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Featured Application: This article presents a mixed-integer linear programming optimization prob-
lem to minimize the energy cost of a charging station powered by photovoltaics via V2G service.

Abstract: Satisfying the increased power demand of electric vehicles (EVs) charged by clean energy
sources will become an important aspect that impacts the sustainability and the carbon emissions
of the smart grid. A photovoltaic (PV)-powered charging station (PVCS) formed by PV modules
and a stationary storage system with a public grid connection can provide cost-efficient and reliable
charging strategies for EV batteries. Moreover, the utilization of vehicle-to-grid (V2G) service is
a promising solution, as EVs spend most of their time idle in charging stations. As a result, V2G
services have the potential to provide advantages to both public grid operators and EV users. In
this paper, an energy management algorithm of a PVCS formulated with mixed-integer linear
programming is presented to minimize the total energy cost of the participation of EV users in V2G
service. Simulation results demonstrate that the proposed optimization method satisfies EV user
demands while providing V2G service and highlights the benefits of the V2G service where the
determined costs of the proposed algorithm perform significantly better compared to the baseline
scenario (simulation without optimization).

Keywords: charging station; electric vehicle; energy cost optimization; photovoltaic; vehicle-to-grid

1. Introduction

Photovoltaic (PV)-powered charging stations (PVCS) are designed for charging electric
vehicles (EV) using clean energy sources that can be installed on car parking shades and/or
building rooftops. Charging EVs with renewable energy sources, particularly PV sources,
is a crucial factor in enhancing their environmental benefits and reducing their greenhouse
gas emissions [1]. To achieve defined objectives such as minimizing charging costs and
providing a satisfactory charging process for EV users [2], it is necessary to implement
an energy management system that can control and monitor the energy flows within the
PVCS. A feasibility study of a PVCS has been conducted by analyzing its effectiveness
based on technical, economic, and environmental aspects by comparing the impact of
different geographical areas on the installation location in [3]. The study investigates how
a PVCS can contribute to charging EVs with different energy mixes and compares the
produced CO2 emissions of charging EV batteries solely from the grid, from the PVCS, and
with internal combustion engine vehicles. They have found that the PVCS concept is more
efficient in countries with high annual average irradiance and significant CO2 emissions in
their grid, but it remains economically unfeasible due to expensive storage systems. In [4],
a supervision control system is presented for smart charging of an EV fleet in a PVCS-based
research building. The proposed control strategy is based on a real-time operation to satisfy
EV users using PV forecasting and EV charging historical records over four years to predict
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the EV power profiles. A user-friendly smart charging method, which includes interactions
with EV users via an interface, has been developed in [5], where the EV user is a key player
in the process of choosing the best scenario among uncoordinated charging, smart charging,
and bidirectional smart charging control in a PVCS. The proposed methodology is based
on real-time rule-based control and a predictive linear optimization control. The results
showed that bidirectional charging control had the best cost reduction, while uncoordinated
charging control costs the most. In [6], mixed-integer programming was investigated to
minimize the cost of energy traded to a PVCS, where the intermittency of PV power can
be compensated by EVs which can also discharge energy to the PVCS, where it does not
integrate stationary storage. The EVs are classed in three categories according to their
charging behavior, and the results showed that an increase of green EVs, the only category
of EVs for which the users can allow discharging of energy into the charging station, could
reduce the total cost of the PVCS. In [7], mixed-integer linear programming (MILP) has
been applied to optimize the sizing of a PVCS components (PV, stationary storage, and
transformer) in order to minimize the investment cost and the total cost considering the
uncertainties of PV and EV charging power profiles. The simulation results, with a 1-h step
time, showed that EV charging stations powered by PV are more cost-effective than EV
charging stations powered by the grid.

However, large-scale EV charging will pose difficulties from a power point of view
for grid operators [8]. Therefore, charging of EVs should be controlled intelligently in
order to reduce the negative impact on the connected public grid [9]. Additionally, EVs
remain in an idle state for a long time. As a result, they can serve as energy storage systems
and assist the grid by providing energy when they are plugged in. In this way, EVs can
be charged during off-peak periods and discharged during peak periods to support the
public grid and/or a microgrid. This approach enables EVs to be utilized as a flexible load,
with their charging and discharging being controlled. Therefore, vehicle-to-grid (V2G)
services have emerged as a promising technology in the field of smart grids [10], where
they can improve frequency [11] and voltage regulations while providing benefits to the
EV users [12], and this depends on the number of available EVs [13,14]. Additionally, such
services can enhance power quality and promote the integration of renewable energy with
developed smart control algorithms [15–17]. In [18], the benefits are highlighted for V2G
service participants, as these services can decrease the total ownership cost of EVs. For the
grid operator, V2G is seen as a power source that is able to mitigate fluctuations caused by
renewable energy sources and provide ancillary services. As for EV owners, participating
in V2G services should have financial incentives without limiting their travel needs.

Moreover, V2G optimization plays a crucial role in maximizing the benefits. In [19],
the authors found that total cost of EV ownership could be reduced by implementing V2G
service in the Flanders region of Belgium. This service helped to smooth out electricity
demand by filling in valleys and reducing power peaks, ultimately leading to improved
grid stability. A charging and discharging strategy for EVs proving the effectiveness of
their V2G operation in different cities in China with different trip patterns was developed
in [20]. Their aim was to minimize the cost of operation of the distribution grid considering
grid congestion and voltage constraints. These factors were particularly important, given
the variation in the distribution of EVs across areas of operations. The potential locations
for EV charging and their participation in V2G service have been predicted in [21] using
automated machine learning, based on historical data collected over 42 weeks. The authors
of [22] have demonstrated that the participation of EVs in V2G services, when they are
idle at charging stations, can reduce the demand for charging EVs. In [23], an improved
harmony particle swarm optimization problem was investigated in a bi-level model (low
level: EV cluster scheduling, upper level: planning) to determine the optimal allocation of
distributed generation and charging stations within a V2G service. The results indicated
that the optimized model could satisfy the charging demand of EV users, improve the
voltage quality, mitigate load fluctuations, encourage the use of renewable energy, and
improve the global performance of the planning scheme. An optimization framework has
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been developed in [24] to reduce greenhouse gases and intensive electricity imports in the
Switzerland power system with controlled charging/discharging of EVs. To jointly install
EV charging stations and distributed energy resources in a distribution system in China,
an optimization model has been presented in [25], where V2G service is considered with
minimized annual costs (considering also social aspects). An optimization problem has been
modeled in [26] as a nonlinear stochastic programming problem with uncertainty of PV
energy. The EVs can operate in V2G mode, where this allows EVs to charge during off-peak
hours and discharge during peak hours to reduce energy costs. The proposed problem can
optimize the operation of EVs and minimize the cycles of their batteries to reduce battery
degradation speed. A novel control system has been presented in [27] to underpin V2G
service by deploying a fleet of EVs, which allows a V2G aggregator to provide voltage and
frequency services while reducing the charging cost with the minimization of battery-level
degradation. A case study of an EV charging station based on a university campus in Jordan
has been presented in [28], which investigates the feasibility of a V2G service to minimize
the global consumption of energy drawn from the public grid. A computational model of
an EV with battery degradation has been studied in [29] to supply power to the grid while
gaining profit for the EV owner by alleviating the load on the main grid. The results show
that the potential benefits from V2G are greater than the cost of battery degradation.

On the other hand, research studies have investigated the optimization of V2G service
in a PVCS. In [30], a dynamic searching peak-and-valley algorithm was proposed to
determine the optimal charging and discharging start time of EVs based on their initial
state-of-charge (SOC), arrival time, charging mode, departure time, and the tariffs in peak
hours. The aim of this optimization was to reduce the burden on the public grid and
lower its energy cost. A control scheme using a grid-connected inverter was developed
in [31] to improve the voltage and frequency stability of a PVCS with V2G operation. This
inverter can identify unusual faults of the microgrid and functions in islanding mode. The
authors in [32], have modeled a PVCS to provide ancillary services where EV users can
receive rewards for their V2G participation. The results proved that EVs participating in
V2G service could provide high availability of service. Furthermore, in [33], an energy
management strategy has been examined for the real-time control of multi-source EV
charging to lower the operating cost, taking into consideration battery degradation of
stationary storage and EVs for their V2G participation. In [34], a PVCS was designed with
V2G service to lower the stress on the public grid and to enhance its stability during peak
hours. The authors also discussed possible financial incentives that can motivate EV users
to participate in the demand response. Additionally, an energy management and control
system has been introduced in [35] for an EV charging station with V2G integration. This
charging station featured a PV system, wind turbine, and fuel cell with grid connection. A
MILP model has been proposed in [36] for a parking lot of EVs powered with a microgrid,
based on PV sources, wind turbines, hydrogen energy, and a stationary storage system
to minimize the total sustainability cost, as well as economic and environmental costs.
The EVs can operate in V2G mode to participate in demand response, thus encouraging
EV users to charge in off-peak periods instead of on-peak periods. In [37], a day-ahead
operation planning method that incorporates EVs with V2G service in a microgrid was
investigated to minimize the daily operation costs. A multi-objective optimization model
has been proposed in [38] for a microgrid integrating EVs with V2G service. Their objectives
were maximizing the use of renewable energy, maximizing the benefits for EV users, and
minimizing grid load fluctuation. A heuristic optimization problem has been studied
in [39] to optimize the sizing of a hybrid PV sources, battery, and diesel generator for an
EV parking lot with V2G service, where EVs are considered as a flexible load. A two-stage
smart charging algorithm (first stage: optimization problem, second stage: real-time control)
has been proposed in [40] for buildings integrating EVs, PV sources, a storage system, and
a heat pump. The optimization problem is formulated as a non-linear programming model
to optimize the operation of EVs. The results show the benefits of V2G service as primary
frequency regulation reserve while participants achieve energy cost reductions; however,
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the degradation of Li ion batteries is non-negligible. The authors in [41] have proposed an
effective strategy using adjustable robust optimization to enhance the operation stability
and economic cost of a microgrid by enabling V2G service during peak periods and
charging for valley filling at off-peak periods to minimize the cost of operation under
various constraints.

The references cited earlier have highlighted the role of V2G in serving as a spinning
reserve source and power regulation to lower the impact of the peak load on the grid and
its associated services. Yet, their optimization problems are mostly based on day-ahead
prediction of EV profiles modeled with a probability distribution function, whereas the
proposed optimization algorithm in this paper is actualized at every arrival of a new
EV, considering the impact of the uncertainties in real-time simulation. This paper is an
extension of [42], where V2G is realized with a rule-based control scheme, whereas in
this extended version, the focus is on the energy cost optimization problem with V2G
implementation in the PVCS. In this paper, a PVCS with five chargers that can support
three charging modes, slow, average, and fast charging, is presented. The PVCS combines
PV sources, a stationary storage system, a public grid connection, and EVs as a flexible
load that can operate in V2G mode. The human–machine interface (HMI) allows the EV
users to interact with the PVCS and choose their preferences, such as charging mode,
desired state of charge SOC at departure, and willingness to participate in V2G service.
Additionally, EV users arrive arbitrarily at the PVCS, and their arrivals are unpredictable.
In [43], the authors presented a control mechanism aimed at minimizing the discomfort
of EV users for a charging station equipped with PV sources and connected to a public
grid, but without a stationary storage system. However, their study differs from ours
in several ways. Firstly, they only allow for one charging mode, namely the slow mode,
whereas we offer three different charging modes. Secondly, their focus is on maximizing
social welfare and minimizing the discomfort of EV users, while the objective in this study
is to minimize the total energy cost of the PVCS, with optimization being updated for
each EV arrival. Furthermore, the energy injected into the grid from EVs and the energy
distribution for each EV charging from each power source are being analyzed to provide
a more comprehensive understanding of the system’s energy dynamics. To sum up, the
main contributions of this paper are:

1. Proposing an energy cost optimization problem in a PVCS with V2G service, taking
into consideration the uncertainty of the arrival time of EVs in a real-time simulation;

2. Actualizing the optimization problem formulated via MILP at every arrival of a new
EV; the arrival of EVs is not modeled based on day-ahead prediction; instead it is
randomly generated as unpredicted events in MATLAB;

3. Assessing the energy consumption of every EV from each power source and the energy
participation among the power sources (PV, energy storage, and grid).

The paper is organized as follows: Section 2 introduces the PVCS with V2G energy
cost optimization. Section 3 develops the energy cost optimization problem. Section 4
describes the different simulation cases with V2G service. Section 5 analyzes the energy
cost results. Section 6 concludes the paper.

2. PV-Powered Charging Station with V2G Service

The PVCS infrastructure consists of PV modules, a stationary storage system, and a
connection with the public grid [42], as illustrated in Figure 1.

In Figure 1, pPV_MPPT is the PV power operating in maximum-power point-tracking
(MPPT) mode, pPV is the PV power after shedding (if it is necessary), pG_I is the power
injection into the public grid, pG_S is the power supply from the public grid, pS_C is the
charging power of the stationary storage, pS_D is the discharging power of the stationary
storage, pPVCS D is the total demand power of EVs, and pPVCS is the total charging power
of EVs after shedding (if it is necessary). The PVCS is designed such that the public grid
can provide power to charge EVs and also absorb power in case of excess energy from PV
sources or discharging EVs. Each component of the PVCS is connected to the DC bus using
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dedicated converters. The EVs’ batteries are considered as controllable loads because they
can be charged or discharged at variable or constant power. To ensure a consistent power
supply and reduce the difference between power production and load, the public grid
connection is formed through a bidirectional AC/DC converter. The stationary storage is
charged solely by PV sources and can be discharged to provide power for EVs’ load.
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2.1. PV-Powered Charging Station with V2G Service without Energy Cost Optimization

The PVCS can operate without energy cost optimization based on the storage priority
algorithm shown in Figure 2. In this case, the EVs are charged using PV sources first,
followed by the stationary storage system, and finally by the public grid. The surplus
PV production is used to charge the stationary storage system. However, if the storage
system has reached its capacity or charging power limit and there is still unused excess
PV power, the remaining power is injected into the public grid. Participating in a V2G
service allows EV users to discharge their EVs for up to 15 min or until the battery is
fully discharged during peak periods. Following the V2G operation, the EVs will then be
charged to achieve the desired SOC at departure. The charging can be performed using any
available power, regardless of the initial charging mode, as long as the charging terminal
can support variable power up to 50 kW.

2.2. PV-Powered Charging Station with V2G Service with Energy Cost Optimization

On the other hand, the PVCS can operate with energy cost optimization. In this
case, Figure 3 describes the supervisory control system for the PVCS [44]. The supervisory
control system of the PVCS is composed of four layers: prediction, energy cost optimization,
operation, and HMI. The control block has been designed and implemented to interact with
EV users and maintain power balance at the DC bus through the energy cost optimization
and operation layers.

The prediction layer utilizes weather forecasts. From the interaction with the HMI,
the user of an EV v selects their desired SOC at departure charging mode, participates
in the V2G service, and obtains the SOC of their EV at arrival in real-time. The energy
cost optimization relies on the production prediction, which depends on the hourly solar
irradiation predictions and consumption profile communicated from the HMI. Moreover,
the power limits of the connected public grid, energy pricing, and energy system limits
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are communicated. The MILP formulation is used to reduce the total energy cost of the
PVCS. This supervisory control system has the advantage of interacting with EV users for
optimization; yet, if the choices of the EV users are not practical, they must be adjusted
in order to enable optimization [45]. For instance, if an EV user arrives at the charging
station and requests fast charging, but the available power cannot support it, the HMI
will communicate with the user to suggest charging in average or slow mode, waiting
for available power, or leaving the charging station altogether. Similarly, if the EV user
mistakenly inputs an invalid SOC at departure (e.g., 180%), the HMI will alert the user
to enter a valid SOC interval below 100%. Whenever a new EV arrives, the optimization
process is updated with the new inputs from the HMI and physical constraints. Therefore,
the process is repeated each time a new EV arrives.

Dealing with the unpredicted arrival of EVs is the main challenge. The power refer-
ences for the public grid, stationary storage, and EVs are sent to the operation layer based
on the optimization results. The operation layer is responsible for maintaining the power
balance while respecting the system’s constraints and physical limitations [46]; furthermore,
it sets the PV power limitation and applies EV shedding if needed.
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2.2.1. Prediction Layer

In the prediction layer, hourly solar irradiation predictions are provided by Météo
France to calculate the PV power prediction. The PV power prediction is based on solar
irradiation (g) and the ambient temperature (Tamb) from forecasted data [47]. Therefore, the
PV power prediction pPV MPPT pred is calculated in MPPT mode for each time instant ti [48]
as in Equations (1) and (2), and it is introduced into the energy cost optimization layer:

pPV MPPT pred(ti) = PPV_STC·
g(ti)

1000
·[1 + γ·(TPV(ti)− 25)]·NPV with ti = {t0, t0 + ∆t, t0 + 2∆t, . . . , tF}, (1)

TPV(ti) = Tamb(ti) + g(ti)·(NOCT − Tair−test)/Gtest, (2)

where PPV_STC is the PV power in standard test conditions (STC), γ is the power coefficient
of temperature (−0.29%/◦C), NPV is the number of PV panels, TPV is the PV cell temper-
ature, and t0, ∆t, and tF are the initial time instant, time interval between two samples,
and time instant at the end of operation, respectively. NOCT is the nominal operating cell
temperature (41 ◦C), Gtest is the fixed solar irradiation (800 W/m2), and Tair−test is the fixed
air temperature (20 ◦C).

2.2.2. Human–Machine Interface

This layer interacts with the EV users, allowing them to choose their preferred charging
mode Mv among slow, average, and fast. It should be noted that all EVs have the same
energy capacity and can handle fast charging. The HMI obtains the SOC of the EVs at
their arrivals SOCEV_arrv and assists the users in selecting their desired SOC at departure
SOCEV_desv , as well as their participation in V2G service V2GEV in real-time. Therefore,
the estimated charging time test_chv , which indicates the time required to reach the desired
SOC, is determined in Equation (3):

test_chv = (SOCEV_desv − SOCEV_arrv)·E/PEV_maxv , (3)

where E is the EV battery capacity, and PEV_maxv is the maximum power of EV charging
based on the charging mode selected by the user. The HMI for the PVCS is explained
thoroughly in [49], and once the user preferences are set in the HMI, these data are commu-
nicated simultaneously to the operation layer and to the energy cost optimization layer to
actualize the optimization with these data.
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2.2.3. Energy Cost Optimization

This layer interacts with the prediction layer and the HMI to carry out the optimization
to minimize the total energy cost. This layer, the power references for the stationary
storage, the public grid, and the EVs, which are the decision variables, are sent to the
operational layer. The optimization has several benefits, such as minimizing the energy
cost, determining the optimal contribution of the stationary storage or the public grid,
and avoiding EV and PV shedding. The energy pricing is considered for on-peak and
off-periods with fixed tariffs, and the limits for public grid power injection and supply are
defined with the public grid operators. Moreover, the physical limitations of the stationary
storage should be respected to avoid its damage. The energy cost optimization problem is
detailed in Section 3.

2.2.4. Operation Layer

From the energy optimization layer, the optimal power flow for the sources and the
EVs considering pPV MPPT pred and pPVCS is found. The optimized powers for the station-
ary storage and the public grid are obtained through the optimization layer. However,
these optimized powers are not sent directly into the operation layer. Instead, the power
distribution coefficient kD is identified and introduced into the operation layer to account
for uncertainties in the forecasted data. The power distribution coefficient kD determines
the power share between the public grid and the stationary storage. Thus, if PV power is
insufficient for EV charging, either the public grid or the stationary storage or both can
continue supplying power to charge the EVs based on the value of kD (see Section 5). The
upside of kD is coupling easily the energy management with the operation layer while
respecting all constraints [47].

The operation layer must ensure robustness and be able to withstand uncertainties
in the forecast data. After that, this layer defines the power references and applies PV
or EV shedding when needed. To maintain the DC bus at the reference voltage Vre f ,
the actual operating conditions are used to determine the power reference pre f using
Equations (4) and (5):

pre f (ti) = pPV(ti)− pPVCS D(ti)− CP(Vre f − vDC bus), (4)

pre f (ti) = pG_re f (ti) + pS_re f (ti), (5)

where CP is the proportional controller gain, and vDC bus is the actual voltage of the DC
bus. The power reference for the public grid pG_re f and the stationary storage pS_re f can be
obtained by (6), and the power distribution coefficient kD is given by (7):

pS_re f (ti) = kD(ti)·pre f (ti), (6)

kD(ti) =
pS_C(ti) + pS_D(ti)

pS_C(ti) + pS_D(ti) + pG_I(ti) + pG_S(ti)
with kD ∈ [0, 1]. (7)

3. Energy Cost Optimization with V2G Service

The principal objective of the formulated optimization problem is to minimize the
total energy cost while satisfying various constraints [47]. The constraints and objective
function are explained in detail in the following subsections.

3.1. PV Sources

PV system can operate in two modes: MPPT or limited-power mode. The latter mode
is used in case of excessive surplus PV production which exceeds the total EV load, the
allowed stationary storage charging power, and the public grid injection power. In the
MPPT mode, there is no need to shed any PV power, and thus PV shedding pPV_S is zero.
However, in the power-limitation mode, pPV_S becomes positive, indicating the amount of
PV power that needs to be shed to ensure that the total power injected into the grid does
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not exceed the limits. Accordingly, pPV is calculated [47] as given by (8) with the constraint
of pPV_S in (9) and (10):

pPV(ti) = pPV_MPPT(ti)− pPV_S(ti), (8)

pPV(ti) ≥ 0, (9)

0 ≤ pPV_S(ti) ≤ pPV_MPPT(ti). (10)

3.2. Stationary Storage

In order to extend the lifetime of the lithium-ion batteries as a stationary storage
method and protect them from overcharging or over-discharging, the maximum and
minimum SOC of the storage, SOCS_max, SOCS_min, as well as the maximum storage power
PS_max must be respected as given by (11) and (12) [47,50]. The SOC of the storage socS
can be simplified as in [51], neglecting the effects of self-discharge and temperature, and is
given by (13) below:

−PS_max ≤ pS(ti) ≤ PS_max, where pS(ti) = pS_C(ti)− pS_D(ti), (11)

SOCS_min ≤ socS(ti) ≤ SOCS_max, (12)

socS(ti) = SOC(t0) +
1

3600·EBat

∫ t

t0

pS(ti)dt, (13)

where EBat and pS are the energy capacity (kWh) and power of the stationary storage, respectively.

3.3. Grid Connection

The maximum limits for the grid supply and injection PG_S_max and PG_I_max, set by the
public grid, should be respected [47], as given by (14), where pG is the public grid power:

−PG_S_max ≤ pG(ti) ≤ PG_I_max, where pG(ti) = pG_I(ti)− pG_S(ti). (14)

3.4. Electric Vehicles

When the stationary storage and public grid have reached their limits, it may not be
possible to fully supply EV batteries, which represent the entire load of the PVCS. In such
cases, the charging of EVs can be shed [47]. Moreover, it should be noted that pPVCS can
be negative when an EV is in the process of discharging into the grid during V2G service.
In situations where there is enough PV power available, there is no need to shed any PV
production. Similarly, when there is sufficient charging capacity available, there is no need
to shed any EV charging power. Moreover, the stationary storage could be charged, and/or
the public grid could absorb power when PV production is higher than load demand. On
the other hand, when the load demand exceeds the PV production, the stationary storage
can be discharged, and/or the public grid can supply power. Therefore, the constraints
given by (15) and (16) must be respected.

i f pPV_MPPT(ti) ≥ pPVCS D(ti) then
{

pG(ti) ≥ 0
pS(ti) ≥ 0

, (15)

i f pPV_MPPT(ti) ≤ pPVCS D(ti) then


pPV_S(ti) = 0

pG(ti) ≤ 0
pS(ti) ≤ 0

. (16)

The PVCS interface allows EV users to make choices regarding their charging mode
and other preferences. The constraints given in (17)–(34) reflect the interaction between EV
users and the supervisory control system.
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3.4.1. V2G Mode

The following constraints given below in (17)–(23) are included in the optimization
problem for the EV users who accept providing V2G services.

disch_min·60/∆t ≤∑ V2Gbinv(ti) ≤ disch_max·60/∆t ∀ti ∈ [tarrv , tdepv ] (17)

V2GSWv(ti) ≥ V2Gbinv(ti)−V2Gbinv(ti−1) ∀ti ∈ [tarrv , tdepv ] (18)

G2VSWv(ti) ≥ G2Vbinv(ti)− G2Vbinv(ti−1) ∀ti ∈ [tarrv , tdepv ] (19)

G2Vbinv(ti) + V2Gbinv(ti) ≤ 1 ∀ti ∈ [tarrv , tdepv ] (20)

−PEV_ f ast_max·V2Gbinv(ti) ≤ pEVv(ti) ∀ti ∈ [tarrv , tdepv ] (21)

pEVv(ti) ≤ PEV_ f ast_max·G2Vbinv(ti) ∀ti ∈ [tarrv , tdepv ] (22)

pEVv(ti)− pEVv(ti−1) ≤ Limit·∆t/60·G2Vbinv(ti) ∀ti ∈ [tarrv , tdepv ] (23)

where disch_min (5 min) and disch_max (15 min) are the minimum and maximum du-
ration for the EV’s discharge, while tarrv and tdepv are the time of arrival and departure
of vehicle v, respectively. G2Vbinv and V2Gbinv are binary decision variables for charg-
ing/discharging times; G2VSWv and V2GSWv are binary decision variables for the switching
times between charging/stop and discharging/stop; pEVv is the EV charging power of
vehicle v; PEV_ f ast_max is the fast charging power at maximum; and Limit is the ramp-up
charging power (15 kW/min). Constraint (17) determines the discharging period of the EV,
while Constraints (18) and (19) determine that the discharging and charging times of the EV,
respectively, should be successive. Constraint (20) specifies that the EV can either charge,
discharge, or be idle at any given time. Constraints (21) and (22) refer to the discharging
and charging power of the EV, respectively. Lastly, Constraint (23) helps to reduce the
charging fluctuations of the EV.

3.4.2. EV Charging Mode

If the EV user does not want to participate in the V2G service, Constraints (24)–(27) are
used for charging the EV battery, where the charging power is determined by the charging
mode selected by the EV user as follows:

i f Mv = 1 then 0 ≤ pEVv(ti) ≤ PEV_ f ast_max ∀ti ∈ [tarrv , tdepv ] with v = {1, 2, . . . , Nv}, (24)

i f Mv = 2 then 0 ≤ pEVv(ti) ≤ PEV_aver_max ∀ti ∈ [tarrv , tdepv ], (25)

i f Mv = 3 then 0 ≤ pEVv(ti) ≤ PEV_slow_max ∀ti ∈ [tarrv , tdepv ], (26)

pEVv(ti) = 0 ∀ti /∈ [tarrv , tdepv ], (27)

where Nv is the total number of EVs, PEV_aver_max is the average charging power at maxi-
mum, and PEV_slow_max is the slow charging power at maximum. The total EV charging
power in (28) and the SOC calculation with its constraints in (29)–(34) are given:

pPVCS(ti) =
Nv

∑
v

pEVv(ti) ∀ti ∈ [tarrv , tdepv ], (28)
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SOCEV_min ≤ socEVv(ti) ≤ SOCEV_max ∀ti ∈ [tarrv , tdepv ], (29)

socEVv(ti) = 0 ∀ti /∈ [tarrv , tdepv ], (30)

socEVv(ti) = SOCEV_arrv(ti) ∀ti = tarrv , (31)

SOCEV_arrv(ti) ≥ SOCEV_min ∀ti = tarrv (32)

socEVv(ti+1) = socEV_arrv(ti) +
1

3600·E

∫ tdepv

tarrv

pEVv(ti)·dt, (33)

SOCEVv(ti) ≤ socEV_desv ∀ti = tdepv , (34)

where SOCEV is the SOC of vehicle v, and SOCEV_min and SOCEV_max are the minimum
and maximum battery SOC of vehicle v, respectively. The dynamic SOC evolution socEVv is
given by (33). Similar to the stationary storage, Constraint (29) determines the SOC limit.
Additionally, Constraint (30) refers to the absence of an EV, while Constraint (31) assigns
the SOC of an EV at its arrival time, requiring it to be greater than the limit specified in
Constraint (32). Finally, Constraint (34) refers to the SOC of an EV at its departure time,
which should be lower than or equal to the desired SOC of the EV at departure.

3.5. Power Balancing

All the production and consumption should be equal on the DC bus; therefore, an
equation for power balancing should be included in the formulation. The power balancing
equation [47], where all power signs are assigned positives, is be given by (35):

pPV(ti) + pS_D(ti) + pG_S(ti) = pPVCS(ti) + pS_C(ti) + pG_I(ti). (35)

3.6. Objective Function

The total energy cost Ctotal takes into consideration the cost of the power supplied
from the public grid, the profit from the power injected into the public grid, the cost of
the stationary storage, the penalty cost in case the EV has not reached the desired SOC at
departure, and the cost associated with shedding power from the PV sources. To prevent
excessive switching during charging or discharging, a switching penalty CSW is introduced
to ensure that the action is completed in the fewest cycles possible. Therefore, the objective
function minimizes Ctotal , as given by Equations (36)–(41):

min Ctotal = CG + CS + CPVS + CEV_penalty + CSW , (36)

CG =
tF
∑

ti=t0

[cG(ti)·∆t·(−pG_I(ti) + pG_S(ti))]

cG(ti) =

{
cG_NH f or t ∈ normal hours
cG_PH f or t ∈ normal hours

(37)

CS =
tF

∑
ti=t0

[cS(ti)·∆t·(pS_C(ti) + pS_D(ti))], (38)

CPVS =
tF

∑
ti=t0

[cPVS(ti)·∆t·pPVS(ti)], (39)

CEV_penalty =
Nv

∑
v
[cEV_p·(SOCEV_desv − SOCEV_depv)·E], (40)
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CSW =
tF

∑
ti=t0

Nv

∑
v
[cSW(ti)·(V2GSWv(ti) + G2VSWv(ti))], (41)

where CG, CS, CPVS, and CEV_penalty are the public grid, stationary storage, PV shedding,
and EV penalty costs, respectively; and cG, cS, cPVS, cEV_p, and cSW are the public grid,
stationary storage, PV shedding, EV penalty, and switching penalty tariffs, respectively.
The energy cost optimization problem is formulated to minimize the objective function in
(36) with respect to Constraints (8)–(35), determining the decision variables: pG, pS, pPV_S,
pEVV , V2Gbinv , G2Vbinv , V2GSWv , and G2VSWv .

4. Simulation Results for PVCS with V2G Service

Several simulation cases are presented to demonstrate the effectiveness of the energy
cost optimization method. Finally, the cases with optimization, denoted as “Sim w/
opti”, are compared with the cases without optimization, denoted as “Sim w/o opti”. The
“Sim w/o opti” is operated under a simple control scheme based on a storage priority,
where kD is set to one in this operation mode [52]. The optimization problem is solved by
CPLEX [53], where CPLEX is a high-performance mathematical programming solver for
linear programming, mixed-integer programming, quadratic programming, and convex
optimization, developed by IBM. The optimization is performed with 1-min intervals, while
the simulation is performed with 1-s intervals. The data for the irradiance and ambient
temperature were recorded at 10-s intervals using proper instruments of measurement, and
through interpolation, the data are reduced to 1-s intervals.

In this section, two case studies are presented for a PVCS that includes five chargers,
with EVs equipped with 50 kWh lithium-ion batteries. The PVCS has 84 PV panels with
28.9 kWp, and the stationary storage has a capacity of 130 Ah, with 288 V providing
37.44 kWh. However, there is no defined power injection limit for the public grid. Table 1
lists the parameters that are used in the following simulation cases for the PVCS with
V2G service.

Table 1. Parameter values used in the simulations for the V2G service.

Parameter Value Parameter Value Parameter Value

PG_I_max - SOCS_min 20% cG_NH 0.1 €/kWh
PG_S_max 50 kW SOCS_max 80% cG_PH 0.7 €/kWh
PS_max 7 kW SOCEV_min 20% cS 0.01 €/kWh

PEV_ f ast_max 50 kW SOCEV_max 100% cPVS 1.2 €/kWh
PEV_aver_max 22 kW SOCS0 50% cEV_penalty 2.5 €/kWh
PEV_slow_max 7 kW vS 288 V cSW 0.05 €

E 50 kWh CBat 130 Ah pPV_MPPT 28.9 kWp

Table 2 presents the EV users’ data and preferences. SOCEV_arrv , SOCEV_desv , tarrv , Mv,
and V2G participation are generated randomly. SOCEV_arrv and SOCEV_desv are generated
in the intervals [20%, 50%] and [70%, 100%], respectively. It is assumed that EV battery
capacity is capable of handling fast charging.

Table 2. Data and preferences of EV users [43].

EVs SOCEV_arr SOCEV_des tarr test_ch M V2G

EV1 31% 85% 09:20 03 h 52 min Slow Yes
EV2 35% 75% 10:00 0 h 24 min Fast No
EV3 50% 80% 12:05 02 h 8 min Slow Yes
EV4 25% 78% 13:45 01 h 13 min Average No
EV5 29% 72% 14:25 03 h 5 min Slow No

Additionally, two scenarios in each study case are taken into consideration:
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• Scenario a: during peak periods, EVs discharge at a constant power and then recharge
with the same constant charging power as set by the user until departure time;

• Scenario b: during peak periods, EVs discharge at a maximum power of 50 kW and
then recharge again with a variable charging power, irrespective of the charging mode
selected by the user, to achieve the desired SOC at departure after V2G service.

4.1. Case 1: Sunny Day

For case 1, a day with high irradiance was considered, specifically, 29 June 2019 in
Compiegne. The real and predicted PV power are shown in Figure 4, where it can be
observed that the predicted PV power is slightly higher than the real PV power and follows
the same trend. As a result, this uncertainty has an impact on the optimization results,
which will potentially lead to supplying energy from the public grid instead of discharging
energy from the stationary storage. In this case, two scenarios are conducted, which involve
constant and variable charging/discharging powers.
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4.1.1. Scenario a: Constant Power

Figures 5 and 6 show the power and SOC of the EVs with V2G service at constant
power with the “Sim w/o opti” and “Sim w/ opti” algorithms, respectively.
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Figure 5a shows that EV1 as well EV3 are discharged at peak hours with 7 kW each for
15 min; they are then charged after providing V2G service directly until their departure time
with the same constant power. As a result, EV1 and EV3 failed to achieve their desired SOC
values at departure. Specifically, EV1 only reached 71% instead of the desired 85%, and
EV3 reached 68.33% instead of 80%, as shown in Figure 5b. The dashed points represent
the SOCs of the EVs that should be reached with respect to user preferences. On the other
hand, Figure 6a shows that all the EVs are charging according to user preferences, and the
desired SOC at departure is reached even when EV users opt to participate in V2G service,
as shown in Figure 6b. However, discharging the EVs is not possible because it would
prevent the desired SOC from being achieved, and hence meeting the requirements of EV
users is given priority over discharging energy via V2G into the grid.

4.1.2. Scenario b: Variable Power

The power flow of the PVCS with V2G service at variable power with the “Sim
w/o opti” and “Sim w/ opti” algorithms is presented in Figure 7, where the predicted
PV power is used only to run the optimization, and the real PV power is used in both
simulation scenarios.

Figure 7a shows that EV1 as well EV3 are discharged at peak periods for 15 min at
50 kW each, and then they are recharged with the appropriate charging power after V2G
service to meet the needs of the users while considering the duration of the remaining
parking time. The PVCS operates in storage-priority mode, meaning that any excess PV
power is initially used to charge the stationary storage. Once the stationary storage is either
full or its maximum charging power is reached, which occurs around 11:00–11:30 and from
15:00 until 18:00, any additional PV power is then injected into the public grid. Furthermore,
the public grid provides power when EV2 charges in fast mode and during peak periods
when EV1 and EV3 recharge after V2G. Thus, charging EVs during peak periods will
increase the energy cost. Sharp variations in power levels might lead to stability issues. To
prevent this, Constraint (23) limits steep power variations, which can be seen in Figure 7a’s
zoom-in during the peak hour of 12:00 to 13:00. On the other hand, in Figure 7b, EV1
and EV3 are discharged simultaneously during peak periods (serving a total of 100 kW
power to the grid), and then each EV recharges after V2G with the optimized power to
meet user preferences. EV1 and EV3 are primarily charged by PV power. However, due
to uncertainty in the PV power prediction, the public grid may supply power to the EVs
between 10:25 and 12:00, although it is not very significant. The injection of power into
the public grid is determined by the optimization result to maximize profits in the event
of excess PV power, which occurs before 10:00 during V2G service and from 15:00 until
18:00. The power and SOC of the EVs in “Sim w/o opti” and “Sim w/ opti” are shown in
Figures 8 and 9, respectively.
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Figure 8a shows that EV1 begins discharging at 50 kW and then recharges with 50 kW
to reach the desired SOC at the time of departure. The EVs have enough remaining charging
time after V2G to recharge with 22 kW. In Figure 9a, the optimized charging/discharging
profiles of EV1 and EV3 allow them to participate in V2G service, reach the desired SOC
at departure, and satisfy the users with minimization of the cost. When EV2 arrives, the
optimization is actualized again, and as a result, EV1’s charging power is dropped to reduce
the total power demand because EV2 charges in fast mode. After EV2 leaves, EV1 starts
recharging again, which helps to discharge power during peak periods. After providing
V2G service, EV1 resumes charging its battery to achieve the desired SOC at the time of
departure. In the same way, the optimization is actualized every time a new EV comes to
the PVCS, and thus the optimization procedure is realized five times during the day in this
case. The power provided to recharge EV1 and EV3 is synchronized with PV power, even
during peak periods. Consequently, all EVs have achieved their desired SOC values at the
time of departure, as shown in Figures 8b and 9b.

Scenario a, where the charging/discharging power is constant, is proved to be im-
practical because EVs will never achieve their desired SOC at the time of departure. On
the other hand, scenario b proves its feasibility by allowing EVs to recharge with variable
power after participating in V2G service, irrespective of their initially selected charging
mode, in order to satisfy the EV user. Therefore, only the variable charging/discharging
scenario is considered in the following case studies, and the “Sim w/ opti” is compared to
the “Sim w/o opti”.

4.2. Case 2: Cloudy Day

For case 2, a cloudy day with high irradiation was considered, specifically, 10 May
2019 in Compiegne. The real and predicted PV powers are shown in Figure 10, where it
can be observed that the predicted PV power is slightly higher than the real PV power,
and the fluctuations are hard to predict due to hourly provision of forecasts and their
inconsistent trends. As a result, these uncertainties have an impact on the optimization
results that potentially lead to supplying power from the public grid instead of discharging
energy from the stationary storage. In this case, the power flow of the PVCS with V2G
service in “Sim w/o opti” and “Sim w/ opti” is shown in Figure 11, where the predicted
PV power is used only to run the optimization, and the real PV power is used in both
simulation scenarios.

Figure 11a shows that EV1 and EV3 are discharged at peak periods for 15 min with
50 kW each, and they are then recharged after V2G with the appropriate charging power
to meet the needs of the users. As the PV power is not very significant and is fluctuating,
the stationary storage is discharged to support the charging of EVs. The PVCS operates
in storage-priority mode, meaning any excess PV power is initially used to charge the
stationary storage. Once the stationary storage is either full or its maximum charging power
is reached, which occurs at around 11:30, any additional PV power is injected into the
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public grid. However, once the storage is empty, which occurs around 17:00, the public grid
supplies power to continue charging the EVs. Furthermore, the public grid supplies power
when EV2 charges in fast mode and during peak periods, when EV1 and EV3 recharge
after V2G. Therefore, charging EVs during peak periods will increase the energy cost. On
the other hand, in Figure 11b, EV1 and EV3 are discharged simultaneously during peak
periods (serving total 100 kW power to the grid), and they are then recharged after V2G
with optimized power to meet the needs of the users. The power injected into the public
grid is defined by the optimization result to maximize profits in the event of excess PV
power, which occurs before 09:30, around 11:30 during V2G service, and from 13:15 until
13:45. Figures 12 and 13 show the power and SOC of the EVs for the “Sim w/o opti” and
“Sim w/ opti” algorithms, respectively.
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Figure 11. Power flow with V2G service—case 2 (a) in “Sim w/o opti” and (b) in “Sim w/ opti”.

In Figure 12a, similarly to case 1 scenario b under “sim w/o opti”, EV1 and EV3 are
discharged at peak periods for 15 min at 50 kW each, and then they continue charging until
their departure times to meet the needs of the EV users at 50 kW and 22 kW, respectively.
However, in Figure 13a, the charging and discharging profiles of EV1 and EV3 are the
optimized profiles that allow them to participate in V2G service, reach the desired SOC
at the time of departure, and satisfy the users with the lowest cost. PV power is not very
significant; therefore, EV1 keeps charging even when EV2 comes to charge in fast mode.
During peak periods, the charging power of EV1 and EV3 is provided by PV sources.
Consequently, all EVs have achieved their desired SOC at the time of departure, as shown
in Figures 12b and 13b. Figure 14 compares the dynamic SOC of the stationary storage for
case 1, scenario b, and case 2.
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Figure 14. SOC of the stationary storage in (a) case 1, scenario b and (b)—case2.

For Figure 14a, the dynamic SOC of the stationary storage is shown for case 1, where
the real PV power is high. In “sim w/o opti”, where the storage priority is applied,
the storage is always used for either charging or discharging. The storage becomes full
around 11:30 and 16:30, when the charging demand of EVs is not significant. In contrast,
in sim w/ opti”, the storage is used only at the moments decided by the optimization
algorithm— for example, during peak hours (14:30–15:00) and when the charging demand
of EVs is high, such as the case where EV2 charges in fast mode simultaneously with EV1.

On the other hand, Figure 14b shows the dynamic SOC of the stationary storage for
case 2, where the real PV is highly fluctuating. In “sim w/o opti”, the storage is always
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used for either charging or discharging, but it is never at full capacity and becomes empty
around 16:00. In contrast, in “sim w/ opti”, the behavior of the storage is similar to case
1 in “sim w/ opti” and becomes empty at 15:00.

5. Energy Cost Analyses for PV-Powered Charging Station with V2G Service

Table 3 demonstrates the energy injected into the grid for the two case studies. The
energy is injected into the grid during V2G, where the EVs’ contribution is significantly
greater in the variable charging/discharging power scenario than the constant charg-
ing/discharging power scenario. The contribution of EVs is higher than 65% in the variable
charging/discharging power scenario. Even in “Sim w/ opti”, the energy share from EVs
is similar to that in “Sim w/o opti” and considered significant.

Table 3. Energy injected into the public grid for the different cases.

Operation Case

Energy Injected into the Public Grid during V2G Period Energy
Injected into

the Grid
during the
Day (kWh)

PV (kWh) EVs (kWh)
Total Energy

during
V2G (kWh)

% EV/Total % PV/Total

Case 1—constant
power scenario

Sim w/o opti 5.88 2.91 8.79 33.10% 66.90% 44.03
Sim w/ opti 0 0 0 0 0 58.85

Case 1—variable
power scenario

Sim w/o opti 5.88 20.83 26.71 77.98% 22.02% 50.95
Sim w/ opti 5.88 23.33 29.21 79.87% 20.13% 68.34

Case 2—variable
power scenario

Sim w/o opti 6.21 20.83 27.04 77.04% 22.96% 30.52
Sim w/ opti 7.45 25 32.45 77.04% 22.96% 40.91

Furthermore, “Sim w/o opti” and “Sim w/ opti” are compared with an ideal case,
which is considered as a reference: “Opti for real conditions”. In this reference case, it is
assumed that the real PV MPPT power production and the arrival times of all EVs are
known, and hence there will be no uncertainty issues related to forecasting errors. Therefore,
the optimization is executed only one time because the arrival times of EVs are considered
known in “Opti for real conditions”. The total energy costs of “Sim w/ opti” are closer to
the ideal case than “Sim w/o opti” in the two cases, which indicates the effectiveness of the
proposed optimization algorithm during different meteorological conditions.

Table 4 presents the energy costs for the case studies. Only in case 1 “Sim w/o opti”,
with constant charging/discharging power, is the obtained dissatisfaction cost for EV
users positive due to not having the desired SOC at the departure time. In the variable
charging/discharging power scenario, the total energy cost is negative, which refers to
selling energy to the public grid. Moreover, in “Sim w/ opti” the total energy cost is
better due to power injection into the public grid, bringing more profits. In case 1 “Sim
w/ opti”, with constant charging/discharging power, the total cost is negative, as there
is no penalization due to injecting power to the public grid. However, there is no V2G
participation even though the users accept participating to meet the user requirement
(minimum SOC of EV) at departure time.

Tables 3 and 4 prove the unfeasibility of the constant charging/discharging sce-
nario, as the energy injected into the public grid from EVs is not significant because
they charge/discharge with constant power. The total final cost for this scenario is calcu-
lated without including the EV penalty cost, which is only included to optimization for
modeling the dissatisfaction of the EV users. A high EV penalty indicates that EV users
will be dissatisfied due to having low battery energy at departure time, which can cause
risks of rejection of enabling V2G services by EV users or even losing clients in the future.
The distribution of energy for EVs in “sim w/o opti” and “sim w/ opti” is also assessed in
Figures 15 and 16 for case 1b and 2 respectively.
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Table 4. Energy costs for the different cases.

Operation Case Public Grid Cost
(c€)

Stationary
Storage Cost (c€) EV Penalty (c€) Total Cost (c€)

Case 1—constant
power scenario

Sim w/o opti −1106 32
1750 (Dissatisfied

client–Risk of
losing client)

−1074

Sim w/ opti −1247 9 0 −1238

Case 1—variable
power scenario

Sim w/o opti −1006 40 0 −966
Sim w/ opti −2942 6 0 −2936
Opti for real
conditions −4210 10 0 −4200

Case 2—variable
power scenario

Sim w/o opti −571 28 0 −543
Sim w/ opti −1745 11 0 −1734
Opti for real
conditions −2710 11 0 −2699
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In Figures 15 and 16, PV sources mainly charge EV1 and EV3. Moreover, in the “sim
w/ opti” scenario, the amount of PV energy used for charging EV1 is significantly higher
than in the “sim w/o opti” scenario, as shown in case 1. Given that EV2 is charging
in fast mode, the primary source of its charging power is the public grid. On the other
hand, because EV4 is charged in average mode, it depends on PV and stationary storage
energy. Similarly, because EV5 is charged in slow mode, it is mainly charged by PV
sources. However, in case 2, EVs require frequent charging from the public grid due to the
fluctuation of PV power.

V2G service can improve the energy efficiency of EVs by allowing the EV batteries
to be used as a source of energy for the grid during times of high grid demand (and/or
high-tariff, low-renewable production) and then recharge from the grid during times of
low grid demand (and/or low-tariff, high-renewable production). By providing energy
back to the grid, EVs can help balance the electrical load, which can improve the overall
efficiency and reliability of the distribution grid. As for the EV users, V2G can provide
a way to earn revenue by selling energy stored in their EV batteries back to the grid
during peak times. Additionally, the EV batteries can be charged with clean and low-cost
renewable resources (e.g., photovoltaics) and can be discharged later to the grid at high-
grid-consumption moments via V2G; thus, the electricity grid can use local renewable
production more efficiently.

6. Conclusions

In conclusion, a PVCS with energy cost optimization and V2G service can provide a
sustainable and cost-effective solution for EV charging/discharging, which can help grid
operators by discharging EV batteries via with V2G services, leading to a more efficient
system. The focus of the paper is to minimize energy costs, prevent EV penalization and PV
shedding, and consider prediction errors in real-time simulations. Additionally, the paper
analyzes energy distribution for the system and each EV to gain a better understanding
of the system’s functionality. However, there are still some challenges to be addressed in
order to optimize the energy cost of the charging station. One of the main challenges is
the optimal scheduling of the charging and discharging of the EV batteries to minimize
the energy cost and to maximize the charging of EVs with PV power. Furthermore, the
cost of implementing and maintaining a PVCS and V2G system can be high, and there is
a need to establish standardization and protocols for integration with the existing public
grid and communication networks. In addition, the type of an EV can affect the energy
cost in the case of V2G because each type of EV has a different battery size, charging and
discharging power characteristics, and energy efficiency. Battery EVs have larger batteries
with higher power ratings than plug-in EVs and hybrid EVs, which means they can provide
more flexibility for charging/discharging operations, and eventually they provide more
energy to support the electricity grid. Although V2G operation is possible for FCEVs,
the consumption/production of hydrogen can be inefficient compared to battery-based
vehicles due to the low efficiency of fuel cells and electrolyzers.

The simulation results show that variable charging and discharging power have major
advantages over constant charging/discharging, as no penalization was imposed, and
the EV users were satisfied. In addition, optimizing the charging/discharging power is
cost-effective because EVs are charged during off-peak hours and discharged during on-
peak hours into the public grid, resulting in greater profitability. Furthermore, the energy
that EVs inject into the public grid during V2G service is significant, accounting for over
75% of the total energy injected into the public grid during V2G service. The optimization
problem is applicable to both private (domestic, work) charging stations and public ones,
regardless of their size. By participating in V2G services, EV owners and/or charging
station operators can generate revenue and reduce the total energy cost of EV charging,
while also providing grid services to improve the reliability and efficiency of the public grid.
The HMI allows for the operation of both a single EV and multiple EVs, and the number of
EVs that can be operated is only limited by the number of charging terminals. However,
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the size of the charging station can affect the applicability of optimization problems for
V2G services. For example, a small charging station (e.g., one EV in a residential building)
can participate in V2G service to support the electricity grid and earn revenue in return
for its services; however, it will have limited power support capacity, and hence it may
not be able to provide significant aid individually. In contrast, a large charging station
(e.g., 100 EVs in a university parking lot) will have more power capacity, which can enable
more significant V2G services for the electricity grid based on its requirements.

For future research, the degradation impact on EV batteries will be studied, as well
as the environmental impact. Moreover, more case studies will be conducted to validate
the optimization method and demonstrate its feasibility in real-time experimental tests
under the concept of power hardware in the loop. Furthermore, annual simulation will
be considered where optimization and real-time simulation take into account annual
irradiation profiles, temperatures, and EV profiles.
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