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Abstract: Studies on real-time PM2.5 concentrations per activity in microenvironments are gaining
a lot of attention due to their considerable impact on health. These studies usually assume that
information about human activity patterns in certain environments is known beforehand. However,
if a person’s activity pattern can be inferred reversely using environmental information, it can be
easier to access the levels of PM2.5 concentration that affect human health. This study collected
the actual data necessary for this purpose and designed a deep learning algorithm that can infer
human activity patterns reversely using the collected dataset. The dataset was collected based on a
realistic scenario, which includes activity patterns in both indoor and outdoor environments. The
deep learning models used include the well-known multilayer perception (MLP) model and a long
short-term memory (LSTM) model. The performance of the designed deep learning algorithm was
evaluated using training and test data. Simulation results showed that the LSTM model has a higher
average test accuracy of more than 15% compared to the MLP model, and overall, we were able to
achieve high accuracy of over 90% on average.

Keywords: human activity recognition; deep learning models; machine learning; MLP; LSTM

1. Introduction

Human activity and behavior recognition (HABR) is an area of research to gain a high
level of knowledge about human activities from raw sensor inputs, and it is regarded as
an essential component to realize the 4th industrial revolution. Technologies of the 4th
Industrial Revolution society will primarily comprise IoT sensors broadly deployed almost
everywhere and intelligent software technologies such as artificial intelligence, machine
learning, and so on. These technologies are collectively used to make our daily lives
better by making various useful applications viable, which include healthcare, surveillance,
location-based services, silver-care services, etc. Let alone several of these interesting
applications, environmental issues, including the air pollution problem, have drawn lots of
attention, especially in most Asian countries where the economy is growing very rapidly.
Many countries have made efforts to develop technologies to predict the level and impact of
air pollution in our daily life so that people can avoid air pollution and protect themselves.
Related research efforts have focused on predicting the level of air pollution based on
data collected from the sensors deployed broadly with the aim of alerting the untargeted
majority of people. This kind of service needs to be advanced to provide a personal care
type of service so that each individual can have different environmental information. If this
kind of service is desired, it is essential to track the precise movement of individuals so that
it is possible to let people know of their level of pollution in advance. Thus, it is important to
predict the activities or behaviors of humans in a very reliable manner. This paper strived to
develop deep learning prediction models to predict the activities of humans, using datasets
collected from body-worn sensors designed to obtain personal environmental data during
daily life. Related studies have presented online and offline predictive technologies for
human activities, primarily in outdoor or indoor environments. However, our daily life
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is composed of lots of diverse indoor and outdoor activities; therefore, research efforts
should develop into working in any environment afterward. In this study, we developed
two machine-learning-based activity prediction models applicable to our daily lives and
evaluated the performance of the models to weigh up the possibility of their practical use.

Lots of technologies have been proposed to predict human behaviors and activities.
Most of them are classified into two different categories depending on the type of data
collected [1]. We can predict human behaviors using image or video data (image-based
technologies) or sensor data (sensor-type technologies) collected from mobile devices or
from stationary sensors deployed at home or in any target area. For the literature review,
we excluded image-based studies and focused primarily on those using non-image data,
collected especially from mobile devices. Sensor data can be classified into two different
categories, mobile or stationary. Mobile-type sensors are, in general, worn by the subject
person and generate data associated with the movements of the subject person, so it
is highly likely to contain a significant amount of missing data or noise caused by the
movements [2–5]. Stationary sensors are, in general, installed in places of interest, and
the collected data contains relatively fewer missing values and noise compared to those
of mobiles [6–10]. It is also important to differentiate whether the activity recognition
is performed in online or offline environments. Online recognition, in general, refers to
approaches in which the recognition tasks occur mostly in local devices and are executed
in real time. Offline recognition, on the other hand, works in client–server computing
environments and does not require real-time processing.

Our designed classifiers are developed to apply to both environments and to work
online as well as offline. Further, there are lots of classifiers to realize the prediction
tasks using the collected data. Those classifiers include classic machine-learning-type
classifiers as well as modern deep-learning-type classifiers. The classic machine learning
types of classifiers include the naïve Bayes classifiers [2,11,12], decision trees [13], hidden
Markov models [3,14,15], support vector machines [16] and etc. Modern machine learning
algorithms include well-known convolutional neural networks (CNN) [17], recurrent neural
networks (RNN) [18,19], long short-term memory (LSTM) [20–29], etc. These classifiers are
data-driven classifiers that require labeled data to train the classifiers themselves.

As we described previously, we implement two classifiers for activity recognition
using data collected from portable body-worn sensors to obtain personal environmental
information. Most previous research primarily addressed activity recognition in either
indoor or outdoor environments. However, our research attempted to predict activities in
more heterogeneous environments, reflecting our various daily life in diverse environments.
We assumed 13 different activities that are typical to Korean families and tried to predict
the activities using well-known MLP and LSTM models. Simulation results showed that
the LSTM model has higher accuracy compared to that of the MLP model.

This paper is organized as follows. The first section provides in-depth details on the
collection of raw data, including the place where the data were collected and the subject
persons who volunteered for the collection task. The second section provides technical
details on the deep learning models used. The third section describes simulation results
comparing the performance of the two deep learning models. Finally, the fourth section
provides conclusions and insights from the results.

2. Materials
2.1. Data Collection in Study Area

Four volunteers living in Seoul, Kyunggi, Choongchung, and Jeolla provinces, South
Korea, were chosen as subject persons who carry body-worn sensors to measure the
concentration levels of fine dust and several other environmental data. The volunteers also
recorded their activities for every hour, excluding their sleep time. Figure 1 shows a sample
trajectory of a subject person who moved from Choongchung province to Seoul City.
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Figure 1. Sample trajectory (in red) of a subject person for a day.

The dataset was collected for 2 months, from 1 May 2018 to 31 June 2018, using a
commercial sensor [30], and the sensor is capable of transmitting pressure, temperature,
and humidity information through a WiFi connection along with air quality measurement.
The dynamic range and accuracy of the sensor related to our dataset are given in Table 1.

Table 1. Sensor specifications.

Specifications Range

Temperature range −40~185 ◦F
Effective PM2.5 range 0~500 µg/m3 (≥1000 µg/m3 for max)

Accuracy tolerance for relative humidity ±3%
GPS accuracy 2.5 m
Altitude range <18,000 m
Velocity range <515 m/s

The dataset contains several environmental variables such as particulate matter
2.5 (PM2.5), temperature (Temp), relative humidity (RH), and informative data related
to human trajectory. The data were sampled every 2 min. Further, we pre-defined activ-
ity patterns into 13 different categories: Commuting with a bus, Commuting with a car,
Commuting with a subway, Commuting with a train, Commuting with an elevator, Home-
BBQ, Pan-Frying, Home-SHS, Staying inside home, Staying inside work place, Staying
outside, Visiting other commercial place, Visiting restaurant-café, and Walking at outside.
A snapshot of the dataset is given in Figure 2.

2.2. Details on the Dataset

Four subject persons were given IDs, ID_01, ID_02, ID_03, and ID_04, respectively.
Figure 3 shows the overall plots of the environmental and trajectory-related data for the
ID_4 during the whole observation period as an example. The plots include profiles of
activities and environmental information measured while the subject person is on the move.
However, the location, altitude, and speed information of the subject is omitted to focus
more on the relationship between the activity pattern and the environmental information.
Each piece of data was plotted with respect to the observation time when it was collected,
and the chosen data were used as features for the classifier to predict the activity pattern
for the next observation time. Activity patterns are enumerated for the convenience of
simulation and visualization as follows: Commuting with a bus as 1, Commuting with a
car as 2, Commuting with a subway as 3, Commuting with a train as 4, Commuting with
an elevator as 5, Home-BBQ Pan-Frying as 6, Home-SHS as 7, Staying inside home as 8,
Staying inside work place as 9, Staying outside as 10, Visiting other commercial place as 11,
Visiting restaurant-café as 12, and Walking at outside as 13.
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Figure 3. Sample data profiles during an observation period.

Samples of activity profiles are depicted in Figure 4, where activity patterns during
the morning and evening periods are very dynamic compared to those of other time
periods. As shown on the left, the activity pattern changes from 13 (Walking outside) to
1 (Commuting with a bus), which indicates that the subject moves from home to working
place or other outdoor activities. Meanwhile, in the evening hours, most people come home
after work or meet others outside, and corresponding activity patterns can be observed on
the right-hand side of Figure 4. From Figure 4, we can conclude that the data collection
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process was properly executed, and the collected data show a contextual connection for
each activity.
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pattern profile during the morning and (b) an activity pattern profile during the evening.

2.3. Analysis of PM2.5 Exposure and Activity Pattern

As described previously, we know that our daily activities are accompanied by fine
dust particles with a diameter of less than 2.5 µm, which are hazardous to our health,
especially for the elderly and children [31]. To investigate the relationship between the
distribution of PM2.5 and each activity, we investigated the average sojourn time of each
subject’s activity and the corresponding distribution of PM2.5. Table 2 shows the number of
activities performed by each subject during a day and the proportion (%) of corresponding
activities (mean ± SD) that the subject spent for a day. The table shows that people spend
more time in indoor-like environments than outdoor-like ones, indicating that fine dust
distribution in indoor-like environments is more important to our health and requires
careful study. Several activities were not observed at all, and the corresponding cases
were omitted in Table 1. Table 3 shows the percentiles of PM2.5 concentrations per each
activity. It shows clearly that PM2.5 concentration is high in indoor-like environments
compared to outdoor environments. These tables imply that personalized environmental
warning technologies are necessary to provide customized per-person environmental infor-
mation. Machine-learning-based techniques can provide viable solutions for customized
environmental services by predicting the next human activities properly.

Table 2. Average fraction of sojourn time (mean ± SD) that subject persons spent per day (%).

ID
Commuting with a Bus Commuting with

a Car
Commuting with

a Subway Staying inside Home Staying inside Work Place

N (day) Mean ± SD N (day) N (day) Mean ± SD N (day) Mean ± SD Mean ± SD N (day) Mean ± SD

ID_01 5 72.0 ± 93.3 4 8 502.0 ± 215.0 3 96.7 ± 42.4 20.0 ± 19.0 1 20.0 ± NA
ID_02 12 40.3 ± 23.6 4 14 581.0 ± 167.0 5 368.0 ± 228 19.0 ± 4.76 11 35.5 ± 19.1
ID_03 1 6.0 ± NA 1 14 639.0 ± 110.0 6 296.0 ± 159.0 0.0 ± NA 3 98.0 ± 68.4
ID_04 6 26.0 ± 37.5 4 14 635.0 ± 159.0 6 313.0 ± 138.0 72.5 ± 91.1 4 30.5 ± 14.0
Total 15 69.1 ± 58.0 10 19 672.0 ± 98.8 7 433.0 ± 221.0 48.4 ± 57.7 14 55.4 ± 52.6

Staying Outside Visiting Other Commercial Place Visiting Restaurant-Café Walking at Outside

N (Day) Mean ± SD N (Day) Mean ± SD N (Day) Mean ± SD N (Day) Mean ± SD

1 2.0 ± NA 7 222.0 ± 177.0 6 58.3 ± 49.9 8 80.2 ± 40.5
2 53.0 ± 66.5 7 42.0 ± 59.6 10 408.0 ± 311 13 78.3 ± 50.7
1 144.0 ± NA 8 87.8 ± 46.0 6 35.0 ± 30.7 11 77.6 ± 51.0
2 135.0 ± 191.0 12 174.0 ± 107.0 11 167.0 ± 147.0 14 63.0 ± 48.5
6 87.0 ± 108.0 18 239.0 ± 128.0 17 313.0 ± 278.0 19 158.0 ± 85.5

NA: Not available.
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Table 3. Percentiles of PM2.5 concentration per person and activity.

ID

Commuting with a Bus Commuting with a Car Commuting with a Subway Commuting with a Train Commuting with
an Elevator Home-BBQ Pan-Frying

N
(Day) 25% 50% 75% N

(Day) 25% 50% 75% N
(day) 25% 50% 75% N

(Day) 25% 50% 75% N
(Day) 25% 50% 75% N

(Day) 25% 50% 75%

ID_01 5 12.7 18.9 44.6 4 31.3 35.6 39.4 1 17.7 20.2 23.3 0 - - - 0 - - - 2 - - -
ID_02 12 7.8 11.6 36.2 4 19.8 30.6 42.0 11 12.8 19.9 35.5 0 - - - 0 - - - 2 - - -
ID_03 1 4.6 10.7 17.3 1 50.3 50.3 50.3 3 22.8 36.8 42.4 0 - - - 0 - - - 5 - - -
ID_04 6 11.8 25.1 32.9 4 4.1 9.0 18.0 4 16.0 32.4 34.9 3 12.2 26.3 40.6 0 - - - 4 - - -
Total 15 9.5 18.1 36.4 10 5.9 16.6 32.8 14 14.5 29.2 38.5 3 12.2 26.3 40.6 5 - - - 10 - - -

Home-SHS Staying inside Home Staying inside Work Place Staying Outside Visiting other
Commercial Place Visiting Restaurant-Café Walking at Outside

N(Day) 25% 50% 75% N
(Day) 25% 50% 75% N

(Day) 25% 50% 75% N
(Day) 25% 50% 75% N

(Day) 25% 50% 75% N
(Day) 25% 50% 75% N

(Day) 25% 50% 75%

3 59.1 69.9 74.2 8 27.9 33.7 39.6 3 34.2 39.1 47.4 1 68.5 69.6 71.8 7 32.0 38.8 43.9 6 42.8 55.0 109.0 8 34.6 42.7 53.5
0 - - - 14 11.1 23.6 35.4 5 14.7 32.9 44.5 2 30.7 32.2 34.4 7 13.2 19.2 45.5 10 18.9 38.7 49.8 13 17.7 25.5 37.1
0 - - - 14 11.1 24.2 34.3 6 17.7 36.0 45.6 1 6.5 6.9 7.3 8 6.6 11.5 26.4 6 19.6 41.5 48.8 11 12.9 20.7 40.7
0 - - - 14 7.7 16.8 31.3 6 14.6 36.2 43.4 2 35.9 41.0 45.4 12 5.9 11.8 25.4 11 28.8 49.3 107.0 14 14.3 26.5 40.3
3 59.1 69.9 74.2 10 11.0 24.4 35.0 7 15.4 36.1 44,8 6 8.0 35.1 41.9 18 10.4 25.7 39.7 17 25.5 41.2 61.4 19 16.8 28.5 42.7

3. Design of Network Models

In this section, we describe the network structures of the chosen deep learning models
in detail. The models include the well-known multilayer perceptron (MLP) and long
short-term memory (LSTM) [25,32].

3.1. MLP Network Model Structure

The MLP is a multi-layered feedforward artificial neural network that maps input
data sets to a set of appropriate outputs. It consists of multiple hidden layers, and nodes in
the hidden layers are fully connected to the nodes in the following layer. The nodes of the
layers are neurons with nonlinear activation functions, such as the sigmoid function, except
for the nodes of the input layer. An MLP with one hidden layer can have the following
structure, as shown in Figure 5. It consists of input nodes, output nodes, and hidden
nodes, and the hidden nodes are linked to each of the input nodes and also to the output
nodes with certain weights. This simple model can be extended to models with more
hidden layers.
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3.2. LSTM Network
3.2.1. RNN Structure

Neural networks must have three properties to handle time-series data. First, it has to
take features in an orderly fashion. Second, the length of the hidden layer has to be variable
to handle variable lengths of data. Third, the model is capable of remembering the previous
information, and can also use that at the time when it was requested. A recurrent neural
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network (RNN) is a network model that was invented to predict time-series data, satisfying
the previous three properties. It has a structure that is similar to that of MLP, but nodes
in the hidden layer have edges to other hidden layer nodes, as shown in Figure 6. These
edges are called “recurrent edges”, which makes the network satisfy the three properties
mentioned previously.
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Figure 6. A sample structure of an RNN. There are three input nodes, four hidden layer nodes, and
one output node. The nodes are interconnected with each other.

3.2.2. LSTM Structure

Due to structural drawbacks, RNN is not appropriate for predicting data with long-
term dependence. Meanwhile, the LSTM, an advanced RNN model, has memory blocks in
the hidden layer with several gates to handle data with long-term dependence, as shown
in Figure 7. LSTMs deal with the long-term dependence issue by selectively controlling
inputs and outputs with the gates. Since its introduction in 1995 [26], it has been advanced
to include forget gates and peepholes, in addition to existing input and output gates. The
peephole plays a role in notifying the states of the memory block to the three gates (yellow
edges in Figure 7). It is very useful when a special action needs to be taken depending on a
certain condition while processing time-series data.
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Figure 7. An LSTM memory block. This figure shows the jth memory block in a hidden layer. x(t)

and h(t−1) represents input vectors at present state and previous hidden layer state, respectively. τg,
τh, τf are the activation functions at the input, output, and the input and output gates, respectively. d,
p, and q indicate the number of connections to the input nodes, hidden nodes, and output nodes,
respectively. wg, wi, and wo are the weights for the recurrent edges connected to the inputs, input
gates, and output gates, respectively. The symbols/and * refer to the linear activation function and
multiplication respectively. In this figure, the biases are omitted for the simplicity of the diagram.
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4. Results and Discussion
4.1. Activity Prediction

As described in Section 2, the recorded data contain longitudinal and latitudinal
location, accelerometer, and elevation information, and they were recorded in two-minute
periods. Figure 8 shows the overall procedure for classification tasks beginning with the
preprocessing of data. The raw dataset contained a large number of missing values, and
the data containing the missing values were excluded for simplicity of simulation in the
preprocessing step. The preprocessing step includes the normalization of the dataset, for
which z-score normalization is used [33]. If a proper imputation method is chosen for our
data, the method can be used to impute the missing values for further experiments. The
dataset was then separated into training (70%) and testing (30%). The 13 activity patterns
are enumerated and one-hot coded for the simulation, as mentioned in Section 2. We used
Keras, an open-source software library that provides a Python interface for artificial neural
networks [34]. Both MLP and LSTM models were set up, as shown in Table 4. In the
LSTM model, three previous data points with five features each (window size was set to 3)
were used for the prediction of the data point at the next time stamp, so the input shape is
3 × 5. There is only one input and output layer, and the number of nodes at the hidden
layer is chosen as 128. Both network models have 13 output nodes to match the 13 activity
patterns. The activation functions chosen for the hidden layer and output layer were ReLU
and SoftMax. The “Adam” was chosen as an optimizer [32].
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We performed an exhaustive search to determine the architecture of the two network
models by changing the number of hidden layers from large values to small values, using
sample training data as shown in Table 5. The table shows that the accuracy of LSTM
significantly drops as the number of hidden layers increases, whereas MLP’s accuracy stays
relatively stagnant. Based on this pilot test, we chose the architecture of the models, as
shown in Table 4. Moreover, we set the architecture and specification of the two models in
close resemblance in order to run the simulations under similar environments.
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Table 4. Network model setup for the MLP and the LSTM.

Specifications MLP LSTM

Window size 3 3
Input dimension 3 × 5 3 × 5

Number of hidden layers 1 1
Number of out layers 1 1

Number of hidden nodes 128 128
Number of output nodes 13 13

Hidden layer activation functions ReLU ReLU
Optimizer Adam Adam

Output layer activation functions SoftMax SoftMax

Table 5. Pilot training and test accuracy of ID_01 depending on a different number of hidden layers
while fixing the number of hidden nodes.

Number of
Hidden Layers

Training Accuracy Test Accuracy

MLP LSTM MLP LSTM

10 0.98 0.57 0.94 0.53
5 0.99 0.59 0.94 0.55
1 0.97 0.99 0.94 0.96

4.2. Performance Evaluation

The performance of both models was evaluated in terms of predictive accuracy, as
shown in Tables 6–9. For the experiments, we chose a learning rate of 0.01, epoch of 100,
and batch size of 32, 64, 128, and 256, respectively. Training accuracy for both models was
higher than the test accuracy for all subject persons. Further, for all subject persons, the
training accuracy was more than 90%, except for the ID_01 case, where the test accuracy
was lower than 90%. However, in general, the accuracy rates for all subject experiments
were very high, which is more than 90%, except in the ID_01 case.

Table 6. Training and test accuracy of ID_01.

Batch Size
Training Accuracy Test Accuracy

MLP LSTM MLP LSTM

32 0.97 0.98 0.83 0.85
64 0.97 0.98 0.83 0.86

128 0.96 0.98 0.80 0.86
256 0.95 0.97 0.77 0.86

Table 7. Training and test accuracy of ID_02.

Batch Size
Training Accuracy Test Accuracy

MLP LSTM MLP LSTM

32 0.98 0.99 0.94 0.94
64 0.98 0.99 0.94 0.94

128 0.97 0.99 0.94 0.94
256 0.97 0.98 0.93 0.94
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Table 8. Training and test accuracy of ID_03.

Batch Size
Training Accuracy Test Accuracy

MLP LSTM MLP LSTM

32 0.97 0.99 0.97 0.98
64 0.97 0.98 0.96 0.98

128 0.96 0.98 0.96 0.98
256 0.95 0.98 0.95 0.97

Table 9. Training and test accuracy of ID_04.

Batch Size
Training Accuracy Test Accuracy

MLP LSTM MLP LSTM

32 0.97 0.98 0.97 0.97
64 0.96 0.97 0.97 0.97

128 0.95 0.97 0.97 0.97
256 0.91 0.97 0.77 0.97

As shown in the table, the LSTM had higher accuracy for all batch-size experiments
compared to the MLP. The test accuracy for both models was lower compared to that of the
training data, which is expected in machine learning. However, given the heterogeneous
nature of the collected data, i.e., both indoor and outdoor activity patterns, this difference
was low and was not statistically significant. Nevertheless, our model may demonstrate
even higher performance in more homogeneous environmental settings. Specifically, we
anticipate that applying our model in such settings will result in improved performance
compared with the current result.

It is worth examining the overall percentages of correct predictions for each activity
pattern, as illustrated in Figure 9 below. The x-axis (x-label) in Figure 9 corresponds to
each activity pattern, while the y-axis (y-label) indicates the ratio between the total number
of occurrences and the number of correct predictions for each activity pattern. If there
are no occurrences of activities, we omit corresponding drawings in the bar plot. This
may correspond to the cases where a subject did not engage in any activities or when data
collection was in error due to a sudden movement of the subject. The ratio was calculated
for both training and test datasets. Overall, the training experiment had higher ratios
compared to the test experiment. In the training data experiment, most activity patterns
were correctly estimated, and activities involved with indoor environments had relatively
higher ratios compared to outdoor activity cases. As shown in Figure 9, the ratios of
correct predictions for each activity pattern are almost 1, indicating nearly 100% predictive
accuracy. However, the test cases showed slightly lower ratios compared to the training
cases. Among the test scenarios, activities associated with indoor-like environments, such
as “Staying inside work place”, “Visiting other commercial place”, and “visiting restaurants,
cafe” showed higher ratios compared to those of outdoor-like environments, except “Home-
BBQ” and “Pan-Frying”. In general, activities such as indoor cooking are the main cause
of household air pollution and a leading environmental risk factor [35]. Sometimes, the
PM2.5 concentration level of the cooking activities has a spiky distribution, resembling
outliers, which could explain the corresponding lower accuracy in cooking activities. There
were no data corresponding to Commuting with a train, Home-SHS, so there were no bars
for these activities.
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As previously stated, our results clearly demonstrate that the predictive accuracy of
our models can be improved if they are applied to homogeneous environmental settings.
Additionally, we can further improve the performance of our current model if we elaborate
more on behavior modeling as proposed by authors in [20] to predict the subject’s next
actions and collect data corresponding to the behavior model. The authors viewed human
behaviors as a large collection of actions, activities, intra-activity behaviors, and inter-
activity behaviors. Actions are defined as the simplest concepts of conscious muscular
movements made by the subject. Activities are composed of several actions (e.g., taking
a shower, watching a movie, etc.). The intra-activity behaviors describe how the subject
performs a single activity at different times. The inter-activity behavior describes the chain
of the subject’s different activities. This issue will be included in our future studies.

One noticeable observation from the experiment is that the temperature and relative
humidity did not play a significant role in the performance improvement, as shown in
Table 10, presumably because the two features did not change significantly during the
observation period. Table 10 highlights the change in the test accuracy of both models as
more features were added.

Table 10. Training and test accuracy depend on different combinations of features. Case 1 corresponds
to experiments performed using PM2.5 feature only. Case 2 and 3 correspond to that of using PM2.5

and RH and that of using PM2.5, RH, and Temp, respectively.

LSTM MLP

Training Accuracy Test Accuracy Training Accuracy Test Accuracy

ID_1
Case 1 0.99 0.9 Case 1 0.97 0.81
Case 2 0.99 0.78 Case 2 0.98 0.78
Case 3 0.99 0.74 Case 3 0.98 0.73

ID_2
Case 1 0.99 0.9 Case 1 0.97 0.81
Case 2 0.99 0.78 Case 2 0.98 0.78
Case 3 0.99 0.74 Case 3 0.98 0.73
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Table 10. Cont.

LSTM MLP

Training Accuracy Test Accuracy Training Accuracy Test Accuracy

ID_3
Case 1 0.99 0.9 Case 1 0.97 0.81
Case 2 0.99 0.78 Case 2 0.98 0.78
Case 3 0.99 0.74 Case 3 0.98 0.73

ID_4
Case 1 0.99 0.9 Case 1 0.97 0.81
Case 2 0.99 0.78 Case 2 0.98 0.78
Case 3 0.99 0.74 Case 3 0.98 0.73

5. Conclusions

This paper strived to infer activity patterns in both indoor and outdoor environments
using environmental information, which distinguishes it from most previous studies that
focus on the levels of PM2.5 concentration affecting human health. We used a commer-
cial multipurpose sensor to collect the raw data and designed deep learning models to
infer the activity patterns using the collected raw data. We chose both MLP and LSTM
network models for this research. MLP, a popular model in the 1980s, has recently gained
interest again today due to the success of deep learning techniques in various applica-
tions, including speech recognition, image recognition, machine translation, etc. LSTM is a
deep learning model that characterizes itself to handle a time-series type of data and has
proved its characteristic adaptability for various applications such as voice recognition,
stock index prediction, weather forecast, etc. During the performance comparison, we
found that LSTM outperformed MLP in terms of prediction accuracy, which was expected
considering the nature of the LSTM. More specifically, the accuracy was higher in the
indoor-like environments than in the outdoor-like environments in both training and test
simulations, except for the case of indoor cooking activities. Moreover, considering that
all four features used for this research could be unstable under outdoor environments
compared to indoor environments, we believe that the test accuracy of around 90% is very
high. However, LSTM took significant amounts of computation time compared to MLP due
to the complexity of network architecture, especially when the number of hidden layers is
more than two. Therefore, we aimed to reduce the number of hidden layers to make the
model more practical.

In the current study, we acknowledge the lack of large differences in lifestyles of
subjects for various reasons, which could have led to degradation of performance. This
issue will be included in our next research. Additionally, we will try to apply our model
to more diverse heterogeneous environments based on the results of this research and
enhance the performance of the current models. For this purpose, it is worth building a
conceptual model as in [21] and collecting datasets corresponding to the model for more
precise activity prediction. In addition, one of the ways to enhance the performance of
the models is to incorporate other deep learning architectures, such as CNNs, into current
LSTM architectures. Certain parts of the time series data show very frequent local and
temporal changes of movements, which may be suitable for CNN to capture. If CNN is
used together with LSTM, the current performance can be further improved.
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