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Abstract: Straw burning is a long-term environmental problem in China’s agricultural production.
At present, China relies mainly on satellite remote sensing positioning and manual patrol to detect
straw burning, which are inefficient. Due to the development of machine learning, target detection
technology can be used for the detection of straw burning, but the current research does not take
into account the various scenarios of straw burning and the deployment of object detection models.
Therefore, a lightweight network based on depthwise separable convolution and channel attention
mechanisms is proposed to detect straw-burning smoke at a remote distance. Various regional and
crop-burning smoke datasets were collected to make the algorithm more robust. The lightweight
network was applied to automatically identify and detect straw-burning smoke in surveillance
videos. The experiment showed that the amount of light network parameter was only 4.76 M, and the
calculation performance was only 11.2 Gflops. For the intelligent detection of straw-burning smoke,
performance verification accuracy was improved by 2.4% compared with Yolov5s. Meanwhile, the
detection speed on the embedded Jetson Xavier NX device can reach 28.65 FPS, which is 24.67% better
than the Yolov5s. This study proposes a lightweight target detection network, providing a possible
method for developing low-cost, rapid straw-burning smoke detection equipment.

Keywords: straw-burning smoke detection; lightweight network; depthwise separable convolution;
channel attention

1. Introduction

China is a major agricultural country, and the agricultural economy accounts for a
significant proportion of China’s economic structure, which has a significant impact on the
long-term and stable development of the social economy. However, there is a long-term
environmental problem in China’s agricultural production, which is straw burning [1].
Research shows that the total amount of pollutants generated by straw burning in Hebei
Province accounts for 21% of the total air pollutants [2]. The government has been aware of
the hazards of straw burning since 2016, and in order to address this issue, corresponding
policies have been gradually introduced to prohibit straw burning on-site. Relevant research
shows that burning straw not only pollutes the environment but also harms the health of
residents nearby [3,4]. At present, law enforcement departments rely mainly on satellite
remote sensing positioning and manual patrol to detect straw burning. Remote sensing
recognition can only detect a certain range of straw burning, which will cause many
omissions. Artificial methods are inefficient and harmful to the health of law enforcement
personnel [5,6]. Due to the area of the straw-burning flame being small, it is difficult to
observe the flame of straw burning at a long distance. Since the large amount of smoke
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generated by straw burning can be monitored at long distances, it is feasible to judge
straw burning by monitoring smoke. Thus, an urgent need to develop a high-precision,
non-contact, rapid, remote detection method for straw-burning smoke exists. Using target
detection technology to build a straw-burning smoke target detection system can help to
meet the above requirements and is highly suitable for use by law enforcement agencies to
detect straw-burning smoke.

The development of deep learning opens a new route to straw-burning smoke detec-
tion. Researchers have successfully applied deep learning for smoke detection and have
obtained higher than traditional detection accuracy and speed using the target detection
technology to build the straw-burning smoke target detection system. This system can meet
the above requirements and is suitable for enforcing straw-burning smoke. Currently, the
commonly used target detection algorithms include Faster R-CNN (Region-Convolutional
Neural Network) [7], SSD (Single Shot MultiBox Detector) [8], and Yolo (You Only Live
Once) [9–11]. In terms of straw-burning smoke detection, Wang et al. [12] proposed a
smoke-detection method based on an improved frame difference method and Faster R-
CNN. For smoke detection, it first uses the improved frame difference method to extract
candidate regions, then it uses the Faster R-CNN model for smoke detection. The model
in this paper uses Faster R-CNN with slow reasoning speed and the inter-frame differ-
ence method to filter data, which cannot meet the needs of real-time monitoring by law
enforcement personnel. Anhui Baolong Environmental Protection Technology [13] have
also attempted to add the straw-burning smoke detection function to their remote sensing
monitoring equipment; however, within the actual applications, the smoke-detection speed
of this equipment is low.

Liu et al. [14] proposed using the improved Yolov5s algorithm to detect smoke in
Sentinel-2 images captured through remote sensing. A convolutional block attention
module was added to the original model to improve detection accuracy. However, this
algorithm is used for remote sensing monitoring. In practice, monitoring the small area
of straw burning is impossible. Mukhiddinov et al. [15] and others conducted studies by
placing a small arithmetic platform on an unmanned aerial vehicle, and used Yolov5 for
real-time reasoning to complete outdoor wildfire remote monitoring. In the article, the
authors optimize anchors using K-mean++ technology to reduce classification errors, and
focus on small- and medium-sized wildfire smoke areas with a spatial pyramid structure.
The results of the paper show that the improved Yolov5 recognition rate with the dataset is
73.6%. The experiment verifies that Yolov5 can be successfully used for the detection of
straw-burning smoke. However, the modification does not account for whether the speed
and accuracy of the model can be further optimized, and more research is needed.

The current research does not consider the large-scale monitoring of straw-burning
smoke. Firstly, when observing from a distance, the area of smoke is relatively small, and
targeted optimization of the algorithm is needed. At the same time, the morphology of
smoke observed at different distances is different, so it is necessary to collect smoke data
from different distances. Secondly, the background color of the same location varies in
different seasons, such as green fields in spring and yellow fields in autumn. Therefore, it is
necessary to collect smoke data from straw burning across different seasons. Finally, existing
research has not considered optimizing the speed and accuracy of algorithms. When the
hardware requirements of the algorithm are too high, and the algorithm is applied in the
wild, it is not conducive to deployment. This article will research these issues.

Based on Yolov5s [16], this study proposes a target detection algorithm with a small
model size and a fast detection speed [17]. A lightweight network is very suitable for
mobile and embedded devices [18]. Based on the Yolov5s network, the network’s backbone
is improved, and the depthwise separable convolution [19,20] and ECA (Efficient Channel
Attention) mechanism [21] are introduced. We call the improved network Yolo-Light.
Datasets are extremely important for machine learning. Currently, there are no public
datasets of straw-burning smoke, so datasets of straw-burning smoke in different seasons,
locations, and crops were collected in this study.
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Yolo-Light was trained using the straw-burning smoke target dataset and deployed
on the Jetson Xavier NX embedded platform. The straw-burning smoke target dataset was
used to train Yolo-Light and Yolov5s, and the model parameters and performance were
compared. Moreover, the actual detection ability of Yolo-Light on the embedded Jetson
Xavier NX device was verified. Compared with Yolov5s, Yolo-Light has fewer parameters
and calculations, and can achieve faster detection speeds on embedded devices.

2. Materials and Methods
2.1. Basic Principles of the Yolov5 Target Detection Model

Due to the need to improve the detection speed, the Yolo series cancels the pooling
and full connection layers, and adopts the method of using only the volume layer. Since
the pooling layer is withdrawn, the down sampling of the Yolo series is realized through
the stripe = 2 of the convolution layer. To detect objects of different sizes, the Yolo series
uses three scales of different sizes to improve the recognition rates of small targets.

Yolov5 has a more robust performance and a smaller volume than previous versions.
Four versions of the Yolov5 target detection network exist, and the model sizes are suc-
cessively increased to Yolov5s, Yolov5m, Yolov5l, and Yolov5x. The Yolov5s network has
the lowest depth and feature-map width within the Yolov5 series; it also has the fastest
detection speed. Moreover, it is very suitable for embedded devices with small calculations.
The other three have been continuously deepened and improved upon this basis. The
network structure diagram is shown in Figure 1.

Figure 1. Network structure of Yolov5.

As can be seen from the network structure diagram, Yolov5 is divided into four parts:
input, backbone, neck, and prediction. The Yolov5 series primarily controls the depth
of the network by controlling the number of residual components in BottleneckCSP. The
comparison of the number of residual features in BottleneckCSP is shown in Table 1.

Table 1. Network structure comparison of Yolov5.

Section Structure Yolov5s Yolov5m Yolov5l Yolov5x

backbone

BottleneckCSP1 1 3 3 4
BottleneckCSP1 3 6 9 12
BottleneckCSP1 3 6 9 12
BottleneckCSP2 1 2 3 12

head

BottleneckCSP2 1 2 3 4
BottleneckCSP2 1 2 3 4
BottleneckCSP2 1 2 3 4
BottleneckCSP2 1 2 3 4

Since the backbone of Yolov5s is considerably large, it needs to be optimized to
compress the model volume and to increase the detection speed. This chapter proposes a
lightweight network based on Yolov5s, which can perform well on the embedded platform.
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Compared with Yolov5s, its main improvements are its ordinary convolution to depthwise
separable convolution and the introduction of the ECA mechanism.

2.2. Lightweight and High-Precision Target Detection Network
2.2.1. Depthwise Separable Convolution

Compared with traditional convolution, the most significant advantage of depthwise
separable convolution [15] is the reduction of the parameters. For a feature map H×w× c1,
after a standard convolution (assuming the size of the convolution kernel is h× w× c1 and
that the convolution has the padding operation), the output size is H × w× c2; then the
parameter of standard convolution is shown in (1).

Pconv = (h× w× c1)× c2 (1)

Depthwise separable convolution performs a spatial convolution while keeping the
channel independent, and then performs the depth convolution operation. Depthwise sep-
arable convolution is a combination of depthwise convolution and pointwise convolution.
Depthwise convolution is responsible for filtering. Its convolution kernel size is h× w× 1
and it has a total of c1, which acts on each channel. Pointwise convolution is accountable
for the conversion channel, and the convolution kernel size is 1× 1× c1. There are c2 in
total, which act on the output feature map of depthwise convolution. The parameter of
depthwise convolution is shown in (2), and the parameter of pointwise convolution is
shown in (3).

PDepthwise = (h× w× 1)× c1 (2)

PPointwise = (1× 1× c1)× c2 (3)

The parameters of depthwise separable convolution are shown in (4).

PDepthwiseseparable = PDepthwise + PPointwise = h× w× c1 + c1 × c2 (4)

The comparison between depthwise separable convolution and standard convolution
is shown in (5).

PDepthwiseseparable

Pconv
=

h× w× c1 + c1 × c2

h× w× 1× c1 × c2
=

1
c2

+
1

(h× w)2 (5)

Depthwise separable convolution effectively decomposes the traditional convolution
by separating the spatial filtering from the feature generation mechanism and reducing the
amount of calculation by eight to nine times, compared with the traditional convolution [20].
The structure of traditional convolution (a) and depthwise separable convolution is shown
in the Figure 2.

Figure 2. Traditional convolution (a) and depthwise separable convolution (b).
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2.2.2. ECA Attention Mechanism

ECA is an effective channel attention module, which only adds a few parameters, but
this can lead to a clear performance gain.

The attention mechanism allows the network to selectively enhance the features with
a large amount of information, so that these features can be fully utilized in subsequent
processing, and then useless features are suppressed. Taking traditional convolution as
an example, the convolution kernel is V = [v1,v2,v3,· · · ,vc], where vc represents the c-th
convolution kernel. For input X, the output is U = [u1, u2, u3, · · · , uc].

uc = vc ∗ X =
c

∑
s=1

vs
c ∗ xs (6)

where ∗ in (6) represents a convolution operation, vs
c represents a convolution kernel, its

input is a spatial feature on a channel, and it learns a spatial relationship. However, due to
a summation operation performed to obtain the convolution results of each channel, the
channel feature relationship is mixed with the spatial relationship learned by the convo-
lution kernel. The purpose of the attention mechanism operation is to extract this mixed
operation, so that the model directly learns the characteristic relationship of each channel.

The ECA net mainly improves the SE (Squeeze and Excitation) module [22], and
proposes a local cross-channel interaction strategy (ECA module) without dimensionality
reduction and a method of adaptively selecting the size of the one-dimensional convolution
kernel, so as to improve the performance. The structure of SE Module is shown in the
Figure 3.

Figure 3. SE Module.

As shown in Figure 4, after performing channel-level global average pooling without
reducing the dimension, the local cross-channel interaction information is captured by con-
sidering each channel and its k-nearest neighbors. Cross-channel interaction information is
captured via rapid one-dimensional convolution with size K.

Figure 4. ECA Module.
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The ECA module is developed on the SE module. Two fully connected layers are used
in the SE module to obtain the correlation between each channel. The two fully connected
layers perform dimensionality reduction operations on the global feature compression
obtained through global average pooling, which affects the acquisition of the correlation
between each channel. The ECA module has improved this.

The ECA increases information sharing and interconnection between convolution
channels, avoids dimensionality loss and information loss during information sharing, and
significantly reduces model complexity while maintaining performance.

w1,1 · · · w1,k 0 0 · · · · · · 0
0 w2,2 · · · w2,k+1 0 · · · · · · 0
...

...
...

...
. . .

...
...

...
0 · · · 0 0 · · · wC,C+1 · · · wC,C

 (7)

As shown in (7), the ECA module uses the matrix Wk to learn channel attention. Wk has
a total of k ∗ C parameters, which avoids complete independence between different groups.
The weight of the i-th channel is calculated via the correlation between the i-channel and
its k adjacent channels. The calculation formula is shown as (8).

ωi = σ(
k

∑
j=1

wj
iy

j
i), yj

i ∈ ωk
i (8)

where ωi represents the learned channel attention, yi represents the output of the i-th
channel after global average pooling, and ωi represents the set of k adjacent channels of yi.
All channels can share weight information to reduce the amount of parameters and further
improve performance.

One-dimensional convolution with a convolution kernel size of k is used to achieve
information interaction between channels.

ω = σ(C1Dk(y)) (9)

In (9), C1D represents one-dimensional convolution, which only involves k parameter
information, and it generally has a value of k = 3. This method of capturing cross-channel
information interaction can ensure performance and model efficiency.

2.2.3. The Overall Structure of the Yolo-Light Network

The improved network structure is shown in Figures 5 and 6. The backbone of the
network uses two bottleneck structures. The ECA module is added to Bottleneck1 but is
not used in Bottleneck2. In both the bottleneck structures, depth-separable convolutions
are used instead of traditional convolutions to reduce the number of parameters.

Figure 5. Network structure of improved model.

Figure 6. Network structure of Bottleneck.
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Compared with Yolov5s, Yolo-Light reduces the number of network layers and param-
eters, and improves speed and accuracy.

2.3. Collect and Build Dataset

As the current research on straw-burning smoke is in its infancy, we need a relevant
dataset. The open-source smoke datasets are mainly fire accident smoke datasets and
are unsuitable for monitoring straw-burning smoke. We therefore required a dataset for
the target detection of straw incineration smoke. As shown in Figure 7a, a 2-megapixel
camera with a 10–360 mm zoom lens was designed to capture a straw-burning smoke
video at a distance of 3–5 km. The camera model is DS-2CD5027EFWD-A, manufactured
by Hikvision. It has a 1/8′′ COMS (complementary metal-oxide semiconductor) sensor,
a dynamic range of 120 db, supports H.265, and has a resolution of 1920 × 1080. The
power consumption of the camera is only 6 W, and the operating temperature is −30 ◦C to
−60 ◦C, making it suitable for deployment in the wild. In order to monitor long-distance
straw-burning smoke, we equipped the camera with a 10–360 mm zoom lens. The model
of the lens is YM36 × 10MAPRF, manufactured by YAMAKO. The lens has a temperature
compensation function, with a working temperature of−40 ◦C to−70 ◦C. The combination
of camera and lens can achieve the collection and monitoring of straw-burning smoke
within a range of 3–5 km. As shown in Figure 7b, an unmanned aerial vehicle (UAV) with
a camera is used to collect smoke from straw burning at close range. The UAV model
is DJI MAVIC PRO, manufactured by DJI, with a 12.35-megapixel camera. The camera
resolution is 3840 × 2160 with a 26 mm lens. The UAV is used to capture straw-burning
smoke footage at a distance of 1–2 km.

Figure 7. Zoom camera (a) and unmanned aerial vehicle (UAV) (b).

To enrich the dataset, we collected straw-burning smoke data in the summer under
the background of immature crops and straw-burning smoke data in the autumn after
the crops were mature and harvested. Due to the different colors of smoke burned by
different crop straws, the smoke from wheat, maize, and rice straws were collected in this
study. At the same time, considering the different backgrounds in different geographic
environments, the experiment of collecting straw smoke data was arranged in different
locations, including Hefei (Anhui Province), Luan (Anhui Province), Huainan (Anhui
Province), Shangqiu (Henan Province), and Shenyang (Liaoning Province). Some pictures
of training dataset and test dataset in different locations is shown in the Figure 8.

This study collected smoke videos for about 5 h, and selected 10,000 different smoke
pictures as the training dataset and 1000 different pictures not in the training dataset as
the test dataset. The number of images in the dataset is shown in Table 2. The different
backgrounds of the collected smoke datasets include seasons (spring and autumn), locations
(southern and northern regions of China), terrain (plains and hills), crops (rice, wheat, and
corn), weather (sunny and cloudy), time (morning, afternoon, and dusk), and distance.
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Figure 8. Some pictures of training dataset and test dataset in different locations. (a,e) Corn fields
in Henan Province; (b) paddy fields in Heilongjiang Province; (c,g) wheat fields in Anhui Province;
(d,f,h) paddy fields in Anhui Province.

Table 2. Datasets for training and testing.

Training Test

Paddy field 6000 600
Corn field 2000 200

Wheat field 2000 200
Total 10,000 1000

2.4. Quality Control

Firstly, in order to control the quality of data collection, this study collected three
scenarios of straw-burning smoke, including paddy fields, corn fields, and wheat fields.
Secondly, due to changes in background color caused by seasonal changes, this study
collected data from spring and autumn. Thirdly, considering the complexity of China’s
region, this study collected data on straw burning smoke in southern and northern regions
of China, including plains and hills. Fourthly, in order to handle backgrounds with different
brightness levels, the weather conditions for collecting data in this study included sunny
and cloudy days, and the collection times included morning, afternoon, and dusk. Finally,
in order to control the impact of the size of the straw-burning smoke area, this study
collected smoke images from both near and far distances during data collection. These
measures ensured the balance and diversity of the data.

During the modeling process, this study used the following parameters to train all
models: epochs = 300, img-size = [640, 640], batch-size = 64. Epochs represented the
number of iterations of the model, img-size represented the image size of the input model,
and batch-size represented the number of images trained for each input model. After the
training, the model with the highest mAP(mean Average Precision) value was selected as
the final output of modeling.

2.5. Experimental Platform

The experimental platform in this paper is shown in Table 3. The CPU used to train
the model is an Intel Core i9-10900X, which is a high-performance CPU with ten cores and
twenty threads, and a frequency of 3.7 GHz. The GPU used is NVIDIA TITAN RTX, which
has a 24 GB GDDR6 frame buffer, a boost clock of 1770 MHz, and 4608 CUDA cores. The
excellent performances of CPU and GPU ensured the stability of the training model.

Table 3. Train model environment.

System Ubuntu18.04

CPU Intel Core i9-10900X
GPU 2 × TITAN RTX

Hardware acceleration Ubuntu18.04; CUDA10.1; Pytorch1.11; opencv4.6
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3. Results
3.1. Model Size

The self-built dataset was used to train Faster R-CNN, Yolov5s, and Yolo-Light under
the above-mentioned experimental platform. The model with the highest mAP was updated
and retained during training. The final model parameters are shown in Table 4.

Table 4. Comparison of network model parameters.

Model Params Flops Model Size

Faster R-CNN 28.3 M 213 G 114.2 MB
Yolov5s 7.01 M 15.8 G 14.4 MB

Yolov5s+ECA 7.22 M 16.1 G 14.8 MB
Yolov5s+Dconv 4.56 M 10.9 G 9.5 MB

Yolo-Light 4.76 M 11.2 G 9.9 MB

Table 4 shows that Yolo-Light has the lowest parameters and calculations, compared
with Yolov5s and Faster R-CNN. The model volume is only 9.9 MB. Compared with the
Yolov5s model, the volume is reduced by 31.3%, the parameter volume is reduced by
31.1%, and the calculation amount is reduced by 29.11% (the test input is [1, 3, 640, 640]).
The Faster R-CNN model has the largest volume, at 114.2 MB, which is 11.54 times that
of Yolo-Light; the calculation performance is 19.01 times that of Yolo-Light. The above
results indicate that compared to Fast R-CNN, the one-stage target-recognition algorithm
has a significant advantage in parameter quantity, which is beneficial for deployment on
embedded platforms. After adding ECA, the parameter count of Yolov5s increased slightly,
while the parameter count of Yolo Light with Dconv decreased even further.

3.2. Comparison Experiment

In order to verify the effect of the ECA attention mechanism, this study designed
some ablation experiments. As the basis of ECA’s attention mechanism, the SE attention
mechanism is added to Yolov5s for comparison. In theory, the smoke target is mainly
a special color feature, and so the spatial attention mechanism has little impact on the
network. In order to verify this theory, the convolutional block attention module (CBAM)
attention mechanism [23], which integrates the spatial attention mechanism and the channel
attention mechanism, is also used as the contrasting network in this study. Table 5 shows
the results of the comparison.

Table 5. Ablation experiment.

Model Params Flops mAP.5

Yolov5s 7.01 M 15.8 G 0.709
Yolov5s+CBAM 7.22 M 16.1 G 0.695

Yolov5s+SE 7.21 M 16.1 G 0.725
Yolov5s+ECA 7.21 M 16.1 G 0.732

Yolov5s+Dconv 4.56 M 10.9 G 0.708
Yolo-Light 4.76 M 11.2 G 0.750

The results show that channel attention significantly improved the detection of straw-
burning smoke, especially the ECA attention mechanism. In contrast, the CBAM attention
mechanism, which integrates the spatial attention mechanism, has a negative effect on the
network. The reason for this situation is that the smoke in the dataset does not appear at a
fixed position in the image, and so the effect of CBAM will be worse. Meanwhile, due to the
concentration of smoke colors in white, gray, and black, and the input image of the model
being an RGB (red, green, blue) channel, channel attention is more suitable for detecting
straw-burning smoke. The results show that the depthwise separable convolution can
greatly reduce the computational load, but it does not reduce the network performance.
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The calculation method of Dconv is point convolution and channel convolution, so for
smoke images with an obvious channel information input, parameter reduction can be
achieved without reducing accuracy. Finally, Yolo-Light, which combines the ECA module
and deep separable convolution, reduces the number of model parameters and increases
the mAP.5 value by 4.1% compared with Yolov5s.

3.3. Hardware Deployment

To analyze the reasoning speed of the improved model on the embedded platform,
this article deploys the network to Jetson Xavier NX.

Jetson Xavier NX is an embedded device developed by NVIDIA. It uses a 64-bit quad-
core ARM A57 processor with a working frequency of 1.4 GHz, has 384 CUDA cores, can
provide 845 GFLOPS floating-point computing capabilities, consumes only 10 W of power,
and the price is only USD 399. The operating environment of JetPack4.6, developed by
NVIDIA, provides a complete desktop Linux environment and supports the CUDA Toolkit
and cuDNN.

The network is deployed to Jetson Xavier NX and is tested on the test set; the results
are shown in Table 6.

Table 6. Performance comparison of models on Jetson Xavier NX.

Model Inference Time FPS on Jetson

Yolov5s 43.3 ms 22.57
Yolov5s+ECA 44.7 ms 22.37

Yolov5s+Dconv 34.2 ms 29.24
Yolo-Light 34.9 ms 28.65

Due to the lower computational complexity of Dconv compared to traditional convo-
lution, Yolo Light’s inference speed improved by 27% compared to Yolov5s, and the frame
rate for NX reached 28.65 FPS (frames per second). Compared to the improvement in the
accuracy of ECA, the increase in the algorithm parameter quantity is very low, and the
inference speed difference between Yolo-Light and Yolov5s+Dconv is only 0.2 ms. This
result indicates that Yolo-Light can easily implement real-time reasoning on embedded plat-
forms. At the same time, a miniaturized instrument based on Yolo-Light can be developed
to monitor the smoke from straw burning.

3.4. Performance Analysis

To further verify the network’s detection performance for straw-burning smoke, we
collected 1000 straw-burning smoke pictures in different backgrounds to test the perfor-
mance of the networks. Different backgrounds include paddy fields, corn fields, and wheat
fields in spring and autumn. At the same time, in order to verify the robustness of the
algorithm, some unfamiliar backgrounds were added, including green lawns and low
visibility fields. The performance test index is the straw-burning smoke target-recognition
rate, and its calculation formula is shown in (10).

Recognition rate =
The number o f correct picture

Total number o f pictures
× 100 (10)

The number of correct pictures function shows the number of pictures correctly recog-
nized by the model (no false and no missed detections).

In Figure 9, the scene shows a paddy field in Luan in spring. The background has a
cement floor similar to the color of the straw-burning smoke and the field is green. The
color contrast of the picture is high, which makes it easy to encounter errors. From the test
results, it can be seen that Yolov5s and Yolov5s+DConv missed the smoke in the diagram.
Yolov5s+ECA encountered a mistake in identifying roads as smog; Yolo-Light did not show
any mis-detection and correctly detected smoke.
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Figure 9. Detection results of different algorithms in spring.

In Figure 10, the scene shows a paddy field in Luan in autumn. There is no straw
burning in this scene. The main picture is yellow and displays mature rice. There is a
reflective pond in the paddy field. Under the same background, the algorithm is prone to
misinterpret the reflections of the pond as smoke. From the test results, Yolov5s mistak-
enly identified the pond as smoke; Yolov5s+ECA, Yolov5s+DConv, and Yolo-Light were
not mistaken.

Figure 10. Detection results of different algorithms in autumn.

The scene in Figure 11 shows a green lawn smoke-detection scenario, which is not
within the test range of the training set. The scene can be used to test the robustness of
the smoke detection algorithm, which proves that the algorithm still has a stable detection
ability in unfamiliar scenes. From the test results, we can see that both Yolov5s and
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Yolov5s+DConv failed to detect smoke. In this case, both Yolov5s+ECA and Yolo-Light
could detect smoke correctly.

Figure 11. Detection results of different algorithms in an unfamiliar scene.

In Figure 12, haze is clearly visible in the scene and the visibility is low. In this case,
the algorithm ignores the fuzzy smoke. As a result, both Yolov5s and Yolov5s+ECA were
able to detect only one large area of smoke and they missed the smaller area of smoke on
the right side of the image; however, Yolov5s+ECA had a higher degree of confidence than
Yolov5s. Yolov5s+Dconv did not detect smoke due to computational problems. Yolo-Light
successfully detected two smog patches and was unable to handle the blurrier smog in
the image.

Figure 12. Detection results of different algorithms in low visibility scene.
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Table 7 shows the comparison results of the actual network performance test. The
recognition rate of the network is consistently over 87%, showing that the network has
strong generalization ability. The recognition rate of Yolov5s is 90.2%, and that of Yolo-Light
is 92.6%.

Table 7. Results of model-performance testing.

Model Correct Pictures Recognition Rate

Yolov5s 902 90.2%
Yolov5s+ECA 907 90.7%

Yolov5s+Dconv 876 87.6%
Yolo-Light 926 92.6%

Table 8 shows the comparison of Yolo-Light with Yolov5s and Yolov8s (which is the
latest version of the Yolo series) [24], further demonstrating the performance of Yolov5s.

Table 8. Comparison of Yolo-Light, Yolov5s, and Yolov8s.

Model Params Model Size mAP.5 Recognition Rate FPS on Jetson

Yolov5s 7.01 M 14.4 MB 0.709 90.2% 22.57
Yolov8s 11.1 M 22.5 MB 0.708 89.3% 15.97

Yolo-Light 4.76 M 9.9 MB 0.750 92.6% 28.65

The above experimental results show that the improved Yolo-Light network has a
higher detection ability when using the straw-burning smoke target dataset. In terms of
actual performance, the average accuracy of Yolo Light is 0.750, the recognition rate on
the test set is 92.6%, and the inference speed on NX reaches 28.65 FPS. This indicates that
Yolo Light is more suitable for detecting smoke from straw burning compared to Yolov5s
and Yolov8s. It is also a small, low-cost, accurate model for use in straw-burning smoke
equipment that provides a possible solution. In practical applications, the monitoring
camera and Jetson Xavier NX can be mounted in the air at 15 to 20 m, or they can be
mounted on the UAV to monitor the straw-burning smoke within 5 km.

4. Conclusions

At present, there is no suitable target detection model for detecting smoke from
straw burning, and the image background of straw burning is also affected by distance,
season, and crop type. In order to explore a recognition algorithm of straw-burning smoke
that is suitable for mainstream areas in China, this study designed a two-year collection
experiment to enrich the training dataset. Due to the large sizes of the existing target
detection models, they are not suitable for deployment on embedded devices with a
limited computing performance. Therefore, the Yolov5s target detection network was
improved, and deep separable convolution and ECA mechanisms were introduced into
the new network model (Yolo-Light) to considerably decrease the number of parameters
and calculations. The obtained model volume of the Yolo-Light network was only 4.76 M.
Deploying this network on the Jetson Xavier NX could propel the inference speed up to
28.65 FPS.

The straw-burning smoke target detection method proposed in this paper significantly
improves the detection speed while considering the recognition rate, and it can be effectively
applied to embedded devices with limited computing performance. It also provides
a possible solution for miniaturized, low-cost, and rapid straw-burning smoke target
detection equipment.
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