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Abstract: In this paper, we present a novel autonomous vehicle (AV) localization design and its
implementation, which we recommend to employ in challenging navigation conditions with a poor
quality of the satellite navigation system signals and computer vision images. In the case when the
GPS signal becomes unstable, other auxiliary navigation systems, such as computer-vision-based
positioning, are employed for more accurate localization and mapping. However, the quality of
data obtained from AV’s sensors might be deteriorated by the extreme environmental conditions
too, which infinitely leads to the decrease in navigation performance. To verify our computer-vision-
based localization system design, we considered the Arctic region use case, which poses additional
challenges for the AV’s navigation and might employ artificial visual landmarks for improving the
localization quality, which we used for the computer vision training. We further enhanced our data
by applying affine transformations to increase its diversity. We selected YOLOv4 image detection
architecture for our system design, as it demonstrated the highest performance in our experiments.
For the computational platform, we employed a Nvidia Jetson AGX Xavier device, as it is well known
and widely used in robotic and AV computer vision, as well as deep learning applications. Our
empirical study showed that the proposed computer vision system that was further trained on the
dataset enhanced by affine transformations became robust regarding image quality degradation
caused by extreme environmental conditions. It was effectively able to detect and recognize images of
artificial visual landmarks captured in the extreme Arctic region’s conditions. The developed system
can be integrated into vehicle navigation facilities to improve their effectiveness and efficiency and to
prevent possible navigation performance deterioration.

Keywords: computer vision; robust vehicle localization; data quality; machine learning

1. Introduction

Navigation is one of the most important autonomous vehicle (AV) functions that per-
forms positioning in the environment and decides on further mobility actions. The failure
of accurate localization decreases AV effectiveness and efficiency in other operations, and
this might result in safety accidents. Contemporary AVs primarily rely on global navigation
satellite systems (GNSSs) to perform navigation and localization, such as GPS or GLONASS,
which provide a global coverage and a high accuracy position. For example, contemporary
GPS-based methods, which are the most commonly used GNSS systems, are capable of
achieving a subcentimetric accuracy (e.g., RTK DGPS [1]). This level of accuracy, which
could be further complemented by the measurements from other AV’s on-board sensors, is
sufficient for AVs to safely and efficiently navigate their surroundings. However, in some
territories, e.g., dense urban or low populated areas with frequent extreme environmental
conditions such as the Arctic region, the GPS signal can become unstable or even absent,
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which exacerbates navigational operations. In addition to communication obstructions
and environmental conditions, other factors can lead to GPS failures, such as electronic
interference that may be caused by a variety of sources, e.g., other electronic devices or
power lines; signal jamming that can be intentionally activated by various parties or mali-
cious attackers; and software and hardware malfunctions in GPS-related components that
can cause failures. To mitigate these factors, multi-sensor perception may be employed for
localization and mapping improvement. The data from multi-modality sensors, such as
an on-board camera and an inertial measurement units (IMUs), might be fused in order
to determine the AV’s position in relation to the surrounding objects. However, these
sensor devices might also fail or be maliciously attacked, which leads to data quality (DQ)
degradation and jeopardizes the AV’s security and safety [2,3]. Obviously, the localization
accuracy in this case depends on the quality of data acquired from the sensors. The data
from multiple sensors might be fused to enhance its accuracy and quality; however, the
sensors need to be properly selected in this case [4]. This operation might employ various
sensor selection techniques, such as genetic-algorithms-based ones [5].

In this paper, we consider computer-vision-based AV localization as a complimentary
system to perform navigational operations. Since computer vision utilizes intelligent
machine learning (ML) techniques, its operation involves initial procedures of the ML
model training and validating. In most cases, such procedures commonly employ only high
quality training data [6], which allows ML-based systems to achieve reliable performance on
high quality testing images. However, our previous investigations demonstrated that using
real life images with the degraded quality images dramatically affects the performance of
ML-based computer vision classification [7,8]. To prevent ML performance degradation,
multiple techniques might be leveraged, including the increase of training set diversity and
the re-training of ML-based systems on samples of varying DQ [9].

The AV’s navigation operation largely depends on how the sensor system is designed.
One of the well-known sensors used for AV navigation is LiDAR. For example, Krish-
namoorthi et al. [10] considered a navigation and localization system consisting of LiDARs
and on-board cameras. The system performed path segmentation from point cloud data,
which could be further used in computer vision and AV localization. AVs, as well as
unmanned aerial vehicles, can rely on their own sensors to analyze the environment. The
navigation and localization system allows AVs to make decisions about further actions
without the operator. Arash et al. [11] discussed ways to improve the navigation system
for the Internet of Drones using ML and deep learning algorithms. Their survey [12] refers
to 37 articles devoted to assuring the system’s reliability and fault tolerance. Data from
sensors can be processed by computer vision algorithms to solve navigation and monitoring
problems, as presented in [13]. The practical applications of autonomous robots may be
diverse. Such robots are especially useful when the manual operator’s control is associated
with significant risks to their health; while our research studies the employment of AVs
in Arctic region extreme conditions, other authors, for example, consider AV operation in
underground mines [14] and in radioactive conditions [15].

The problem of designing a reliable navigation system is related to the task of ensuring
the safety of the vehicle. Amiri et al. [12] deliberated on AV navigation security issues
related to the system’s reliability and fault tolerance. The task of controlling an autonomous
vehicle was considered by Liu et al. [16]. The technology was focused on the evolution
from vehicle state estimation and trajectory tracking control in AVs at the microscopic
level to collaborative control in connected and automated vehicles at the macroscopic level.
The task of developing a navigation system for electric vehicles is more specific. Various
scenarios for driving electric vehicles were considered by Chen et al. [17]. The results
presented in our work also contribute to improving the safety of using AVs in various
applications, e.g., autonomous transport navigation in extreme weather conditions.

The issue of sensor fusion is well covered in the literature. For example, Xia et al. [18]
discussed AV kinematic and dynamic synthesis for sideslip angle estimation based on a
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consensus Kalman filter. Gao et al. [19] studied slip angle estimation by considering a
signal measurement characteristic.

In our work, we investigated methods of improving navigation performance in ex-
treme environmental and poor GPS signal communication conditions. We designed and
developed a complimentary AV computer-vision-based localization system to make it
robust in harsh environmental conditions that cause the degradation of images obtained
from the on-board camera. This computer vision recognition system should integrate with
the conventional GPS or even replace it when it becomes unavailable. In particular, we
investigated and verified our design on an Arctic region use case, as, nowadays, many
authorities seek to automate their transportation operations in this region, and AVs are
deemed to become a prominent solution in this field [20]. An example of the resource
excavation facilities cluster in the Arctic region is demonstrated in Figure 1. Highly limited
natural visual landmarks and changing weather conditions in this region make navigation
a real challenge for the AVs. In our particular use case, we considered specialized artificial
visual tags allocated over the AV operation area. These tags contain GPS coordinates
encoded via AprilTag [21], which is needed to be detected and properly recognized by AVs
in order to perform localization in case of GPS unavailability. To implement our design, we
employed Nvidia Jetson AGX Xavier as the computing device for the developed ML-based
system verification. To enhance our ML-based model robustness toward DQ degradation,
we generated images of the artificial visual tags affected by the various lightning and harsh
weather conditions, such as blizzards and heavy rain. In addition, we employed several
types of affine transformations to these images to diversify our training set. We utilized
the produced set of images to re-train our ML-based image classification model. Then, we
evaluated the performance of the developed ML-based model to detect and recognize the
artificial visual tags from the varied distances.

Figure 1. An example of the fossil fuels excavation facilities cluster located in the Arctic region. As
one can see, the landscape is covered with snow and ice and might be characterized as mostly flat
and uniform, with very few distinctive features. The extreme weather conditions and low levels of
precipitation in the region result in a lack of any vegetation forms that could serve as visual markers.
The absence of large geological formations such as mountains or canyons also contributes to the lack
of visual landmarks.

This paper’s major contribution is our computer-vision-based localization system
design that might be employed by AVs in order to improve their localization and mapping
accuracy in case of GPS signal unavailability. The advantage of the proposed system
is its robustness regarding GPS signal instability and image quality degradation caused
by extreme environmental conditions. Our verification use case demonstrated that the
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developed solution is able to effectively detect and recognize images of artificial visual
landmarks in the extreme conditions of Arctic region.

2. Background

In our study, we considered the Arctic region as a great use case that poses both
challenges of input DQ degradation and GPS signal instability. This region experiences a
long winter, lasting up to 10 months, which creates severe problems for AV operation. The
air temperature can drop to −60 degrees Celsius, and the strong cold winds can reach up to
30 m/s. The increased frequency of snowfall and blizzards, as well as the small possibility
of manual search and rescue in the case of emergency situations, exacerbate the challenges.
Such climatic conditions significantly affect AV technical component operation. The excess
resource consumption, fast battery discharge, and failures of electronic devices that are not
adapted for low temperatures are some of the issues faced. The remote and inaccessible
nature can limit the GPS signal’s availability, thus making navigation challenging for AVs.
The extreme weather conditions, low visibility, and harsh terrain can further compound
the challenge of GPS signal loss [22], thus potentially leaving AVs stranded and unable to
navigate safely.

To address the challenges of AV navigation in such arduous areas as the Arctic region,
AVs may use alternative navigation and localization systems in addition to GPS, e.g., IMU
that relies on inertial sensors to track changes in position and movement direction or a
computer-vision-based system, which employs on-board cameras to identify and track the
position based on visual landmarks. These systems can complement GPS-based localization,
thereby providing redundancy and ensuring that AVs can continue to navigate safely and
accurately, even in the event of GPS signal loss. Some developments have been introduced
to realize the AV’s computer-vision-based localization system. Marinho et al. [23] presented
an approach to improve the mobile robot navigation via extracting the information from
the topological map. The approach was designed mainly for outdoor areas; however, it
requires a sufficient number of visual reference points to navigate the robot effectively.

Data-driven ML methods are also widely used to approach AV navigation [24,25].
Here, learning approaches relying on expert reference [26] or based on reinforcement
learning [27] may be employed. These learning approaches make it possible to improve AV
navigation performance when the navigation experience is increasing over the operation
time. This might happen in the conditions of a dynamic environment, which is typical
for operating in the real world. However, ML-based navigation approaches may poorly
generalize and easily “forget” previous knowledge that is displaced by recent experience.
This inevitably leads to AV overall navigation performance degradation. The analysis of
existing AV computer-vision-based navigation and localization approaches demonstrates
that these methods usually require a substantial number of visual landmarks in order to
maintain the level of navigation performance that is acceptable by the user and application
requirements. Most of the presented approaches are primarily acceptable for indoor
navigation, as its environment can often be characterized by a large number of informative
reference points. Outdoor navigation is much more challenging, as its environment usually
provides insufficient visual information for accurate positioning and localization, especially
in specific areas such as the Arctic region. In these conditions, computer-vision-based
navigation and localization methods might not be effective. To approach this challenge,
additional artificial visual landmarks may be introduced to the AV’s operating environment
for more accurate localization. The AprilTag is one of the known examples of such artificial
landmarks [21]. These tags may carry various information that might be used by AVs
to perform localization and mapping on the terrain; for example, they might provide
the current GPS coordinates where these tags are allocated. However, artificial visual
landmarks are still required to be properly recognized by the AV’s computer-vision-based
system in extreme environmental conditions. Petrov [28] proposed a system for navigating
AVs in a winter terrain by extracting the vector of the visual navigation marker. This
approach might be effectively employed when the visual conditions are more or less stable,
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without significant environmental condition degradation. Ali and Shahhood [29] developed
a system for navigation in a 3D space, including open terrain areas. The disadvantage of
the solution is that it also does not consider the AV’s operating conditions, which makes it
unsuitable for complex environments.

In this paper, we focus on rather complex, dynamic, and weather-dependent environ-
mental conditions that affect the quality of the obtained visual information in various ways.
Specifically, we developed a computer-vision-based AV localization system and enhanced
its robustness regarding the on-board camera image quality degradation caused by harsh
environmental conditions. One of the significant challenges we addressed is the low infor-
mative features visibility caused by the unstable environment. The extreme weather can
cause camera lenses to freeze or fog, which can further degrade the image quality and affect
the computer-vision-based localization performance. Additionally, the reflective properties
of snow and ice can create glare and distortions in the images captured by the system,
thereby further degrading the DQ. We present a solution capable of adapting to those
complex weather conditions by employing an ML model for a computer-vision-based local-
ization system. As the visual information extractor, we employed a convolutional neural
network (CNN), as it demonstrated the highest performance in our empirical investigation.
To enhance the robustness of our ML-based model, we produced images affected by various
complex environmental conditions and employed them to re-train the model. To further
assure the ML model performance on the low quality data, we expanded the training
dataset by modifying it using affine transformations. Below, we describe the architecture
and major components of the developed AV computer-vision-based localization system
and how it might be integrated in the overall navigation process.

3. Integration of the Computer-Vision-Based Localization into the AV’s
Navigation Stack

The generic AV navigation process can be described as follows: if GPS is available, it is
employed as the primary AV navigation system to perform route planning and proceeding
to the target destination. By default, computer-vision-based localization is considered as
the auxiliary navigation system (ANS). Depending on the AV’s composition, it might also
employ other ANSs, such as IMU or radar. ANSs might be used in combination with GPS
or with each other (which is a typical practice) or individually if one or more navigation
components fail [30]. ANSs are routinely used to correct the GPS navigation error and for
precise positioning and obstacles detection. Based on the available data from the navigation
and localization system components, the AV makes decisions on further driving actions.
Figure 2 schematically represents the routine process of decision making depending on the
navigation and localization components’ availability and their performance. For the sake
of demonstration, an IMU was used here as another ANS that the AV was equipped with.
Initially, the availability of the GPS signal was verified. With a successful response from the
GPS, the system state switches to the IMU availability verification. The main problem with
relying solely on the IMU for the navigation and localization operations is the complex
environmental conditions in which the AV has to operate. When primarily relying on the
IMU, the navigation error is rapidly accumulated [31], which ultimately leads to the AV’s
disorientation. In this case, such an error can be corrected by the GPS coordinates; however,
the GPS system might be unavailable for a considerable time. In this case, localization and
further navigation might be performed based on computer vision in combination with
other available ANSs.

The problem of time synchronization for a IMU/GNSS is also challenging for reliable
navigation, and it is addressed in the following way: the AV’s sensors operate in series, not
in parallel. In the sequential operation of sensors, the data is transmitted from one system
to another, thus receiving additional parameters for work. The information first passes
through the IMU, then through the GNSS. The use of AprilTags makes it possible to verify
inaccuracies in the IMU and correct their impact on the navigation performance.
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Figure 2. Schematic representation of how the proposed computer-vision-based localization might
be integrated into the AV navigation system process—our design example. The process might be
represented as an iterative algorithm that incorporates verification of the navigation and localization
facilities the AV is equipped with, and it employs them if available.

The computer-vision-based localization system should be capable of detecting and
retrieving the information from the artificial visual landmark in the current location. The
architecture of the proposed computer-vision-based localization incorporates the following
basic modules:

• A detection module;
• An approach module;
• A retrieval module.

The architecture of these modules and the connections between them are represented
in Figure 3. The detection module operates based on the implemented and trained ML
model, the approach module is implemented based on the Nvidia Isaac “Followme” module
[32], and the retrieval module utilizes the AprilTag recognition function [21]. Each module
performs unique functions within the overall AV navigation system. The detection module
is responsible for detecting the artificial visual landmark on which the AprilTag with the
visually encoded GPS coordinates is printed. The approach module allows for pointing
and holding the detected landmark in the field of the AV’s on-board camera view while the
AV is traveling closer to properly recognize the tag. The retrieval module is responsible
for retrieving the information on the current GPS coordinates from the visual tag, and it
performs the AV’s localization adjustment according to these coordinates. In the case of
two or more landmarks appearing in the on-board camera’s field of view simultaneously,
the one that is detected with a higher performance is selected for proceeding toward it.
If multiple visual landmarks have a similar detection performance, then their bounding
boxes are compared, and the decision is made based on the higher intersection over union
(IoU) value. If the IoU value is also similar, the visual landmark is selected randomly.
In our empirical study, we assumed that the visual landmarks were allocated with the
distance of 20 m between each other, which makes multiple detection almost impossible.
The detection module is the initial component that informs the other two modules if there
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are any artificial visual landmarks detected. The other two modules operate in parallel in
order to reduce the time for the information retrieval. Such a combination of actions makes
it possible to minimize the time required to perform localization and mapping. Instead
of approaching within a certain distance to the tag to properly recognize it, the retrieval
process is constantly performed throughout the AV’s approach.

Capturing image by
the on-board camera

Image processing

Artificial visual
landmark detected?

Driving according to the lastly
available information and

applied controls

No

Detection
module

AV's centering on the
detected landmark

Approaching the
detected landmark

Approach
module

AprilTag recognition

AprilTag successfully
recognized?

Retrieval
module

Retrieving GPS
coordinates from the

AV's database

Re-localization
according

to the retrieved
GPS coordinates

Yes

Yes

No

Figure 3. Schematic representation of the proposed computer-vision-based system architecture and its
operation—our design example. The proposed architecture is composed of three modules: detection,
approach, and retrieval. The detection module is responsible for analyzing the visual data obtained
from the on-board camera and detecting artificial landmarks. The approach module is responsible for
keeping the visual landmark in the AV’s on-board camera field of view by adjusting the movement
while approaching. The retrieval module is responsible for recognizing the AprilTag and retrieving
the information on the GPS coordinates.

The detection module utilized the YOLOv4 ML object detection model [33] that was
pre-trained on the MS COCO dataset [34]. This is a reliable version of a well-known
architecture that outperforms other popular ML models in terms of both performance and
efficiency [33].

The approach module operation was based on the software provided by the Nvidia
Isaac “Followme” software development kit [32]. This software allows for AVs to perform
the recognition of the detected object and correct the movement actions while approaching it.
The original programming logic for the “Followme” component implies that the AV should
be close enough to the AprilTag to recognize it. When considering extreme environmental
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conditions, this might be impractical, as it will deteriorate the AV’s operation effectiveness
and efficiency. To minimize the approach time in order to improve the overall navigation
and localization system efficiency, we introduced our modifications into the “Followme”
source code. Instead of initially detecting the AprilTag and using it as a reference point for
the approach, we switched to the visual artificial landmark as the initial object of interest
for detection. Harsh weather conditions significantly deteriorate the AprilTag’s visibility
and detectability, especially from a large distances. Artificial visual landmarks themselves
are rather large and more visible in such conditions, which makes them good candidates to
be utilized as reference points. Hence, the AV can detect these artificial visual landmarks
from a longer distance and spend less resources for this detection, which makes navigation
more efficient.

Once the visual landmark is detected, it is approached until the information is re-
trieved successfully from the AprilTag, which is printed on this landmark. The successful
information retrieval means that the current location is extracted from the AprilTag. The
AV stores the ID of the AprilTag, which is related to the GPS coordinates represented in
the format of DD.DDDDD, DD.DDDDD, where DD stands for the longitude and latitude
values. An example of the encoded data is 40.17312, 42.84121. When the AprilTag is recog-
nized, the corresponding coordinates are retrieved from the AV’s database. After retrieving
the GPS coordinates, the current coordinates and path of the AV is updated, and all passed
landmarks are recorded. After re-localization according to the retrieved coordinates, the
system responsible for the AV’s routing updates the route to the target destination by
considering the current location, and the AV proceeds to the target destination according to
the process displayed in Figure 3.

4. Employed Data and Transformations

Despite the numerous publicly available image datasets of various sizes, categories,
and designs for different knowledge domains, those datasets are usually composed of high
quality data. For our considered specific Arctic region use case, to produce the ML model
that is robust regarding possible DQ degradation, we also needed images affected by the
extreme environmental conditions. We found the available public datasets not suitable for
our specific use case, so we developed the visual artificial landmark model with the printed
AprilTag by employing the Nvidia Isaac Sim application [32]. Alongside this application,
we also utilized the Unity3D software package [35] to generate images of the visual tags in
various extreme environment conditions that were captured from various distances and
angles. The Nvidia Isaac Sim made it possible to configure numerous parameters, such
as object location, illumination, overlapping with other objects, etc. With these settings,
it was possible to produce a substantial collection of the unique data samples to train
ML models. An example of the designed visual artificial landmark is demonstrated in
Figure 4. Considering the features of the Arctic region terrain, we produced a substantial
set of images capturing the artificial visual landmark in various complex environmental
conditions, such as snow drifts, blizzards, insufficient illumination, etc. In Figure 4, we
represent a few instances of the produced images. The constructed artificial visual landmark
consisted of two parts: the holder and the panel for the AprilTag. The height of the holder
was 1 m, the size of the panel was 40 by 40 cm, and the size of the printed AprilTag was 30
by 30 cm.

From the initial ≈4000 original good quality images, we generated around 20,000 samples
of various qualities that were captured from various angles and distances. To further
increase the image diversity, we also employed affine transformation techniques. Random
affine transformations are geometrical vector modifications that are introduced to existing
images. Such transformation methods as rotation, scale modification, shift, and reflection
might be applied, which make is possible to produce a visually distinct image without dis-
carding the essential details and structure of the image. Affine transformations are widely
used in computer vision applications to expand the diversity of the samples in order to
train more generalizable models. This approach is especially useful in training deep neural
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networks that require a large amount of diverse data to achieve acceptable performance.
In our work, we employed such affine transformations as rotation, scale modification,
shift, and reflection alongside the changing environment to produce images that would
be infeasible to obtain in real conditions. By employing the affine transformations, we
expanded our data by 3126 additional samples. Then, we manually labeled the produced
data samples to employ them for further training procedures. The produced data was split
into 70% training, 15% validation, and 15% test batches.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Artificial visual landmark image samples generated in Unity3D software package. The
figure demonstrates multiple image examples of varying quality under diverse environmental
conditions: (a) heavy rain; (b) heavy snowfall; (c) blizzard; (d–h) captured from varied distances,
angles, and in various illumination conditions.
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5. Empirical Study

The produced labels were represented by the class ID and point coordinates of the
visual landmark in the [x, y, x + w, y + h] format, where w and h are the width and height
of the bounding box, respectively, x is the initial coordinate of the bounding box on the
horizontal axis, and y is the initial coordinate of the bounding box on the vertical axis.
As the employed ML model was initially pre-trained on the MS COCO dataset [34], we
only re-trained the fully connected layer, which used the Softmax activation function.
As a computing device for training, we employed the Nvidia Jetson AGX Xavier [36].
This device is known for its low power consumption of only 10W, which allows it to be
employed in autonomous mobile robotic devices. The device makes it possible to utilize
CUDA cores for real-time calculations. The employed device possesses the following
technical characteristics:

• AI performance: 32 TOPS (trillion operations per second);
• GPU: Nvidia Volta architecture with 512 Nvidia CUDA cores and 64 tensor cores;
• CPU: 8-core 64-bit Nvidia Carmel processor with Armv8.2 architecture, 8 MB L2, and

4 MB L3;
• Deep learning accelerator: 2 NVDLA Engines;
• Computer vision accelerator: 2 PVA accelerators.

For the ML model performance evaluation metric, we employed Average Precision
(AP), which incorporates precision and recall and is usually employed for evaluating ML
performance [37]. AP can be characterized as the area under the precision–recall curve,
which shows how the accuracy and completeness of the algorithm change at various
classification probability thresholds.

The IoU is a metric that is usually employed to evaluate the object detection algorithm’s
performance. Typical threshold values indicate correct detection when the IoU is more
than 50%. The IoU value is calculated as the relationship between the intersection areas
of the predicted bounding box and the actual ground truth bounding box. Since we are
evaluating accuracy for the detection and classification algorithm, we also employed the
mean AP (mAP) metric, which can be calculated by Equation (1):

mAP =
Q

∑
q=1

AP(q), (1)

where Q is the number of classes; q is the class; and AP(q) is the AP value for the q’s class.
To select an ML model architecture for our use case, we performed an ablation study

where we tested how various ML model architectures performed on a testing set of the
produced data samples. We tested ML architectures based on a CNN (YOLOv4); Haar
cascades; and based on ML with a histogram of directional gradients (HOG) used as
a descriptor for a support vector machine (SVM). We pre-trained these models on the
same cohort of the produced data and then tested them over the prepared testing set.
We employed ML accuracy as the evaluation metric for this ablation study. The ML
performance results are presented in Table 1. According to the results, the YOLOv4 object
detector that is based on CNN architecture demonstrated the highest accuracy in the
studied conditions. Based on these results, we selected the YOLOv4 as an image processor
for the designed AV computer-vision-based localization system. Furthermore, the choice of
the YOLOv4 was justified by the fact that, at the time of the research, this architecture was
recommended for achieving robust real-time computation performance using the employed
Nvidia Jetson AGX Xavier computational device.
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Table 1. Results of the ablation study for evaluating the performance of three distinct ML architectures
over the data samples produced with Unity3D. The testing data includes image samples affected by
the extreme weather conditions and captured from various angles.

YOLOv4, % Haar Cascades, % HOG + SVM, %

Accuracy 78.75 42.39 49.17

Initially, we re-trained our model for 2000 epochs on the images without affine trans-
formations and tested it on the produced images of the artificial visual landmark captured
from the varied distances (from 5 to 20 m) and affected by various environmental condi-
tions. The first column in Table 2 represents the performance results achieved by this model.
As one can see, the model poorly detected the target objects in the images and provided
unacceptable performance. We then continued to further re-train the model, but, in this
case, it was only trained on the images produced with affine transformations. After further
training, we test the model again over the similar images employed in the former case.
These testing results are represented in the second column of Table 2. The model was able
to achieve substantial performance improvement with the 83.8% for the mAP and 78.73%
for the average IoU.

Table 2. Results comparing the effect of re-training the ML model on the data modified with affine
transformations. The affine transformations include such geometrical vector modifications as rotation,
scale modification, shift, and reflection.

Model without Affine
Transformations, %

Model with Affine
Transformations, %

mAP 25.8 83.8
Average IoU 46.31 78.73

To evaluate the performance of the produced model in various weather conditions,
we formed four distinct testing data cohorts based on the distance to the artificial visual
landmarks in the images. In our experiments, we employed images captured from the
distance of 10, 20, 30, and 40 m. Figure 5 represents the performance demonstrated by the
model on these data cohorts. For the sake of comparison, we also presented the results for
the model trained on the data without affine transformations. From the results, one can
see the employment of various augmentation techniques over the training data, wherein
the quality was significantly deteriorated by extreme environmental conditions, which
made it possible to substantially enhance the ML performance in the case of testing sample
quality degradation. However, as the distance between the visual landmark and the camera
increased, the tag recognition performance dropped. A distance of 30 m from the tag
contributed to a 60% ML performance decline. Furthermore, when starting from a distance
of 40 m away from the tag, the model completely stopped recognizing the tag.

In addition to extreme weather conditions, we also considered changing illumination
as another quality degradation factor. In the Arctic region, daylight is highly limited in
most times of the year, which poses an additional challenge for AV computer-vision-based
localization systems. To evaluate how our model was robust regarding the changes in
illumination, we formed a number of testing data cohorts. They were generally divided into
two categories: daylight, which incorporates images captured in the lightning conditions of
155 LUX, and nighttime, with images captured in the extremely limited lightning conditions
of 5 LUX. Each of these categories included three sub-categories of images captured from
the varied distances of 0.5, 2, and 5 m. Table 3 demonstrates the results of the ML model
performance over the employed images cohorts.
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Figure 5. The tag recognition performance by the ML model trained with and without affine trans-
formations tested on images affected by various extreme weather conditions and captured from
different distances. The results are presented for the model trained only on the produced images
without re-training on data modified by affine transformations (orange plot) and for the models
further re-trained on the data modified by the affine transformations (blue plot).

As one can see, in the case of the 0.5 m distance, the ML model demonstrated high
performance in both daylight and nighttime conditions, with an accuracy of 97% and
94%, respectively. However, increasing the distance from the camera to 2 m affected
the performance significantly, and even critically, in the nighttime conditions, while, in
case of the daytime, the performance was still over 80%. For the nighttime images, it
dropped below 50%, which substantially exacerbated the AV’s computer-vision-based
localization. Further increasing the distance to 5 m completely prevented the ML model
from selecting the correct operation in the nighttime. However, for the images captured
in the daytime, even though the demonstrated performance was impractical, it was still
above the 50% boundary.

Table 3. Comparison of the performance demonstrated by the ML model in recognizing AprilTags
captured under different illumination conditions and from various distances. The distance varied
from 0.5 to 5 m, and the illumination was 155 LUX for the daytime and 5 LUX for the nighttime.

Distance, m Accuracy (Daylight), % Accuracy (Nighttime), %

0.5 97 94
2 83 43
5 54 0

6. Limitations and Potential Future Directions

Both our empirical study and the developed solution have several limitations. First,
as the use case scenario for our solution, we considered the AV’s operation in a structured
environment with natural or artificial visual landmarks allocated in advance over the
operation area. An AV has to possess prior knowledge on the environment, which might
be realized with an off-line map and relationships between the known landmarks and GPS
coordinates stored in the AV’s memory. Second, instead of producing and employing real
data for training the ML model, we utilized the well-known Unity3D software package
to generate artificial samples designed to represent affects by extreme weather conditions.
This allowed us to significantly extend the size and the diversity of the dataset in order to
train the model to be more robust in varying conditions. In addition, in our research, we
concentrated only on improving the robustness of the computer-vision-based localization
system against the low quality data affected by the harsh weather conditions. We did not
consider additional influences that these conditions might have had on the AV’s navigation
and localization quality, such as failures of the other AV systems and elements responsible
for driving control.

Our approach improved the value and contributions developed in our work. As we
showed in our experiments, pre-trained ML models further trained on augmented low
quality data become more robust regarding DQ degradation. Since Unity provides a reliable
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simulation environment for designing and testing AI-based solutions for industrial robotic
systems before their actual implementation and deployment, the artificial samples we
produced can be considered as robust and close-to-real. Similar training operations might
be performed with real images in the case of implementing our solution in practice. In our
development, we concentrated only on enhancing the robustness of computer-vision-based
localization against the DQ degradation caused by extreme weather conditions, which we
effectively demonstrated in our results. Despite our value for the detrimental effects of
other processes and factors that may influence the navigation, localization, and driving
operations, they are out of our paper’s scope.

As the potential future research directions, we can propose research on the optimiza-
tion of the landmarks’ design, their spatial distribution, and the sensor fusion. The optimal
size and visual characteristics of the artificial visual landmarks play important roles in
their early detection and optimal approaching by the AVs. Comprehensive research re-
sulting in recommendations on the shape, appearance, and other visual characteristics for
improving artificial visual landmark detection in extreme environmental conditions by the
computer-vision-based systems would help to enhance the navigation and localization
quality and performance. Another direction is the landmarks’ optimal allocations over the
AV’s operation area. This is a complex problem that requires the consideration of numerous
factors, such as the AV’s technical characteristics, landscape features, dynamic environment
conditions, operation area dimensions, starting and target destination locations, etc. One
more direction is sensor fusion optimization aimed at selecting appropriate sensors and
integrating the data acquired from them in order to improve the overall DQ. Progress in
this direction would make it possible to effectively produce data whose quality satisfies
the user and application requirements. This would allow for enhancing the quality of
intelligent navigation.

7. Conclusions

AV navigation is a challenging problem in the conditions of GNSS signal instability or
absence, which might often be the case in certain regions as diverse as dense architecture
urban areas or low populated areas with extreme environmental conditions. To address
this problem, data from other AV sensor systems are commonly employed to maintain
the required localization and mapping accuracy. However, the quality of measurements
produced by those sensors might be affected by various factors; for example, the quality of
images from the on-board camera might be degraded by harsh weather conditions. This
leads to the AV’s navigation performance deterioration, decreases the AV’s effectiveness
and efficiency, and might jeopardize the safety of AVs and surrounding objects. In this
paper, we proposed an enhanced design of a computer-vision-based localization system that
can be integrated into AV navigation facilities to improve their localization and mapping
accuracy in extreme environmental conditions where GPS signals are unstable or absent.
Based on our empirical study results, the following conclusions can be formulated. A
CNN-based ML model architecture (in particular, YOLOv4), demonstrated performance
that was higher than the two other investigated architectures and can be employed as
an image processor for AV localization applications. However, as our research showed,
even the model trained on a comprehensive set of images representing affects by various
extreme environmental conditions, was insufficient to achieve performance acceptable for
effective and efficient AV operation. Employing data augmentation techniques such as
affine transformations and further training the model on this data significantly improved
the model robustness regarding testing image quality degradation. Indeed, the further
trained model was able to demonstrate a performance higher than 80% for the degraded
images captured from the distance of up to 20 m. In the changing illumination conditions,
the model was able to achieve high performance in the distance of up to 2 m in daylight.
Unfortunately, in the nighttime, when the distance increased above 0.5 m, the model was
hardly able to properly recognize the tag.
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