wavelength output to a dual-
wavelength output state is 48.2 K, and the critical temperature point for transitioning from a
dual-wavelength output state to a single 2119 nm wavelength output is 52.1 K. The optimal
temperature value required to achieve a balanced output is 50.2 K, which is approximately
equal to the average of the two critical temperature values.

Based on the local heating generated by the pump absorption, it can be observed
that the optimal temperature for achieving a balance in output powers at two distinct
wavelengths depends on the pump power. Further investigations have reported opti-
mal temperature values for various pump intensities, which provide confirmation of the
influence of the local heating phenomenon, which is clearly demonstrated in Figure 5.
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Figure 5. Experimental results of the optimal temperature for balanced output powers of two distinct
wavelengths with respect to the pump power and the linear fitting curve of the experimental data.

It was observed that the optimal temperature for balancing the dual-wavelength
output powers shifts toward lower values with increasing pump power due to the local
heating. Empirical evidence suggests that the optimal temperature to achieve a balance in
output powers at two distinct wavelengths exhibits an approximately linear relationship
with the level of pump power. Furthermore, the rate of change of the optimal temperature
with respect to the pump power can be estimated as 1.19 K/W.

Figure 6a shows the total SDWL output power in relation to temperature for different
incident pump powers of 2.95, 4.98 and 7.03 W. It was observed that there was a slight
improvement in overall performance as the temperature increased, and thus the overall
output efficiency of the laser varies with temperature. Here, our primary focus is on the
balanced output phenomenon at the optimal temperature; therefore, we calculated the
output efficiency of the laser at the optimal temperature. According to Figure 6b, it can be
calculated that at our maximal pump power of 11.8 W, the optical-to-optical conversion
efficiency of the laser is 12.7%, and the slope efficiency was linearly fitted to be 15.8%.

3.3. Beam Quality and Power Stability

We conducted a further investigation of the beam quality of each wavelength of
the Tm,Ho:YAP SDWL with balanced output at different pump powers (the optimal
temperature values can be determined based on Figure 5). After performing a Gaussian
transformation on the laser beam using a lens with a focal length of 100 mm, the two-
dimensional laser profile of the beam waist was obtained by an infrared camera (Spiricon
Pyrocam IIIHR, North Logan, UT, USA), and the beam quality of the SDWL was measured
by a slit-scanning beam profiler (Thorlabs M2MS, Newto, NJ, USA).
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Transverse distributions of the beam waist for the SDWL at 2000 nm and 2119 nm with
pump powers of 2.95, 4.98, 6.10 and 7.03 W are illustrated in Figure 7a. The beam-profiling
camera featured a 12.8 mm × 12.8 mm active area, and we specifically captured a central
1.5 mm × 1.5 mm region centered on the beam spot in the figure to offer a more detailed
view of the beam’s shape and distribution characteristics, showcasing subtle features and
intensity variations. An integrated chopper was included in the camera setup to ensure the
accuracy and reliability of the measurement for the 2 µm continuous-wave (CW) beams,
effectively managing the beam’s intensity and preventing potential sensor damage or
saturation. The transverse beam cross-sections, which represent the spatial extent of the
beam at specific wavelengths, were also measured. For wavelengths of 2000 nm and
2119 nm, we determined that the beam cross-sections were approximately 465 µm and
420 µm, respectively. As previously mentioned, the two wavelengths of laser actually
originate from different areas of the gain medium excited by the pump beam. We found
that the beam-waist radius of the 2000 nm wavelength component, which originates from
the surrounding area of the gain medium, is overall slightly larger than that of the 2119 nm
wavelength component, which comes from the central area of the gain medium. This
results in the beam-quality M2 factor of the 2119 nm wavelength component being slightly
better than that of the 2000 nm wavelength component, as shown in Figure 7b. For any
specific wavelength component, the beam-waist radius remains almost unchanged, while
the beam-quality M2 factor increases with the pump power. This indicates that the far-field
divergence angle of the SDWL has expanded. With our maximal incident pump power of
11.8 W, the beam-quality factors of the two wavelengths were measured to be M2

2000 = 1.39
and M2

2119 = 1.30, respectively.
For a verification of the output stability, the dual-wavelength laser power was mea-

sured over 15 min, and the results are shown in Figure 8. The overall power level remained
relatively stable, maintaining approximately 0.61 W. Although there was a slight drift
in the output power of the two wavelength components, they consistently exhibited a
complementary changing trend, such that when the power of one wavelength component
increased, the power of the other wavelength component correspondingly decreased.

The root-mean-square-error (RMSE) power instabilities were slightly higher than
those of the single-wavelength solid-state laser. The RMSEs of the total output power and
the individual powers at 2000 nm and 2119 nm were 2.3%, 1.9% and 1.2%, respectively.
These results indicate that the stability at 2000 nm is somewhat lower than that at 2119 nm,
which is consistent with the relationship between beam quality and beam-waist radius.
Compared with the previous results for a common dual-wavelength laser based on a single
laser crystal [26,27], the power stabilities have been slightly improved.
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4. Discussion

In light of the experimental results presented in this study, it is evident that the
Tm,Ho:YAP SDWL demonstrates remarkable capabilities in terms of switchability and
intensity-controllability. The switchability of the 2 µm laser is based on the influence
of temperature on the stimulated emission cross-section, allowing the laser to work in
stable dual-wavelength operation or switch between two wavelengths by adjusting the
temperature controlled by the cryostat. The optimal temperature for balanced output
will continuously decrease with increase in pump power, making temperature control
at cryogenic temperatures crucial for achieving higher output power in the Tm,Ho:YAP
SDWL. The method in this study may also potentially be applied to other SDWLs based on
Tm and Ho ion doping.

Achieving balanced dual-wavelength laser output holds immense potential for ad-
vancement in multiple fields, including trace-gas detection, remote sensing and biomedical
research. By enabling the simultaneous emission and precise control of two distinct wave-
lengths, these lasers offer new possibilities for innovation and technological development.

In future work, we will explore the implementation of Q-switching and mode-locking
in the Tm,Ho:YAP SDWL. Moreover, based on fluorescence spectra from previous studies,
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the dual wavelength should exhibit π polarizations for 2000 nm and σ polarizations for
2119 nm. We plan to investigate the polarization characteristics of both wavelengths using
suitable polarization beam splitters in subsequent studies. In this paper, the observed
variations in total output power with temperature were likely related to the absorption
spectra and absorption cross-sections of the laser crystal at different temperatures. We
intend to conduct a detailed investigation of this aspect once an appropriate broadband
light source becomes available. Based on the optimal temperature identified during the
experiments, we will further investigate cost-effective, modular cooling solutions in order
to develop a stable and user-friendly SDWL.

5. Conclusions

In conclusion, we have successfully demonstrated an efficient cryogenic Tm,Ho:YAP
laser with simultaneous emission at two widely separated wavelengths. The feasibility
of switching wavelength and achieving balanced output powers at 2000 nm and 2119 nm
has been confirmed by investigating the temperature dependence of the laser spectra.
Due to local heating arising from pump absorption, the optimal temperature for balanced
output considerably decreases with increasing pump power density, with a rate of change
of 1.19 K/W. At the optimal temperature of 43.1 K, the optical-to-optical conversion ef-
ficiency of the Tm,Ho:YAP SDWL with our maximal pump power of 11.8 W is 12.7%,
corresponding to a slope efficiency of 15.8%. Moreover, the beam-quality factors of the two
wavelengths are M2

2000 = 1.39 and M2
2119 = 1.30, respectively. To the best of our knowledge,

this is the first time dual-wavelength balanced laser output has been achieved based on
Tm,Ho:YAP crystals.
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