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Abstract: Oscillations caused by the interaction between voltage source converters (VSCs) and weak
grids are vital threats to the stability of power systems. Determining the appropriate parameters
for the control of VSCs is essential to prevent the occurrence of oscillations in advance. To achieve
this goal, a quantitative evaluation method of system stability for VSCs is proposed in this article
to specify the stability boundary of control parameters. Then, an active damping controller for
current control and a parameter optimization method for the phase-locked loop (PLL) is proposed,
and the related parameters are designed based on the guidance of the proposed evaluation method.
With planting the parameters optimization in the control of VSC, the stability boundary of control
parameters of VSC is extended, so that the stability of VSC can be significantly improved. Finally,
simulations are presented to verify the effectiveness of the theoretical analysis.

Keywords: voltage source converter; system stability; quantitative evaluation method; parameter
optimization; stability boundary extended

1. Introduction

Renewable energy generation has received much attention in recent years [1,2]. As a
power interface between renewable energy sources and the grid, voltage source converters
(VSCs) have been increasing the penetration in power systems [3]. However, due to the
geographical distribution characteristics of renewable energy sources, the long transmission
lines of the grid result in grid impedance that cannot be neglected [4] which makes the
power grid become a weak grid. Under a weak grid, the interaction between the VSC and
the grid easily causes oscillation problems and brings new challenges to the safe and stable
operation of power systems [5–7].

The stability analysis methods of VSC grid-connected system oscillation are mainly
divided into two categories, that is, the eigenvalue analysis method based on state space
and the impedance analysis method based on frequency domain theory [8–10]. The eigen-
value analysis method relies on detailed models and parameters of converters and grids
which is difficult to adapt to the large-scale grid-connected analysis of renewable energy.
The impedance analysis method considers the VSC and grid as two independent subsys-
tems, the system stability can be analyzed using only the port characteristics of the two
subsystems [10,11]. Depending on the coordinate system used for modeling, there are two
types of impedances, that is, dq-domain impedance in a synchronous rotating coordinate
system [12,13] and sequence-domain impedance in a stationary coordinate system [14,15].
Based on the impedance model, the generalized Nyquist criterion is usually used for sta-
bility analysis. These methods can identify whether the grid-connected VSC is stable and
provide a qualitative evaluation for stability. However, they cannot quantitatively evaluate
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the system stability, and cannot evaluate the difference in the system stability with different
parameters.

The stability level of the grid-connected VSC system is different when the control
parameters of the VSC are different. If the controller parameters are not designed properly,
it will affect the system stability and even cause oscillations [16]. Current loop and phase-
locked loop (PLL) are key components in VSCs, the former is responsible for regulating
the output power accurately and flexibly, and the latter is responsible for the synchro-
nization between VSC and the power grid. The control parameters of both components
can significantly affect the interactions between VSC and the power grid [17]. Moreover,
the parameter analysis for the current control loop further indicates that the damping
characteristics of the VSC will be reduced by an excessively small proportional coefficient
of the current controller which is harmful to the stable operation of VSC [18,19]. For the
influence of PLL on system stability, [20,21] indicated that inappropriate PLL parameters
can lead to negative resistance of VSC which can decrease the stability of VSC. Therefore,
determining the appropriate parameters for the control of VSCs is essential to prevent
oscillations in advance [22]. To address the oscillations caused by the interaction between
VSCs and weak grids, scholars have proposed solutions based on parameter optimizations
of current loops and PLL. A parameter optimization method for VSC current loop control
was proposed in [23] which uses the system stability margin as a constraint. [24] limited
the selection range of the control parameters based on the relationship between frequency
domain indicators and current control parameters, thereby optimizing the parameters
of the current control loop. An adaptive PLL parameter design method was proposed
to ensure sufficient phase angle margin by adjusting PLL parameters in real time [25].
However, the existing methods did not give the principle of control parameters selection
according to the different stability margins of the system nor can quantify the stability
level of the system. The core reason is that the existing stability analysis method for VSC
is qualitative instead of quantitative. The stability analyses and optimization of VSCs are
generally based on stability analysis methods to judge whether VSC is stable [2,4,17,20].
However, these analyses cannot give an intuitive indication of the stability margins of the
VSC under different operations. Therefore, the studies on stability analysis cannot clearly
and quantitatively describe system instability which makes it difficult to provide intuitive
quantitative advice on parameter optimization for VSCs.

To overcome the above issue, this article proposes a quantitative stability evaluation
method based on analyzing the relationship between the system stability level and the
phase angle of the stability evaluation point and clarifies the stable region of the control
parameters. Then, the quantitative stability evaluation method is employed to guide the
parameter optimization of the active damping controller and PLL. With the optimization,
the stable boundary of the VSC parameters can be effectively expanded to avoid oscilla-
tions. The proposed method can quantitatively evaluate the stability of VSC system under
different parameters. It can be applied to guide the design of the system control parameters
and provide quantitative analysis for the precise selection of control parameters for VSCs
in practical engineering.

This article is organized as follows. Section 2 deduces the impedance model of VSC
by considering the asymmetric structure of PLL, then a quantitative stability evaluation
method is proposed. Based on the quantitative stability evaluation, Section 3 establishes
an active damping method in the current control loop and proposes a PLL parameter
optimization method. Section 4 illustrates the simulation results to validate the effectiveness
of the proposed method. Finally, the conclusions and contributions of this article are
summarized in Section 5.
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2. VSC System Modeling and Quantitative Evaluation Method of System Stability
2.1. VSC Impedance Modeling

Impedance stability theory requires obtaining the grid-connected equipment and grid
impedance under small signals as the basis. This section first derives the impedance model
of the VSC.

Figure 1 shows the topology and control block diagram of the VSC. Since the dynamic
response of the current and PLL of VSC is faster than the DC voltage loop, and this article
mainly considers the oscillations caused by the current loop and the PLL, the DC voltage
control is replaced by a DC voltage source Vdc.
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Figure 1. VSC structure and control system.

In Figure 1, vox and iox (x = a,b,c, the latter variables are expressed in the same way)
are the VSC output voltage and current, respectively. upcc is the point of common cou-
pling (PCC) voltage. Ugx is the grid voltage. Lf is the filter inductance. Grid impedance
is equivalent to an inductance Lg. iod and ioq are the values of VSC output current in dq
coordinate system. idref and iqref are the reference values of the grid-connected currents.
Gi(s)= kp-c + ki-c/s is the current proportional-integral (PI) control link, kp-c is the propor-
tional coefficient, and ki-c is the integral coefficient. PLL is employed to detect the voltage
and frequency of the power grid and ensure the synchronization between the VSC and
power grid, θpll is the output angle of PLL, Gpll = kp-PLL + ki-PLL/s is the PI controller, where
kp-PLL is the proportional coefficient and ki-PLL is the integral coefficient. vmd and vmq are
the output modulation signals of the regulator in the dq coordinate system.

It should be pointed out that the frequency range considered in this article is within
500 Hz which is much smaller than the switching frequency of VSC. Therefore, the switching
process of modulation can be simplified and regarded as linearized when modeling [26].
Thus, the expressions of vmd and vmq can be written as Equation (1). vmd =

upccd−ω1L f ioq
KPWM

vmq =
upccq+ω1L f iod

KPWM

(1)

where upccd is the d-axis voltage component of upcc, upccq is the q-axis voltage component of
upcc, and ω1 is the fundamental wave angular frequency. KPWM is the equivalent gain of
the VSC, and its expression is shown in Equation (2), where Utri is the carrier amplitude.

KPWM =
Vdc
Utri

(2)

The impedance modeling of VSC starts from the modeling of PLL. For the PLL, if
it is ideal, the PLL detects the magnitude and phase of grid voltage without errors, and
the output of PLL is identical to the phase of grid voltage, which can be noted as θs

pll .
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Thus, the ideal dq coordinate system can be obtained. When considering the small signal
perturbations, there is a ∆θ difference between the output of PLL and the phase of grid
voltage, the output of PLL θc

pll at this time can be written as Equation (3),

θc
pll = θs

pll + ∆θ (3)

Therefore, when considering the small signal perturbations, the dq transformation
achieved by the VSC control is nonideal, the intuitive descriptions for the ideal dq coordinate
system, and nonideal dq coordinate system are presented in Figure 2.
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For any variable x, when they are transferred into the dq coordinate system by the
control of VSC, their expressions can be expressed as Equation (4).

xc = e−j∆θ xs ≈ (1− j∆θ)xs (4)

where the superscript c is used to represent the variable in the nonideal dq coordinate
system, and the superscript s is used to represent the variable in the ideal dq coordinate
system.

Thus, based on Equation (4), the PCC voltage in the dq coordinate system built by the
control of VSC can be written as Equation (5).{

∆uc
pccd = ∆us

pccd + ∆θus
pccq0

∆uc
pccq = −∆θus

pccd0 + ∆us
pccq

(5)

where ∆ denotes the small signal perturbation. Subscript pccd denotes the d-axis component
of the system PCC and pccq denotes the q-axis component of the system PCC. The subscript
0 denotes the steady-state value.

Meanwhile, based on the transfer function block of PLL in Figure 1, ∆θ can be obtained
as Equation (6).

∆θ =
Gpll(s)∆uc

pccq

s
(6)

Thus, based on Equations (5) and (6), the small-signal model of PLL can be obtained
as Equation (7). TPLL is the transfer function of PLL, in which the physical significance of
TPLL can be described as the transfer function between the perturbation of PCC voltage and
the phase error of PLL in VSC control.

∆θ =
Gpll(s)

s + Gpll(s)us
pccd0

∆us
pccq = TPLL∆us

pccq (7)

Similar to upcc, the VSC output current and the modulation signal output by current con-
trol in the ideal and nonideal dq coordinate system can be described as Equations (8) and (9),
where Gy1m(s) represents the transfer function between the output current and the small
signal perturbation of the PCC voltage, Gy2m(s) represents the transfer functions between
the output modulation signals of VSC, and the small signal perturbation of the PCC voltage.



Appl. Sci. 2023, 13, 5663 5 of 19

[
∆is

od
∆is

oq

]
=

[
∆ic

od
∆ic

oq

]
+

[
0 −TPLLis

oq0
0 TPLLis

od0

][
∆is

od
∆is

oq

]
=

[
∆ic

od
∆ic

oq

]
+ Gy1m(s)

[
∆us

pccd
∆us

pccq

]
(8)

[
∆vs

md
∆vs

mq

]
=

[
∆vc

md
∆vc

mq

]
+

[
0 −TPLLvs

mq0
0 TPLLvs

md0

][
∆us

pccd
∆us

pccq

]
=

[
∆vc

md
∆vc

mq

]
+ Gy2m(s)

[
∆us

pccd
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(9)

With the above derivations, the small-signal model of VSC considering PLL can
be obtained as shown in Figure 3. The blue region represents the controlled object in
reality, the orange region represents the control system of VSC in the artificially constructed
synchronous coordinate system. However, according to the above analyses, the small signal
perturbation of PCC voltage makes the artificially constructed synchronous coordinate
system not synchronized with the controlled object, the variables in reality that need to enter
into the control system (orange region) through PLL phase detection should be modified
by Equations (8) and (9), which is the red region in Figure 3.
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In Figure 3, the mathematical model of VSC also considers the effects of time delay [27,28]
and introduces an equivalent model of time delay. Gim(s), Gdem(s), and YLm are shown in
(10)–(12). Gde(s) = (1 − 0.75Tss)/(1 + 0.75Tss) is the control delay link [20]. Ts denotes the
sampling period of the system.

Gim(s) =
[

Gi(s) 0
0 Gi(s)

]
(10)

Gdem(s) =
[

Gde(s) 0
0 Gde(s)

]
(11)

YLm =
1

L f (s2 + ω2
1)

[
s ω1
−ω1 s

]
(12)

According to Figure 3 and Equations (10)–(12), the output impedance of the VSC can
be obtained as follows,

ZVSC =
∆us

dq

∆iodq
= [YLm(s)(E− KPWMGdem(s)(Gy2m(s) + Gim(s)Gy1m(s)))]

−1(E + YLm(s)KPWMGdem(s)Gim(s)) (13)

where E represents the unit matrix.
The frequency sweeping test is utilized to obtain the simulation results as shown in

Figure 4. It can be seen that the analytical model matches the simulation results well which
validates the accuracy of the VSC impedance model.
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In the same way, the matrix model of the grid impedance can be obtained as,

Zg =

[
sLg −ω1Lg

ω1Lg sLg

]
(14)

2.2. Quantitative Evaluation Method of VSC System Stability

To quantitatively evaluate the stability of the VSC system, this article proposes a
stability quantitative evaluation method based on the relationship between Nyquist curve
and the unit circle. According to the generalized Nyquist criterion, the stability of the VSC
system can be determined by whether the eigenvalue of the ratio matrix L(s) surrounds
(−1, j0) [10]. L(s) is shown in Equation (15).

L(s) = Zg/ZVSC (15)

A 7 kW weak grid-connected VSC is analyzed as an example here. The parameters of
the grid-connected VSC are shown in Table 1.

Table 1. Main system parameters.

Parameters Symbol Value

DC Voltage Vdc 700 V
Filter Inductance Lf 3 mH

Grid Voltage(line-to-line) Ug 380 V
Grid Impedance Lg 12.8 mH
Grid Frequency fg 50 Hz

Switching Frequency fsw 15 kHz
Sampling Frequency fs 15 kHz

The Nyquist curves of the eigenvalue of L(s) are shown in Figure 5. As seen in
Figure 5a, the Nyquist curve of λ2(s) is closer to (−1, j0) than λ1(s), which means that the
system stability is determined by λ2(s). Figure 5b shows that λ2(s) and the unit circle have
two symmetric intersection points A and B. The distances between A (or B) and (−1, j0)
can reveal the system stability. The system stability is weaker if the A (or B) and (−1, j0) are
closer [29].
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Figure 6 gives the Nyquist curve λ2(s) under four sets of current controller parameters,
the curves are denoted as λ2−x(s), where x is the number of the curves (x = 1,2,3,4). Figure 6a
shows the overall plot of λ2−x(s) (x = 1,2,3,4), Figure 6b shows the enlarged plot of λ2−x(s)
(x = 1,2,3,4) around (−1, j0), and the current controller parameters of λ2−x(s) are given
in Figure 6b. As shown in Figure 6b, note the intersection of λ2-x(s) without an envelope
(−1, j0) and the unit circle as Ax(x = 1,2,3). Then, connect point Ax and the origin of
the coordinates (O), note the angle between the line OAx, and the negative real axis as
φx(x = 1,2,3). With this approach, the distance between the intersection and (−1, j0) can be
intuitively reflected by φx. From the change of curve λ2−x(s), the system stability decreases
to instability, φ will decrease to 0◦, and then λ2(s) will surround (−1, j0) (as λ2−4(s)). Thus,
it can be concluded that the system is more stable if φ is larger. If the angle φ is negative
for λ2−x(s) which means the curve of λ2−x(s) will surround (−1, j0), such as λ2−x(s), the
grid-connected VSC will be unstable at this time.
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To illustrate the unstable phenomenon caused byλ2−4(s) in Figure 6. Figure 7 gives a
Bode plot of Zg and ZVSC for the case of curve λ2−4(s) in Figure 6. The stability of the grid-
connected system can be determined by the phase difference at the magnitude intersection
of ZVSC and Zg. If the phase difference is less than 180◦, the system is stable, otherwise,
the system is unstable, and the frequency of the magnitude intersection is the oscillation
frequency [30]. Figure 7 shows that the phase difference at the magnitude intersection
of Zg and Zqq is greater than 180◦, the system is unstable. The oscillation frequency of
the system under dq axis is 125 Hz, corresponding to 175 Hz and 75 Hz in the stationary
coordinate system.
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Here, taking the parameters of the current control as an example to analyze the
relationship between the control parameters and φ. The analysis is presented in Figure 8.
Figure 8a indicates that the proportional coefficient of current control significantly affects
the system stability, the system stability increases as the proportional coefficient increases.
To intuitively present the relationship between current loop parameters and the φ diagram,
Figure 8b,c give the partial enlargement of Figure 8a and the contour map of φ.
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The above descriptions indicate that the stability of VSC can be evaluated by the
proposed quantitative evaluation method, and the stable level of VSC can be judged by the
defined angle of the stability evaluation point. In the following, the proposed quantitative
evaluation method is employed to optimize the current control and PLL to improve the
stability of VSC.

3. Parameter Optimization of the Current Controller and PLL
3.1. Parameter Optimization of the Current Controller

Since the impedance characteristics of VSC will affect the interaction between VSC
and power grid, it is important to optimize parameters of current control to ensure that the
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impedance of VSC can be matched with the grid impedance. A classical VSC impedance
reshaping method based on active damping is given here [31] to illustrate the control
parameter optimization effect brought by the proposed method. The implementation of
active damping and the corresponding control block diagram of VSC are shown in Figure 9,
in which m is the coefficient of damping.
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Figure 9. Implementation method of active damping.

With the active damping control, the mathematical model of the VSC can be updated
as shown in Figure 10. The impedance of the VSC can be updated as Equation (16).

ZVSC = [YLm(s)(E− KPWMGdem(s)(Gy2m(s) + Gim(s)Gy1m(s)))]
−1[E + YLm(s)KPWMGdem(s)(Gim(s) + m)] (16)
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After introducing active damping, the relationship between the current control pa-
rameters and φ is shown in Figure 11. Compared to Figure 8, φ in Figure 11 is larger than
the value of φ in Figure 8 for the same control parameters, and the stability margin of the
system is significantly improved. The difference between Figures 8c and 11c indicates
that the proposed active damping control extends the regulation range of the current loop
parameters, widens the φ = 0◦ boundary, and narrows the region of unstable parameters,
allowing more parameter selection.
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Figure 11. Relationship between current loop parameters and φ after active damping. (a) φ for
different parameters; (b) Partial enlargement of (a); (c) Contour map of φ.
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It should be noted that the improvement of the system stability margin brought by the
active damping can be influenced by the value of m. Selecting an appropriate value for m is
extremely important for stabilizing the grid-connected VSC. Figure 12 shows the variation
of φ when the system parameters are set to kp-c = 4.66, ki-c = 3700, kp-PLL = 3, ki-PLL = 100,
and the value of m is changed. As shown in Figure 12, if m is too small, φ is less than 0◦

which means the system is unstable. With the increases of m, φ increases as well. However,
with the increase of m, the increase rate of φ becomes very slow.
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While improving the system stability, the introduction of active damping can affect
the dynamic response of VSC. Therefore, to further determine the feasible value range
of m, it is necessary to analyze the dynamic response of VSC when the value of m varies.
From Figure 3, the expression for the VSC output current can be written as the excitation
response under grid voltage and current commands:

iodq = Ygupcc + Hgidqre f , (17)

where Yg is the excitation response of the output current to the grid voltage disturbance.
Hg represents the ability of the output current to track the current reference.

The expression Hg is given as follows, which can be deduced by Figure 3.

Hg =
Gi(s)Gde(s)KPWMYL

1 + Gde(s)KPWMYL(Gi(s) + m)
, (18)

where YL is the conductance of the filter inductor Lf.
As shown in Figure 13, the dynamic response characteristics of the output current are

evaluated by analyzing the magnitude–frequency characteristic of Hg, the cut-off frequency
of Hg can be used to evaluate the dynamic response of the system [32]. The frequency
corresponding to an amplitude of −3 dB is defined as the cut-off frequency; the lower
cut-off frequency represents a lower dynamic response for a grid-connected VSC. As m
increases, the cutoff frequency of Hg decreases and the phase margin remains essentially
the same. It means that the dynamic response of the system will be weakened with the
increase of m.

Based on the above analysis, a larger m is beneficial to stability. However, if m is
larger, the dynamic response speed of the system will decrease, and the stability margin
of the fundamental frequency control will also decrease. Therefore, combined with the
influence of m on the dynamic performance and the stability of VSC, it is more appropriate
to choose m between 0.6 and 1.5 as shown in Figure 14. In this article, m is chosen as one as
an example in the following verification.
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3.2. Optimized Design of PLL Parameters

PLL is responsible for the synchronization between VSC and the power grid, it is
responsible for ensuring that PLL can strictly synchronize the grid and VSC to avoid
oscillation. Therefore, inappropriate parameters of PLL can cause oscillation problems.
The existing research has indicated that parameter optimization can improve the anti-
interference ability of PLL so that the influence on the interaction between VSC and
grid caused by the PLL can be weakened, and the instability risk caused by PLL can be
decreased. With this thought, this section further optimizes the parameters of PLL based on
the quantitative stability analysis. According to Equation (7), the PLL perturbation transfer
function can be equivalently transformed as,

TPLL(s) =
∆θ

∆us
pccq

=
2ξωns + ω2

n
s2 + 2ξωns + ω2

n
, (19)

where ωn
2 = vmki-PLL, 2ξωn = vmkp-PLL. ξ is the damping ratio, ωn is the natural angular

frequency, and vm is the voltage amplitude at the PCC.
From Figure 1 and Equation (7), an equivalent block diagram of PLL can be obtained

as shown in Figure 15 in which KP = 2ξωn = vmkp-PLL and KI = ωn
2 = vmki-PLL.
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Combining the expressions of KP and KI, may as well suppose that,

KI = gK2
P (20)

where g is a coefficient.
From Figure 15, the open-loop transfer function of PLL is,

Go(s) =
KPs + KI

s2 (21)

Since the output of VSC contains 5th, 7th, 11th, and 13th harmonics, i.e., the voltage
at PCC contains 5th, 7th, 11th, and 13th high harmonics. After Park transformation, the
input voltage of the PLL contains mainly 6k (k = 1,2. . . ) harmonic disturbances. Therefore,
the main consideration is the anti-interference ability of the 6th harmonics, the open-loop
transfer function of PLL should satisfy Equation (22), where ωd = 600 π rad/s.

R = 20lg|GO(jωd)| = 20lg

∣∣∣∣∣∣
KP

√
ωd

2 + g2K2
P

ωd
2

∣∣∣∣∣∣ (22)

Based on Equations (19)–(21), the stability margin of the open-loop transfer function
in the PLL system βpm-PLL can be written as Equation (23),

βpm−PLL = arctan(
ωc

gKP
) = arctan

√
1 +

√
1 + 4g2

2g2 (23)

where ωc is the cut-off frequency of PLL system.
According to Equation (23), the relationship betweenβpm-PLL and g is shown in

Figure 16, the curve shows that βpm-PLL decreases with the increase of g. Once the range
of βpm-PLL is determined, the corresponding range of g can be found through the curve in
Figure 16. Considering the stability of PLL phase tracking and the dynamic response of
phase tracking [33], βpm-PLL is selected as 35◦–60◦. The range of g can be obtained from
Equation (23) and Figure 16 as [0.668, 2.489].

When the value of R is [−40 dB, −20 dB], PLL has a better ability of anti-disturbance.
The selection range of KP and g can be obtained by combining Equation (22) and Figure 16
as shown in Figure 17. In combination with the stability evaluation method proposed in
this article, contours of φ are added to Figure 17 as shown in Figure 18. The system has
better stability performance by selecting parameters with large φ in the dashed range of
Figure 18.

Figure 19 shows φ of the VSC with different PLL parameters. From Figure 19, it can
conclude that the system stability is more sensitive to kp-PLL than ki-PLL, with a smaller
degree of change in kp-PLL potentially having a larger influence on the system stability,
while the impact of a change in ki-PLL is smaller.



Appl. Sci. 2023, 13, 5663 13 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 19 
 

0 2 4 6 8 10

g

10

20

30

40

50

60

70

80

90


p
m

-P
L

L
 
 

 

(2.489,35)

(0.668,60)

 

Figure 16. Relationship curve between ϕpm-PLL and g. 

When the value of R is [−40 dB, −20 dB], PLL has a better ability of anti-disturbance. 

The selection range of KP and g can be obtained by combining Equation (22) and Figure 

16 as shown in Figure 17. In combination with the stability evaluation method proposed 

in this article, contours of ϕ are added to Figure 17 as shown in Figure 18. The system has 

better stability performance by selecting parameters with large ϕ in the dashed range of Fig-

ure 18. 

0 50 100 150 200

KP

0

1

2

3

4

R =  40dB R =  20dB

pm PLL =3  

pm PLL =  

g

 

Figure 17. Parameter range of PLL. 

15

20

25

30

35

0 50 100 150 200

KP

0

1

2

3

4

g pm PLL =3  

pm PLL=  

R =  20dBR =  40dB

f (°)

 

Figure 18. Using stability evaluation methods to guide the selection of PLL parameters. 

Figure 16. Relationship curve between φpm-PLL and g.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 19 
 

0 2 4 6 8 10

g

10

20

30

40

50

60

70

80

90


p
m

-P
L

L
 
 

 

(2.489,35)

(0.668,60)

 

Figure 16. Relationship curve between ϕpm-PLL and g. 

When the value of R is [−40 dB, −20 dB], PLL has a better ability of anti-disturbance. 

The selection range of KP and g can be obtained by combining Equation (22) and Figure 

16 as shown in Figure 17. In combination with the stability evaluation method proposed 

in this article, contours of ϕ are added to Figure 17 as shown in Figure 18. The system has 

better stability performance by selecting parameters with large ϕ in the dashed range of Fig-

ure 18. 

0 50 100 150 200

KP

0

1

2

3

4

R =  40dB R =  20dB

pm PLL =3  

pm PLL =  

g

 

Figure 17. Parameter range of PLL. 

15

20

25

30

35

0 50 100 150 200

KP

0

1

2

3

4

g pm PLL =3  

pm PLL=  

R =  20dBR =  40dB

f (°)

 

Figure 18. Using stability evaluation methods to guide the selection of PLL parameters. 

Figure 17. Parameter range of PLL.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 19 
 

0 2 4 6 8 10

g

10

20

30

40

50

60

70

80

90


p
m

-P
L

L
 
 

 

(2.489,35)

(0.668,60)

 

Figure 16. Relationship curve between ϕpm-PLL and g. 

When the value of R is [−40 dB, −20 dB], PLL has a better ability of anti-disturbance. 

The selection range of KP and g can be obtained by combining Equation (22) and Figure 

16 as shown in Figure 17. In combination with the stability evaluation method proposed 

in this article, contours of ϕ are added to Figure 17 as shown in Figure 18. The system has 

better stability performance by selecting parameters with large ϕ in the dashed range of Fig-

ure 18. 

0 50 100 150 200

KP

0

1

2

3

4

R =  40dB R =  20dB

pm PLL =3  

pm PLL =  

g

 

Figure 17. Parameter range of PLL. 

15

20

25

30

35

0 50 100 150 200

KP

0

1

2

3

4

g pm PLL =3  

pm PLL=  

R =  20dBR =  40dB

f (°)

 

Figure 18. Using stability evaluation methods to guide the selection of PLL parameters. Figure 18. Using stability evaluation methods to guide the selection of PLL parameters.



Appl. Sci. 2023, 13, 5663 14 of 19

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 19 
 

Figure 19 shows ϕ of the VSC with different PLL parameters. From Figure 19, it can 

conclude that the system stability is more sensitive to kp-PLL than ki-PLL, with a smaller de-

gree of change in kp-PLL potentially having a larger influence on the system stability, while 

the impact of a change in ki-PLL is smaller. 

kp-PLL

ki-PLL

f
 (

°
)

 

1 1.5 2 2.5 3
100

200

300

400

500

600

0

10

20

kp-PLL

k i
-P

L
L

f (°)

unstable parameter area

 
(a) ϕ for different PLL parameters (b) Contour map of ϕ 

Figure 19. Relationship between PLL parameters and ϕ. 

Based on the analysis from Figure 19, the selection of the over-large kp-PLL is negative 

to the system stability, while ki-PLL has less influence on the system’s stability. A smaller kp-

PLL is needed to ensure system stability. It can be seen from Equation (19) that ki-PLL is pos-

itively correlated with ωn, and ωn will affect the response speed of the system [33], so a 

larger ki-PLL is needed to ensure the dynamic characteristics of the system needs. 

Therefore, it can be concluded that to enlarge the value of ϕ, kp-PLL should be a small 

value and ki-PLL should be a large value in the feasible range of Figure 18. Thus, the PLL 

parameters in this article are selected as KP = 50, g = 2 and KI = 5000. 

For the VSC with the parameters in Table 1, Figure 20 shows the Nyquist curves of 

the system before and after using the selected PLL parameters. Nyquist curves in Figure 

20a encloses (−1, j0), which means the system is unstable. After updating the parameters 

of PLL, Nyquist curves do not enclose (−1, j0), and the system restores to a stable state. 

 4  2 0 2 4 6

 5

0

5

Unit circle

l1(s)

l2(s)

Im
a
g
in

a
ry

 a
x

is

Real axis
 

 2 0 2 4 6 8

 5

0

5

Unit circle

Real axis

l2(s)

l1(s)

Im
ag

in
ar

y
 a

x
is

 
(a) Before using the selected PLL parameters          (b) After using the selected PLL parameters 

Figure 20. Nyquist curve before and after using the selected PLL parameters. 

4. Simulation Verification and Analysis 

In order to verify the effectiveness of the proposed quantitative stability evaluation 

method for guiding the optimization of active damping coefficients and PLL parameters, 

the main circuit shown in Figure 1 was built in MATLAB/Simulink for simulation. The 

main parameters of the grid-connected VSC corresponds to Table 1. 

4.1. Optimization for the Current Control Loop 

Figure 19. Relationship between PLL parameters and φ.

Based on the analysis from Figure 19, the selection of the over-large kp-PLL is negative
to the system stability, while ki-PLL has less influence on the system’s stability. A smaller
kp-PLL is needed to ensure system stability. It can be seen from Equation (19) that ki-PLL is
positively correlated with ωn, and ωn will affect the response speed of the system [33], so a
larger ki-PLL is needed to ensure the dynamic characteristics of the system needs.

Therefore, it can be concluded that to enlarge the value of φ, kp-PLL should be a small
value and ki-PLL should be a large value in the feasible range of Figure 18. Thus, the PLL
parameters in this article are selected as KP = 50, g = 2 and KI = 5000.

For the VSC with the parameters in Table 1, Figure 20 shows the Nyquist curves of the
system before and after using the selected PLL parameters. Nyquist curves in Figure 20a
encloses (−1, j0), which means the system is unstable. After updating the parameters of
PLL, Nyquist curves do not enclose (−1, j0), and the system restores to a stable state.
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4. Simulation Verification and Analysis

In order to verify the effectiveness of the proposed quantitative stability evaluation
method for guiding the optimization of active damping coefficients and PLL parameters,
the main circuit shown in Figure 1 was built in MATLAB/Simulink for simulation. The
main parameters of the grid-connected VSC corresponds to Table 1.
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4.1. Optimization for the Current Control Loop

In this section, the control parameters of VSC correspond to the case of λ2−4(s), where
the grid-connected VSC is unstable. Figure 21 shows the VSC output current when m = 0,
0.1 and 1, respectively. Table 2 gives the THD and oscillations of grid-connected currents
at different m. When m = 0, which means the active damping is disabled, the VSC output
current is severely distorted due to oscillation. The oscillation frequencies are 175 Hz and
75 Hz, and the THD of the VSC output current is 91.3%. After enabling the active damping,
when m = 0.1, the system is still oscillating. If m is too small, the oscillation cannot be
suppressed which corresponds to the conclusion of Figure 14. When m = 1, VSC can operate
stably, and the THD is reduced to 0.18%.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 19 
 

In this section, the control parameters of VSC correspond to the case of λ2−4(s), where 

the grid-connected VSC is unstable. Figure 21 shows the VSC output current when m = 0, 

0.1 and 1, respectively. Table 2 gives the THD and oscillations of grid-connected currents 

at different m. When m = 0, which means the active damping is disabled, the VSC output 

current is severely distorted due to oscillation. The oscillation frequencies are 175 Hz and 

75 Hz, and the THD of the VSC output current is 91.3%. After enabling the active damp-

ing, when m = 0.1, the system is still oscillating. If m is too small, the oscillation cannot be 

suppressed which corresponds to the conclusion of Figure 14. When m = 1, VSC can oper-

ate stably, and the THD is reduced to 0.18%. 

40

20

 20

 40

i o
a

b
c
/A

0.2 0.25 0.3 0.35 0.4

0

t/s

m=0

 

40

20

 20

 40

i o
a
b
c
/A

0.6 0.65 0.7 0.75 0.8

0

t/s

m=0.1

 

40

20

 20

 40

i o
a
b
c
/A

1.0 1.05 1.1 1.15 1.2

0

t/s

m=1

 
(a) operation of VSC when m = 0 (b) operation of VSC when m = 0.1 (c) operation of VSC when m = 1 

Figure 21. VSC output current when m = 0, 0.1 and 1. 
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Figure 22. Current regulation command from 4A to 8A, when m = 0, 0.1 and 1. 

It can be concluded that without modifying the control parameters, the proposed 

stability evaluation method can contribute to selecting the damping coefficient for the ac-

tive damping to effectively suppress the oscillation of the system, thereby expanding the 

range of control parameter selection. 

4.2. Parameter Optimization of PLL 

Figure 21. VSC output current when m = 0, 0.1 and 1.

Table 2. Comparison of grid-connected currents under different m.

Value of m THD of ioabc Oscillation Frequency of ioabc

0 91.3% 175 Hz/75 Hz

0.1 90.2% 175 Hz/75 Hz

1 0.18% Stable

Figure 22 shows the dynamic response characteristics of VSC in the process of current
regulation when m takes different values. At 1s, the d-axis current reference is adjusted
from 4A to 8A. When m = 0, the transient response time is 0.05 s. When m = 0.1, the transient
response time is 0.08 s. In addition, when m = 1, the transient response time increases to
0.08 s. Therefore, a larger m is beneficial to the stability, but the dynamic response speed of
the system will decrease with the increase of m.
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Table 2. Comparison of grid-connected currents under different m. 

Value of m THD of ioabc Oscillation Frequency of ioabc 

0 91.3% 175 Hz/75 Hz 

0.1 90.2% 175 Hz/75 Hz 

1 0.18% Stable 

Figure 22 shows the dynamic response characteristics of VSC in the process of current 

regulation when m takes different values. At 1s, the d-axis current reference is adjusted 

from 4A to 8A. When m = 0, the transient response time is 0.05 s. When m = 0.1, the transi-

ent response time is 0.08 s. In addition, when m = 1, the transient response time increases 

to 0.08 s. Therefore, a larger m is beneficial to the stability, but the dynamic response speed 

of the system will decrease with the increase of m. 
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Figure 22. Current regulation command from 4A to 8A, when m = 0, 0.1 and 1.

It can be concluded that without modifying the control parameters, the proposed
stability evaluation method can contribute to selecting the damping coefficient for the
active damping to effectively suppress the oscillation of the system, thereby expanding the
range of control parameter selection.
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4.2. Parameter Optimization of PLL

Figure 23 shows the VSC output current waveforms before and after using the opti-
mized PLL parameters selected in Section 3.2. As can be seen from Figure 23, before using
the selected PLL parameters, the VSC output current oscillates severely. The oscillation fre-
quencies are 175 Hz and 75 Hz. Using the selected PLL parameters at 4.055 s, the oscillation
is significantly suppressed. Furthermore, the THD of the VSC output current is reduced
from 90.09% to 0.65%.
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Figure 24 shows the dq-axis current waveforms before and after using the optimized
PLL parameters. The frequency of the oscillation waveform is 125 Hz which corresponds
to the frequency of the oscillation in Figure 23. It shows that the oscillations are effectively
suppressed.
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It can be concluded that improving the anti-disturbance ability of PLL can improve
system stability, and the stability evaluation method proposed in this article can effectively
guide the design of PLL parameters.

The stability evaluation method proposed in this article assists in the design of the
parameters of the current control loop and PLL to suppress the oscillations caused by the
current control loop or the PLL. It should be pointed out that the parameter optimization
of the current loop and PLL are compatible, and they can be used either simultaneously or
separately for oscillation suppression. If both the current loop and PLL cause instability of
VSC, then both methods are used at the same time.

5. Conclusions

The interactions between the weak grid and VSCs can cause oscillations which severely
threaten the stable operation of power grids. However, the existing studies on stability
analysis cannot quantitatively describe the system stability, so the parameter optimization
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of VSCs lacks quantitative guidance to prevent oscillation. To solve this issue, this arti-
cle proposes a quantitative method for evaluating the system stability, then the current
control and PLL of VSC are optimized based on the quantitative method. Specifically, the
conclusions and contributions can be summarized as follows:

(1) By introducing the stability evaluation angle between the Nyquist curve of the
weak grid-connected VSC and the negative real axis, a quantitative method for assessing
the system stability is proposed which can define the stability bounds for the control
parameters. Larger values of the defined angle imply a higher level of system stability.

(2) The stability of VSC can be influenced by the current control loop, a decrease in
the proportional coefficient will cause oscillations. An active damping method is used in
the current loop, it can suppress oscillations without changing the original parameters so
that the VSC stability boundary is extended. The optimization of the damping coefficient is
given by using the proposed quantitative stability evaluation method.

(3) By improving the anti-disturbance ability of PLL, the stability of the VSC system can
be improved and oscillations can be suppressed. In combination with the anti-disturbance
ability improvement, the proposed quantitative stability evaluation method can further
optimize the parameters of PLL to improve system stability.

The quantitative stability evaluation method proposed in this article has been ana-
lyzed in a single VSC grid-connected system. It provides a basis for further analysis and
application in multiple VSC systems.
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Nomenclature

VSC voltage source converter
PLL phase-locked loop
DC Direct Current
Vdc front-end DC voltage of VSC
vox (x = a,b,c) VSC output voltage
iox (x = a,b,c) VSC output current
PCC point of common coupling
upcc PCC voltage
Ugx (x = a,b,c) grid voltage
Lf filter inductance
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Lg equivalent grid impedance
iod VSC output current d-axis component
ioq VSC output current q-axis component
idref grid-connected current d-axis reference value
iqref grid-connected current q-axis reference value
kp-c proportional coefficient of current control loop
ki-c integral coefficient of current control loop
vmd d-axis modulation signal
vmq q-axis modulation signal
θpll output angle of PLL
kp-PLL proportional coefficient of PLL
ki-PLL integral coefficient of PLL
upccd d-axis voltage component of upcc
upccq q-axis voltage component of upcc
ω1 fundamental wave angular frequency
KPWM equivalent gain of the VSC
Utri carrier amplitude
ZVSC output impedance matrix of VSC
Zg impedance matrix of grid
φ quantitative stability evaluation metrics
m coefficient of active damping
ξ damping ratio
ωn natural angular frequency
vm steady-state voltage amplitude at PCC
KP stability and controllability of PLL
KI response performance of PLL
g relationship between KI and KP
βpm-PLL stability margin of the open-loop transfer function of PLL
ωc cut-off frequency of PLL system
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