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Abstract: Most computer vision algorithms for water level measurement rely on a physical water
gauge in the image, which can pose challenges when the gauge is partially or fully obscured. To
overcome this issue, we propose a novel method that combines semantic segmentation with a
virtual water gauge. Initially, we compute the perspective transformation matrix between the pixel
coordinate system and the virtual water gauge coordinate system based on the projection relationship.
We then use an improved SegFormer-UNet segmentation network to accurately segment the water
body and background in the image, and determine the water level line based on their boundaries.
Finally, we transform the water level line from the pixel coordinate system to the virtual gauge
coordinate system using the perspective transformation matrix to obtain the final water level value.
Experimental results show that the improved SegFormer-UNet segmentation network achieves an
average pixel accuracy of 99.10% and an Intersection Over Union of 98.34%. Field tests confirm that
the proposed method can accurately measure the water level with an error of less than 1 cm, meeting
the practical application requirements.

Keywords: water level measurement; water level line detection; virtual water gauge; perspective
transformation; semantic segmentation

1. Introduction

Water level monitoring is a crucial task in hydrological observation, as it is a prerequisite
for the effective management of water resources in all forms [1]. Water level changes serve
as a valuable indicator of hydrological conditions within a basin, reflecting variations in
water storage and flow magnitude. These data are critical for hydrologic forecasting, flood
scheduling, and water management as they provide real-time, reliable hydrologic information.
For instance, when water levels begin to rise, this may signify an abundance of rainfall
or snowmelt in the basin, potentially leading to flooding. Consequently, hydrologists can
predict potential flood events based on water level changes and take appropriate measures
to minimize the damage caused by floods. Furthermore, water level changes can be used to
monitor alterations in water levels within reservoirs, lakes, and rivers, ensuring the effective
management of water resources. Thus, the monitoring and analysis of water level changes are
of utmost significance to the fields of hydrology and water resources management.

The two primary conventional techniques for determining the water level are manual
reading of the water gauge and using a water level meter [2]. However, these methods
have limitations, such as limited automation and the difficulty of achieving real-time, high-
precision monitoring [3]. Recently, the convergence of network communication technology
and computer vision technology has enabled the emergence of computer vision-based
water level measurement methods [4]. The proliferation of video monitoring equipment
at major hydrographic measurement sites due to advances in network communication
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technology provides a strong foundation for this method. The development of computer
vision technology further supports the implementation of computer vision-based water
level measurement. Compared to traditional water level measurement methods, computer
vision-based methods have more potential for development. These methods can utilize
existing video monitoring equipment at hydrological stations to obtain images and to
calculate water levels using algorithms without the need to purchase additional water
level measurement equipment. Moreover, computer vision-based water level measurement
methods are low-cost, making them highly desirable for study and application. Water level
measurement methods based on computer vision can be categorized into two types, namely
those based on digital image processing technology and those based on deep learning
technology, depending on the technical approach employed. These two techniques have
gained considerable attention by enabling water level measurement with the ability to
monitor in real-time and with high precision, which can help overcome the limitations of
traditional methods such as the manual reading of water gauges and using water level
meters. With advancements in computer vision technology, it is becoming increasingly
feasible to implement such techniques in practical applications. The development of more
advanced and accurate computer vision-based methods for water level monitoring can have
a significant impact on various fields, including hydrology, water resource management,
and environmental monitoring.

The current research on computer vision-based water level measurement methods
heavily relies on water gauge information, which can be unreliable in practical applications
due to corrosion, stains, or obscuration caused by the field environment, or a lack of main-
tenance. To address this issue, this paper proposes a new water level measurement method
that uses an improved SegFormer-UNet model and a virtual water gauge. This method first
transforms the water level measurement problem into a water body segmentation problem
by introducing a virtual water gauge to calculate the mapping relationship between the vir-
tual water gauge and the actual water gauge in the image. The improved SegFormer-UNet
model is then used to segment the water body and obtain the pixel coordinates of the water
level line. Finally, the pixel coordinates are converted to coordinates in the virtual water
gauge plane to calculate the water level value. The main contributions of this paper are:

(1) The proposal of a new water level measurement method that avoids the flaws of
traditional computer vision water level detection methods and achieves ruler-free
measurement after calibration when the camera imaging angle is fixed;

(2) The proposal of a water segmentation model based on an improved SegFormer-UNet
that achieves better results in the water segmentation task;

(3) The use of the water segmentation model to obtain the pixel coordinates of the water
level line directly from the segmentation result, reducing algorithm complexity and
enhancing real-time performance.

The remaining sections of this paper are outlined below: Section 2 provides a compre-
hensive overview of water level detection algorithms, including both traditional methods
and image-based techniques. In Section 3, the main methodologies employed in this paper
are detailed. Section 4 presents the specific implementation principles of the water level
detection algorithms adopted in this paper. Section 5 provides an in-depth analysis of
the performance of the proposed water level detection algorithm, supported by field test
results. Finally, Section 6 summarizes the key findings and achievements of this paper.

2. Related Works

Water level, which refers to the height of the free horizontal surface of rivers, lakes,
and other water bodies relative to a reference plane, has been measured since ancient
times. In the past, people used simple wooden poles and ropes to measure water levels,
but this method proved imprecise and difficult to apply to large-scale measurements.
In the 18th century, European scientists explored the use of barometers for measuring
water level, but this approach was limited to static water environments and lost accuracy
under fluctuating water conditions. In the early 20th century, hydrology research gained
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widespread attention, leading to the invention of new water level measurement techniques.
To date, numerous traditional methods for water level measurement have been developed,
with many mature techniques available for application. An analysis of past literature reveals
that traditional methods for water level measurement at hydrological stations mainly
comprise manual observation and water level meter measurement [5]. Manual observation
is one of the earliest water level measurement methods, while more advanced water level
measurement meters have been developed. Currently, the water level measurement meter
utilized at hydrological stations includes a variety of types, such as water pressure [6],
radar [7], ultrasonic [8], and laser [9] water level meters.

Although numerous traditional methods for water level detection exist, the trend for
modern water level detection technologies is towards digitalization and intelligence. In re-
cent years, automatic water level monitoring systems have gained widespread attention,
utilizing artificial intelligence and computer vision technology. High-definition cameras
and advanced image processing algorithms allow these systems to automatically identify
and analyze water level information, achieving the real-time monitoring and data analysis
of water levels. Furthermore, with the development of the Internet and mobile communica-
tion technologies, water level measurement applications based on mobile devices and the
Internet are becoming increasingly popular [10].

With the development of modern water level detection technology, there is a substan-
tial amount of ongoing research on water level measuring technologies based on computer
vision. For example, Liu et al. [11] proposed segmenting and binarizing the water gauge
using the water gauge color information, detecting the water level line location using the
variance mean threshold approach, and then projecting the water level value using the
projection relationship. Chan et al. [12] calculated the correlation coefficient of the same
rectangular region in two successive water level pictures to determine the water level line
location. Kim et al. [13] initially searched for the region of interest, then used the histogram
projection technique to locate the water level line pixel position, and lastly translated the
water level line pixel location to the actual water level value using the water scale pixel
mapping table. Sun et al. [14] used the water gauge characteristics for edge recognition and
keyword localization to compute the water surface height. Several of the above-water-level
measurement methods are based on traditional image processing, whereas there are now
numerous water level measurement methods based on deep neural networks. For example,
Cheng et al. [15] directly used the UNet model for water level line detection, thanks to
extensive research on deep learning algorithms. Wang et al. [16] utilized the YOLO (You
Only Look Once) v3 network to detect the water gauge, and the ResNet network to conduct
scale identification to obtain the water level measurement. Ma et al. [17] proposed that the
maximum inter-class variance method combined with morphological processing be used
to first extract the rectangle with the smallest side length containing the part of the water
gauge, and then calculated the water level value by detecting the area above the water
surface in this rectangle area with the YOLOv4 algorithm. Zhang et al. [18] used YOLOv4
to locate the E character of the water gauge and segmented the small area of the water
gauge near the water body, then used the DeepLabv3+ algorithm to segment the small area
to obtain the water level line and calculate the water level value using linear interpolation.

Despite the variety of methods available for water level detection, each has its own
drawbacks. Traditional methods require a significant amount of human and material
resources, while modern techniques rely heavily on water gauge features in images.
The method presented in this paper aims to address these limitations, offering a solu-
tion to improve upon current water level detection approaches.

3. Methodology
3.1. Image Segmentation

Image segmentation, a critical problem in computer vision, is frequently viewed
as a subset of the picture classification task. Image segmentation, as opposed to image
classification, aims to categorize pixel points inside an image, i.e., segmenting an image
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into areas based on the class to which the pixels in the image belong. Traditional image
segmentation mainly includes pixel-based thresholding, and region-based, edge-based,
and clustering-based methods [19]. These traditional image segmentation methods all
have certain limitations in terms of segmentation effectiveness. For example, pixel-based
thresholding methods are usually sensitive to lighting changes and noise in the image;
region-based segmentation methods are more sensitive to texture information in the image;
edge-based methods are sensitive to noise information in the image; and clustering-based
methods are sensitive to grey-scale information in the image. In recent years, with the
further development of computer vision, image segmentation methods based on deep
learning have achieved better results. At present, the mainstream traditional image seg-
mentation methods are usually used in image pre-processing or post-processing work due
to the limited use of scenarios. Deep neural networks in the field of image segmentation
have achieved many effective results so far. For example, the best-known network model
among the early deep neural network-based image segmentation methods is the Fully
Convolutional Network (FCN) [20], which segments an image into multiple pixel regions
via a fully convolutional network. The FCN had certain shortcomings at the outset of its
design, so a series of subsequent improvements emerged, such as the UNet [21], DeepLab
series [22–24], etc. The above are all based on the traditional convolutional neural network
architecture. With the introduction of the Transformer-based Visual Transformer (ViT) [25]
architecture, many other Transformer-based architectures have also emerged in the field of
image segmentation in recent years, such as Segmentation Transformer (SETR) [26] and the
SegFormer [27] referenced in this paper.

3.2. SegFormer Network Model

The SegFormer network model is a simple and efficient semantic segmentation model
recently proposed in the field of image segmentation, using the same encoder–decoder
structure as the traditional segmentation model [22]. Unlike traditional convolutional
neural network-based segmentation models, the encoder of the SegFormer network model
adopts the prevailing Transformer structure. The encoder body consists of four stages,
each made of a series of Overlap Patch Embeddings (OPE) layers, Efficient Multihead
Self-Attention (EMSA) layers, and Mix Feed Forward (MFFN) layers [27]. The overlap
patch embeddings layer is mainly used to reduce the spatial resolution of the front feature
map and convert the two-dimensional information in the feature map space into the one-
dimensional features required by the Efficient Multihead Self-Attention layer. The latter
computes the high-dimensional representation of these features via self-attentiveness,
while the final Mix Feed Forward layer is mainly used to enhance the expression of the
features. Because the Transformer-based encoder has a larger perceptual field than the
traditional convolutional neural network-based encoder, the decoder of the SegFormer
network model consists of only a series of Multilayer Perceptron (MLP), and its workflow
is divided into four steps. First, the channels of multi-level feature information output
from the encoder are adjusted to the same dimensionality via an MLP layer. Then, a linear
interpolation algorithm is used to uniformly upsample the spatial dimension of the multi-
level feature information to one-quarter of the original image size and stitch it into the
channel dimension. In the third step, the stitched features are then fused with information
using one more MLP layer. In the final step, the fused features are used for the prediction
of the final segmentation mask via another MLP. The structure of the SegFormer network
model is shown in Figure 1.
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Figure 1. SegFormer network structure.

4. Principle and Implementation
4.1. Water Gauge Mapping Relationship Establishment

Three dimensions of coordinate information are usually required to describe the
position of an object in real space, and the image of the water gauge taken by the camera is
a projection of the water gauge in the world coordinate system onto the two-dimensional
plane of the pixel coordinate system. Considering the installation of the water gauge in the
field, it is assumed in the text that the plane of the gauge is approximately perpendicular
to the horizontal plane. In a realistic camera set-up scenario, the imaging plane of the
camera will usually show a non-parallel relationship with the plane of the water gauge.
According to photogrammetry principles, this results in a non-linear projection distortion
of the camera image. In order to reduce the errors caused by the projection distortion,
this paper uses the perspective transformation [28] to map the water gauge image into a
virtual water gauge plane that is parallel to the water gauge plane in the world coordinate
system. According to the projection relationship, at this point there is only a proportional
relationship between the water gauge in the real water gauge plane and the virtual water
gauge plane without any non-linear projection distortion. In order to establish the mapping
relationship, three steps are needed and will be presented in the next paragraphs.

Firstly, the matching projection points are selected. The selection of matching projec-
tion points is usually arbitrary in the establishment of the perspective relationship, but
according to the principles of perspective transformation, at least four pairs of matching
projection points must be selected, and the projection points in each coordinate system need
to satisfy that three points are not on the same horizontal line [11]. To further ensure the
accuracy of the mapping relationship, six pairs of matching projection points are adopted
in this paper. The matching projection points are: selected using the rule that they must
correspond to the four internal corner points of the E character located at the four corners of
the water gauge, as well as the two internal corner points of the E character at any position
in the middle of the water gauge, as shown in Figure 2. Let the projection point coordinates
in the pixel coordinate system be (xi, yi), and the projection point coordinates in the virtual
water ruler coordinate system be (ui, vi), where i = 1, 2, 3, 4, 5, 6.

Next, the perspective matrix is calculated. Let the perspective matrix be M3×3, and ac-
cording to the perspective projection relationship, we can obtain the coordinates (ui, vi)
under the plane coordinate system of the virtual water gauge and the coordinates (xi, yi)
under the pixel coordinate system, as shown in Equation (1) .{

u = m11x+m12y+m13
m31x+m32y+m33

v = m21x+m22y+m23
m31x+m32y+m33

(1)

where mij is the element of the i-th row and j-th column of the perspective matrix. By sub-
stituting the six pairs of matching projection points into the above Equation (1), we can
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obtain the matrix of equations as in Equation (2). By solving it, we obtain the perspective
matrix M3×3.

u1
u2
u3
u4
u5
u6
v1
v2
v3
v4
v5
v6



=



x1 y1 1 0 0 0 −u1x1 −u1y1
x2 y2 1 0 0 0 −u2x2 −u2y2
x3 y3 1 0 0 0 −u3x3 −u3y3
x4 y4 1 0 0 0 −u4x4 −u4y4
x5 y5 1 0 0 0 −u5x5 −u5y5
x6 y6 1 0 0 0 −u6x6 −u6y6
0 0 0 x1 y1 1 −v1x1 −v1y1
0 0 0 x2 y2 1 −v2x2 −v2y2
0 0 0 x3 y3 1 −v3x3 −v3y3
0 0 0 x4 y4 1 −v4x4 −v4y4
0 0 0 x5 y5 1 −v5x5 −v5y5
0 0 0 x6 y6 1 −v6x6 −v6y6



·



m11
m12
m13
m21
m22
m23
m31
m32


. (2)

Finally, the mapping relationships are calculated. With the perspective matrix M3×3
obtained in the previous step, the coordinates (ui, vi) of the water gauge in the virtual
gauge coordinate system can be found. Since the real gauge plane scales with the objects
in the virtual gauge plane, the coordinates in the virtual gauge coordinate system can be
linearly varied to find the water level value.

Figure 2. Matching projection point selection.

4.2. Water Segmentation Model
4.2.1. SegFormer-UNet Network Structure

The SegFormer-UNet is a network architecture developed in this paper specifically
for segmenting bodies of water in water gauge images. This architecture incorporates
the strengths of various semantic segmentation network structures. By summarizing the
previous work [20–27], it was discovered that a high-performing semantic segmentation
network tends to have the following characteristics: firstly, a strong backbone network
as an encoder is a prerequisite. The main reason for the performance improvement of
Transformer-based networks over traditional convolutional neural networks is that the
Transformer has a stronger encoding capability. Secondly, the network structure needs to
have the ability to interact with information at multiple scales. Finally, the network needs
to have sufficient spatial perception capability. Based on the above, this paper redesigns
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an efficient encoder–decoder architecture for semantic segmentation with reference to the
architectures of the SegFormer and UNet networks. The resulting architecture, named
SegFormer-UNet, is depicted in Figure 3. The SegFormer-UNet architecture incorporates
many features from both SegFormer and UNet, including the attention mechanism from
SegFormer. The attention mechanism used in the SegFormer encoder allows the model to
focus on key feature areas, improving segmentation accuracy. The skip connections from
UNet enable the combination of low-level and high-level feature maps, helping the model to
better learn features at multiple scales and improve segmentation robustness. Additionally,
the SegFormer-UNet architecture includes Transformer Encoder layers in the encoder,
which can help the model capture global contextual information and improve segmentation
accuracy. Overall, the advantages of the SegFormer-UNet architecture include focused
attention on key feature areas, learning features at multiple scales, and the consideration of
global contextual information.

Figure 3. SegFormer_UNet module.

4.2.2. Encoder Design

Transformer models are widely recognized as a highly successful approach in various
fields, thanks to their superior performance and robustness [25]. In recent years, a growing
number of Visual Transformer (ViT)-based models have emerged in the field of computer vi-
sion, indicating a shift in focus from traditional convolutional network architectures [20–24]
to Transformer-based model architectures. Although the Transformer architecture is inher-
ently capable of extracting global features using attention mechanisms, it lacks the inductive
bias that traditional convolutional networks have. (Inductive bias refers to the inherent
assumptions or biases that a machine learning algorithm is built upon. Essentially, it is
the prior knowledge that the algorithm uses to make predictions based on new data.) This
makes the Transformer-based network model weaker than the traditional convolutional
neural network architecture in capturing local relationships, which is detrimental to the
detection of edge locations in the water region in this paper. Network models built entirely
from Transformers tend to perform well in large-scale datasets, which means that a large
amount of data needs to be collected and labeled upfront, while the training of the model
is equally costly in terms of computational resources. This is clearly not the best option for
this paper, which requires application in a specific production environment. In order to
achieve good results on small datasets, the original SegFormer structure is improved by
considering a fusion of traditional convolution and self-attentiveness to make full use of
the properties of both.
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Based on the above considerations, the encoder designed in this paper adopts a hi-
erarchical pyramid structure, with the encoder body consisting of two types of modules:
the Multiscale Convolutional Attention Block and the Transformer Block. A series of
SegFormer-UNet encoders are designed with reference to the original SegFormer network
structure, which are named CTA-B0, CTA-B1, CTA-B2, and CTA-B3 in this paper, respec-
tively. The dimensions of the encoder are designed by referring to the parameters of the
encoder as part of the original SegFormer network structure, and customizing and opti-
mizing them for the actual task of this paper. Table 1 shows the composition and specific
parameters of each encoder building block. In the table, Ki denotes the patch size of the
overlapping patch embedding in Stage i, Si denotes the stride of the overlapping patch
embedding in Stage i, Pi denotes the padding size of the overlapping patch embedding in
Stage i, Ci denotes the channel number of the output of Stage i, Li denotes the number of
encoder layers in Stage i, Ri denotes the reduction ratio of the Efficient Self-Attention in
Stage i, Ni denotes the head number of the Efficient Self-Attention in Stage i, and Ei denotes
the expansion ratio of the feed-forward layer in Stage i. In order to make full use of the
detailed features provided by the high-resolution feature map and the advanced semantic
features provided by the low-resolution feature map, the encoder in this paper is divided
into four stages. At the beginning of each stage, it is necessary to first obtain the features Fi
of the previous stage using Overlap Patch Embeddings layers. Specifically, suppose that
the number of image features is H ×W × 3, then the number of output features of each
stage is H

2i+1 × W
2i+1 × Ci, where i ∈ {1, 2, 3, 4}. Usually, Ci+1 > Ci.

The patch embedding module in this paper is different from the one commonly used
in Transformer, but it is similar to the downsampling process in convolutional neural
networks. The specific implementation is to use a stepwise convolution with overlapping
regions to perform convolutional operations on the feature map. Except for the first stage
where the convolution parameter is set to K = 7, S = 4, P = 3, the other three stages are
uniformly set to K = 3, S = 2, P = 1.

Table 1. Detailed settings of backbone.

Stages Output Size Layer Name CTA-B0 CTA-B1 CTA-B2 CTA-B3

1 H
4 ×

W
4

Overlapping
Path Embedding

K1 = 7; S1 = 4; P1 = 3

C1 = 32 C1 = 64

Multiscale Convolutional
Attention Encoder L1 = 3 L1 = 2 L1 = 3 L1 = 3

2 H
8 ×

W
8

Overlapping
Path Embedding

K2 = 3; S2 = 2; P2 = 1

C2 = 64 C2 = 128

Multiscale Convolutional
Attention Encoder L2 = 3 L2 = 2 L2 = 3 L2 = 5

3 H
16 ×

W
16

Overlapping
Path Embedding

K3 = 3; S3 = 2; P3 = 1

C3 = 160 C3 = 320

Transformer Encoder

R3 = 2
N3 = 5
E3 = 4
L3 = 2

R3 = 2
N3 = 5
E3 = 4
L3 = 2

R3 = 2
N3 = 5
E3 = 4
L3 = 6

R3 = 2
N3 = 5
E3 = 4
L3 = 18

4 H
32 ×

W
32

Overlapping
Path Embedding

K4 = 3; S4 = 2; P4 = 1

C4 = 256 C4 = 512

Transformer Encoder

R4 = 1
N4 = 8
E4 = 4
L4 = 2

R4 = 1
N4 = 8
E4 = 4
L4 = 2

R4 = 1
N4 = 8
E4 = 4
L4 = 3

R4 = 1
N4 = 8
E4 = 4
L4 = 3
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The multiscale convolutional attention block [29], shown in Figure 4a, is a core module
in the encoder of this paper. Its overall structure is similar to ViT, but instead of using
the self-attention mechanism, a multiscale convolutional attention block is redesigned
using convolution, as shown in Figure 4b. The multiscale convolutional attention block
consists of three parts: a deep convolution for aggregating local information, a multibranch
convolution for capturing multiscale contexts, and a convolution for mixing different
channel relationships. Mathematically, the multiscale convolutional attention module can
be written as Equation (3).

Att = Conv1×1

(
3

∑
i=0

Scalei(DWConv(F))

)
out = Att⊗ F

(3)

where out denotes the output feature map, Att denotes the convolutional attention weight
map, F denotes the input feature map,⊗ denotes the matrix corresponding position element
multiplication, and DWConv denotes the depth separable convolution.

Figure 4. Multi-scale convolutional attention architecture. (a) A stage of MSCAN. (b) Multi-scale
convolutional attention.

Another important module used in this encoder is the existing Transformer block in
the original SegFormer, as shown in Figure 5. The core difference between this building
block and the traditional Transformer block is the replacement of the multi-headed atten-
tion. The efficient self-attentive layer proposed in the original paper is able to reduce the
computational complexity, which is implemented by compressing the sequence length
using the scaling reduction mentioned in PVT [30], i.e.

K̂ = Reshape
(

N
R

, C · R
)
(K)

K = Linear(C · R, C)(K̂)
(4)

where K denotes the input sequence, N denotes the sequence length, R denotes the re-
duction ratio, Reshape

(
N
R , C · R

)
(K) denotes the deformation of K to N

R × (C · R), and
Linear(C · R, C)(·) denotes the linear layer with input channel Cin and output channel Cout.
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Figure 5. Transformer block structure.

4.2.3. Decoder Design

The decoder structure in the original SegFormer model simply performs upsampling
and linear variation on the four different resolutions of the feature maps obtained from
the encoder output, and then feeds them into multiple fully connected layers to obtain the
final result. Although this lightweight decoder structure avoids excessive computation,
the direct and aggressive upsampling of the encoder output may lead to the loss of detailed
information, especially in the positioning of the water level line as addressed in this paper.
To fully leverage the semantic and spatial information in the feature maps at different
stages of the encoder output, this paper proposes a new decoder that references the encoder
structure in the UNet network. The structure is illustrated in Figure 6. The decoder employs
a skip-connection architecture to make full use of the semantic and spatial information
contained in the feature maps at each stage. Meanwhile, the stepwise upsampling technique
used in the skip-connection process enables the decoder to capture the relevant features
that were lost in the downsampling process of the encoder.

Figure 6. Decoder Module.
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4.3. Water Level Line Detection

Once the original water gauge image is fed into the SegFormer-UNet model, the model
outputs a mask image containing the segmentation results of the water body and the
background. To obtain the position of the water level line in the water gauge image,
only the mask image needs to be detected using the Canny edge detection algorithm [31].
The specific detection process is shown in Figure 7.

Figure 7. Water level line detection.

4.4. Calculation of Water Level Values

After the location of the water level line is determined, the mapping relationship
described in the previous section is utilized to obtain the current water level. Firstly,
the perspective transformation matrix M3×3 is employed to convert the water level line
from the pixel coordinate system to the virtual gauge coordinate system. The coordinates
(ui, vi) of the water level line in the virtual gauge coordinate system can then be computed.
To obtain a stable water level, the outliers are removed from all the vertical coordinates of
the water level in the virtual gauge coordinate system, and the average value is calculated.
Finally, the average value is linearly converted to the water level value, according to
Equation (5).

h =
∑n

i=0 vi

n
k + b, (5)

where h is the water level value, n is the total number of pixel points, vi is the vertical
coordinate value of the i-th point, and k and b are the linear variation scale and offset
coefficients, the values of which depend on the precise size of the water gauge in the
virtual gauge space chosen. Because the length of a single standard scale in virtual space is
1000 pixels, k and b in this work are −0.1 and 100, respectively. Considering the real-world
scenario where two water gauges are joined together vertically, the virtual space water
gauge needs to be adjusted accordingly: in this case, as the total length of the virtual space
water gauge has been adjusted to 2000 pixels, and the values of k and b in Equation (5)
should be set to −0.1 and 200, respectively. After the water level line is converted to
the virtual water gauge, assuming its vertical coordinate in the virtual water gauge is v,
the water level value can be easily calculated based on v, as shown in Figure 8.
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Figure 8. Water level value calculation.

5. Analysis of Results and Field Testing
5.1. Dataset and Experimental Environment

Due to the lack of a publicly available standard water gauge dataset in the field of hy-
drology, we collected raw data over time from three hydrological stations in the same basin
to ensure that the experimental data reflect the real application environment and guarantee
the reliability of the model. To ensure the diversity of the data, we randomly extracted
1029 photos containing water gauges from the original data, comprising 833 images in the
training set, 93 images in the validation set, and 103 images in the test set. The semantic
annotation labels in the dataset were divided into two groups, water body and background,
as illustrated in Figure 9.

This paper’s experimental platform is Ubuntu 22.04, with the following hardware
configuration: Intel(R) Core(TM) i5-12490F CPU and NVIDIA GeForce RTX 3060 12G GPU.
The software versions are Python 3.10, Pytorch 1.13, and Cuda 11.7.

To ensure the comparability of the experimental results, uniform hyperparameters are
used in the network training process in this paper. The network parameter optimizer used
is stochastic gradient descent (SGD) with momentum, where the initial learning rate is set
to 1 × 10−2, the minimum learning rate is 1 × 10−4, the momentum parameter is set to
0.9, and the weight decay parameter is set to 1 × 10−4. The learning rate is adjusted using
the Cosine Annealing algorithm [32], with the frequency of learning rate adjustment being
the number of epochs per training round. For the binary classification task, the Binary
Cross Entropy Loss (BCE Loss) combined with the Dice Coefficient Loss is used as the loss
function, and its expression is calculated as Equation (6):

Lloss = LBCE + LDice

LBCE = − 1
N

N

∑
i=1

[yi log(ȳi) + (1− yi) log(1− ȳi)]

LDice = 1− 2|X ∩Y|
|X|+ |Y| ,

(6)
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where N denotes the number of all pixel points, yi denotes the true label value for the
i-th point, and ȳi denotes the predicted label value for the i-th point. X denotes the set of
true labels, Y denotes the set of predicted labels, |X ∩Y| is the number of elements of the
intersection between labels and predictions, and |X| and |Y| denote the number of elements
of labels and predictions, respectively.

Figure 9. Sample from the dataset.

5.2. Evaluation Indicators

In this paper, we used the mean Intersection over Union (mIoU) and Mean Pixel
Accuracy (MPA) as objective metrics to evaluate the performance of the network, which
are commonly used in the field of semantic segmentation. Intersection over Union (IoU)
represents the ratio of the intersection and union of two sets of pixels of a certain label type
to the predicted value, and is a prerequisite for calculating the mean intersection ratio. Its
mathematical expression is given by Equation (7):

IoUi =
pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(7)

The Equation (7) gives the Intersection over Union for each class of labels, and by
taking the mean value of each class, mIoU can be obtained; this is calculated as Equation (8).
The average pixel accuracy is obtained by averaging the pixel accuracy of each category,
the mathematical expression is Equation (9).

mIoU =
1

k + 1

k

∑
i=0

IoUi (8)

MPA =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij

, (9)

where IoUi denotes the intersection ratio of category i, k denotes the total number of
categories minus 1, pii denotes the number of pixel true category i predicted to be category
i, pij denotes the number of pixel true category i predicted to be category j, and pji denotes
the number of pixel true category j predicted to be category i.
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In addition to mIoU and mPA, Params and GFLOPs are also commonly used perfor-
mance metrics for models. Params refers to the number of parameters in the model, while
GFLOPs refers to the number of floating-point operations required for inference. These
metrics can be used to evaluate model complexity and computational efficiency. When
selecting models, it is usually necessary to balance between model accuracy and computa-
tional efficiency. Smaller Params and GFLOPs usually mean faster inference speeds and
fewer computational resources, but may lead to a decrease in model accuracy. Therefore,
Params and GFLOPs should be considered together in the model selection and optimization
process to achieve the best performance and efficiency balance.

5.3. Results of The Experiment
5.3.1. Objective Comparison of Segmentation Performance

To test the performance of the SegFormer-UNet segmentation network model pro-
posed in this paper, we compared it with the FCN in [20], the UNet in [21], the DeepLab V3+
in [24], the PSPNet in [33], the HRNet in [34], and the SegFormer in [27]. The evaluation
metrics used for comparison are shown in Table 2. It can be observed that the network
proposed in this paper achieves an mIoU of 98.34% and an mPA of 99.1%, outperforming
the other networks in terms of segmentation performance. These results demonstrate that
the SegFormer-UNet segmentation network proposed in this paper is better suited for
water body segmentation than other semantic segmentation networks.

Table 2. Comparison results of different networks.

Method Params (M) GFLOPs (G) mIoU (%) mPA (%)

FCN [20] 32.95 138.86 96.06 (2.28↓) 97.84 (1.26↓)
UNet [21] 24.89 225.84 96.17 (2.17↓) 97.89 (1.21↓)
DeepLab V3+ [24] 54.71 83.42 97.47 (0.87↓) 98.85 (0.25↓)
PSPNet [33] 46.71 59.21 96.66 (1.68↓) 98.17 (0.93↓)
HRNet [34] 65.85 93.83 96.88 (1.46↓) 98.29 (0.81↓)
SegFormer-B5 [27] 84.60 99.75 96.57 (1.77↓) 98.22 (0.88↓)
SegFormer-UNet-B3 (Ours) 46.56 49.43 98.34 99.10

5.3.2. Subjective Comparison of Segmentation Performance

The SegFormer-UNet proposed in this paper demonstrates the best performance
in terms of objective evaluation metrics. To establish a perceptual understanding of the
segmentation effect of the network model, this paper selects five representative images from
the test set for demonstration, as shown in Figure 10. From top to bottom, the images are
the original image, the mask image, our model segmentation effect, the FCN segmentation
effect, the UNet segmentation effect, the DeepLab V3+ segmentation effect, the PSPNet
segmentation effect, the HRNet segmentation effect, and the SegFormer segmentation effect.
From the segmentation effect, it can be observed that our model has the best segmentation
effect on the edge position.

5.4. Ablation Experiments
5.4.1. Influence of Encoder Size

To verify the rationality of the encoder design in this paper, we conducted tests and
analyzed the degree to which model performance is affected by different encoder sizes.
The specific test results are shown in Table 3. From the model’s performance on the test set,
we found that the model’s performance improved with increasing encoder size. The largest
model of our design, SegFormer-UNet-B3, already outperforms the original SegFormer-B5
model with only half of the parameters and computational effort. This indicates that the
encoder design in this paper is reasonable to a great extent.
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Figure 10. Different network segmentation results.

Table 3. Ablation studies related to Encoder Size.

Method Backbone Params (M) GFLOPs (G) mIoU (%) mPA (%)

SegFormer-UNet B0 5.54 14.49 96.76 98.2
SegFormer B0 3.72 6.77 93.03 96.04

SegFormer-UNet B1 15.78 23.50 97.14 98.46
SegFormer B1 13.28 26.48 95.30 97.55

SegFormer-UNet B2 26.00 32.04 97.43 98.62
SegFormer B2 27.35 56.71 96.35 98.12

SegFormer-UNet B3 46.56 49.43 98.34 99.10
SegFormer B3 47.22 71.36 96.43 98.10

SegFormer B4 63.99 85.43 96.30 98.00
SegFormer B5 84.60 99.76 96.66 98.22

5.4.2. Influence of Encoder Composition Structure

The architecture of the encoder in a neural network model is crucial as it directly
impacts the performance of the model. Therefore, designing a robust encoder is necessary
to provide better feature information encoding capability to the neural network model.
To achieve this, the paper presents a redesigned encoder architecture that integrates convo-
lution and Transformer modules by summarizing previous excellent encoder architectures.
This integration enables the neural network model to fully exploit the advantages of both
modules. To determine the best organization structure to achieve optimal model perfor-
mance, we analyzed the impacts of the combined convolution and Transformer module
model on model performance magnitude, as shown in Table 4. In the table, CA represents
the multi-scale convolutional attention block, and TA represents the Transformer block.
From the data in the table, it is evident that the model performance is optimal on the dataset
used in this paper when using the CA-CA-TA-TA architecture adopted by the encoder in
this paper.
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Table 4. Ablation studies related to Encoder Structure.

Method
Architecture

Params (M) GFLOPs (G) mIoU (%) mPA (%)
Stage 1 Stage 2 Stage 3 Stage 4

SegFormer-UNet-B0

CA CA CA CA 6.17 15.41 94.26 96.95
CA CA CA TA 6.24 15.43 96.65 97.56
CA CA TA TA 5.54 14.49 96.76 98.29
CA TA TA TA 5.58 14.07 96.69 98.22

SegFormer-UNet-B1

CA CA CA CA 16.76 25.76 95.67 97.73
CA CA CA TA 17.18 25.87 97.06 98.16
CA CA TA TA 15.78 23.50 97.14 98.46
CA TA TA TA 16.30 23.42 97.12 98.42

SegFormer-UNet-B2

CA CA CA CA 29.59 38.97 95.70 97.67
CA CA CA TA 30.20 39.13 97.16 98.47
CA CA TA TA 26.00 32.04 97.43 98.62
CA TA TA TA 26.80 31.90 97.37 98.61

SegFormer-UNet-B3

CA CA CA CA 47.93 59.74 96.21 97.70
CA CA CA TA 48.55 59.90 97.26 98.57
CA CA TA TA 46.56 49.43 98.34 99.10
CA TA TA TA 46.67 46.55 97.27 98.55

5.5. Field Tests
5.5.1. Water Level Line Detection Test and Analysis

This paper utilizes the Average Pixel Absolute Error (APAE) as the evaluation in-
dex for water level line detection in order to further validate the effectiveness of the
SegFormer-UNet segmentation network. The mathematical expression for APAE is defined
as Equation (10).

APAE =
1
n

n

∑
i=0

∣∣yi − y′i
∣∣, (10)

where n denotes the total number of images tested, yi denotes the pixel vertical coordinate
of the water level line detected by the algorithm for the i-th image, and y′i denotes the pixel
coordinate of the actual water level line in the i-th image calibrated manually.

In this study, four water level detection methods were compared, to quantitatively
assess the accuracy of water level line detection, and the results are displayed in Table 5.
The comparison of the data in the table shows that this approach has the lowest average
absolute pixel error among the five methods, which may avoid the negative impact of
water gauge information loss on water level detection. The assessment index demonstrates
that SegFormer-UNet can accurately segment the water body and background region in the
water gauge images, and that the average absolute pixel error in water level line detection
is 1.73 pixels, which is sufficient to meet the criteria for water level line detection accuracy.

Table 5. Average absolute pixel error.

Algorithms Average Absolute Pixel Error (Pixels)

Wang L [16] 38.32
Lin F [35] 10.47
Liu M [11] 13.06

Zhang R [18] 5.02
Ours 1.73

In Table 5, it is evident that the average absolute pixel error for water level line
detection in this paper is significantly lower than those of other water level detection
algorithms. This is due to two reasons. Firstly, the water gauge images used in this paper
are actual site images, which include a small number of night images and missing water
gauge features. Secondly, the proposed algorithm in this paper does not rely on the water
gauge itself after establishing the mapping relationship, which substantially eliminates the
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negative impact caused by missing water gauge features. In contrast, other water level
detection algorithms such as [16] detect the water level line position directly by detecting
the lower edge of the water gauge, and [35] uses DeepLabv3+ to directly segment the water
gauge, which has a greater accuracy than detecting the lower edge of the water gauge
position. The study in [11] uses color information to segment the water level, rendering
the algorithm ineffective during the night. The study in [18] can be considered as an
improvement on [35], as it crops a small area of the water gauge close to the water surface
and then segments the small area to obtain the water level line position. These algorithms
rely to some extent on the body characteristics of the water gauge itself, which impact on
the accuracy and reliability of the algorithm.

5.5.2. Water Level Measurement Test and Analysis

To quantify the accuracy of the water level measurement algorithm proposed in this
paper, we sampled water gauge images from each of the two of the three hydrological
stations mentioned earlier over a period of time, took separate water level measurements,
and compared them with the results of manual readings. The comparison results are
depicted in Figure 11. The error curves for the two stations show that the water level
measurement error of the proposed algorithm is within 1 cm, which is sufficiently accurate
to meet the requirements for water level measurement.

Figure 11. Results of water level measurement.

5.5.3. Measurement Test without a Water Gauge

The primary objective of the algorithm proposed in this paper is to address the
limitations of current mainstream water level detection algorithms in field environments
where water gauge information may be missing due to uncontrollable conditions such
as corrosion, stains, strong reflection, and low brightness, leading to a loss of detection
accuracy or complete failure. By establishing a mapping relationship, the algorithm is
capable of water gauge-free measurement using a fixed-view camera after the initial
calibration. To evaluate the effectiveness of the proposed algorithm in achieving water
gauge-free measurement, we conducted simulation experiments as follows: first, we
selected a test site with a constant water level; then, we captured images of the water gauge
after setting it up and after removing it using a fixed-point camera; finally, we tested the
captured images using the proposed algorithm, and compared the water level detection
results obtained with and without the water gauge. The test results shown in Figure 12
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demonstrate that the proposed algorithm can achieve water gauge-free measurements
while maintaining a constant camera shooting angle.

Figure 12. Measurement test without water gauge.

6. Conclusions

This paper presents a novel approach to water level measurement using a combination
of improved SegFormer-UNet and a virtual water gauge, which addresses the limitations
of previous computer vision-based methods that rely heavily on gauge information. Specif-
ically, we transform the water level measurement problem into a water body segmentation
task by establishing a mapping relationship between the water gauge and the image. Our
proposed SegFormer-UNet model achieves an impressive average pixel accuracy of 99.10%
and an Intersection Over Union of 98.34% on the segmentation index, outperforming the
original SegFormer model and other mainstream segmentation networks. Additionally,
we demonstrate that our method accurately detects the water level line with an average
absolute pixel error of 1.73 pixels compared to the actual water level line. In field tests,
our method achieves water level measurements with an average absolute deviation of less
than 1 cm, meeting the requirements for practical applications. Notably, we show that our
method can measure water levels without relying on a physical gauge while maintaining
the same camera imaging angle. To enhance the generalizability of the algorithm, future
work will focus on improving the model’s generalization capability for different water
surface environments, streamlining the model structure for faster inference, and increasing
the diversity of the dataset for a thorough validation of the algorithm’s generalizability.
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