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Abstract: Collapse is the main engineering disaster in tunnel construction when using the drilling
and blasting method, and risk assessment is one of the important means to significantly reduce
engineering disasters. Aiming at the problems of random decision-making and misjudgment of single
indices in traditional risk assessment, a multi-source data fusion method with high accuracy based on
improved Dempster–Shafer evidence theory (D-S model) is proposed in this study, which can realize
the accurate assessment of tunnel collapse risk value. The evidence conflict coefficient K is used as
the identification index, and the credibility and importance are introduced. The weight coefficient
is determined according to whether the conflicting evidence is divided into two situations. The
advanced geological forecast data, on-site inspection data and instrument monitoring data are trained
by Cloud Model (CM), Gradient Boosting Decision Tree (GBDT) and Support Vector Classification
(SVC), respectively, to obtain the initial BPA value. Combined with the weight coefficient, the
identified conflict evidence is adjusted, and then the evidence from different sources is fused to
obtain the overall collapse risk value. Finally, the accuracy is selected to verify the proposed method.
The proposed method has been successfully applied to Wenbishan Tunnel. The results show that
the evaluation accuracy of the proposed multi-source information fusion method can reach 88%,
which is 16% higher than that of the traditional D-S model and more than 20% higher than that of the
single-source information method. The high-precision multi-source data fusion method proposed in
this paper has good universality and effectiveness in tunnel collapse risk assessment.

Keywords: tunnel collapse; multi-source data fusion; collapse possibility; risk assessment; machine learning

1. Introduction

Highways are extremely important infrastructure in most countries, ensuring connec-
tivity and development between different regions, especially in mountainous and hilly
areas. However, due to the long construction period of highway tunnels and the large dis-
turbance to surrounding rock, there are unpredictable factors and huge safety risks. In the
construction process, the drilling and blasting method is widely used in tunnel excavation
due to its low cost and strong geological applicability. However, due to many risk factors
and complex construction procedures, it is easy to cause collapse accidents [1]. Once the
tunnel collapse occurs, it will cause delays in construction, economic losses, and even casu-
alties. Therefore, in order to ensure safe construction during highway tunnel engineering,
it is of great significance to accurately evaluate the collapse risk of tunnel construction.

Aiming at the problem of tunnel collapse risk assessment, the main research methods
include single information source risk assessment methods such as analytic hierarchy pro-
cess [2–4], fuzzy comprehensive evaluation method [5], risk matrix method [6,7], network
analysis method [8], Bayesian network [9–11] and fault tree method [12,13], as well as
multi-source information fusion assessment methods such as neural network [14,15], rough
set [16], D-S evidence theory [17] and maximum entropy method [18]. Among them, the
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results of using a single information source to analyze the risk of tunnel collapse are deviate
slightly from the actual situation. This is because the single-source information cannot
reflect the actual construction situation. The evaluation results are inaccurate and cannot
provide accurate suggestions for decision makers. The fusion model can better understand
the risk factors and greatly improve the accuracy of the prediction results. It is one of the
most effective means to study the risk assessment of tunnel collapse. A multi-classifier
information fusion model is proposed [19]. Support Vector Machine and D-S evidence
theory are used in the model to evaluate the health risk of subway structure under uncertain
conditions. It is proved that the fusion model has better robustness and accuracy than the
single-classifier model. The safety risk of adjacent buildings during tunnel excavation is
perceived through the cloud model and the improved D-S evidence theory. The reliability
of the safety risk perception results was tested when the measurement factors were at
different deviation levels [20]. The improved multi-source information fusion method is
used to evaluate the risk of subsea tunnel excavation models. The results show that the
prediction results of the improved algorithm are in good agreement with the actual water
inrush phenomenon observed in the model test. Based on the previous research results,
the size of the evidence conflict coefficient determines the degree of agreement between
the evidence fusion results and the actual results [21]. Wu considered the on-site inspec-
tion of experts and the monitoring of on-site instruments. At the same time, a weighted
average was used for non-conflict evidence fusion, and traditional D-S fusion was used for
high-conflict evidence. However, the advanced geological forecast data are not considered.
Due to the complex geological conditions of mountain tunnels, the advanced geological
forecast data can directly describe the geological conditions before excavation, which has
an advanced expected effect on the construction and can reflect the collapse risk to a certain
extent. At the same time, the traditional D-S fusion is used for high conflict evidence, while
the traditional D-S evidence theory is very insensitive to high conflict evidence, which
leads to inconsistency between the fusion result and the actual result [22].

Through the above analysis, because the geological structure of the mountain tunnel
is often more complex, the identification and adjustment of the evidence conflict between
different information sources still need further study. In addition, the existing research
results are based on multi-source information fusion methods, which fail to consider the
combined effects of advanced geological forecast data, on-site inspection data and instru-
ment detection data, and are different from the actual situation, and cannot fully and truly
reflect the construction site situation. Based on the improved D-S model, a high-accuracy
multi-source data fusion method is proposed relied on the Fujian Wenbishan tunnel project.
In this method, the evidence conflict coefficient K is used as the identification index, and
the credibility and importance are introduced. The weight coefficient is determined ac-
cording to whether the conflicting evidence is divided into two situations. The advanced
geological forecast data, on-site inspection data and instrument monitoring data are trained
by CM (Cloud Model), GBDT (Gradient Boosting Decision Tree) and SVC (Support Vector
Classification), respectively, to obtain the initial value of BPA (Basic Probability Assign-
ment). The identified conflict evidence is adjusted by combining the weight coefficient.
Finally, the evidence from different sources is fused to obtain the overall collapse risk
value, so as to provide reference for the collapse risk assessment and control of mountain
tunnel construction.

2. Methodology

In order to improve the accuracy of tunnel collapse risk assessment, a multi-source
information fusion assessment method based on the Improved Dempster–Shafer Theory
is proposed by combining artificial intelligence models. Figure 1 shows the flow of the
method proposed in this paper for assessing tunnel collapse risk. Cloud Models (CM),
Gradient Boosting Decision Tree (GBDT) and Support Vector Machines (SVM) are used for
the advance geological forecast information, site inspection information and instrument
monitoring information, respectively, so as to obtain the tunnel collapse failure probability
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from a single information source. Then, the weight coefficient between each piece of
evidence is calculated according to whether the conflict coefficient K is greater than the
conflict threshold (ζ = 0.9), and the weight coefficient is adjusted and fused to obtain the
overall collapse risk assessment result.
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Figure 1. Flowchart of the proposed hybrid method for multi-source data fusion decision.

For advanced geological forecast data, because it constructs a data set through geo-
physical prospecting results and expert scoring results, CM can map qualitative concepts to
quantitative data, so it can be used to process geophysical survey data. For site inspection
data, the Gradient Boosting Decision Tree is used to investigate causal relationships be-
tween tunnel collapse and its influential variables based upon the risk mechanism analysis
and expert scores. For instrument monitoring data, since it has been classified, SVM with
the advantage of small sample classification is used for risk assessment. By using improved
D-S multi-source information fusion method and adjusting high conflict evidence, useful
information of different evidence sources can be extracted, so as to improve the accuracy
of collapse risk assessment. A typical hazard concerning the tunnel collapse in the con-
struction of the Fujian Wenbishan Tunnel in China is presented as a case study. The results
demonstrate the feasibility of the proposed approach and its application potential.

2.1. Basic Probability Assignment Calculation of Different Evidence Sources
2.1.1. Cloud Model

Let U be a numerical representation of the quantitative domain, and C be a qualitative
concept on the domain U. If there is a quantitative value x ∈ U, x is a random realization on
C, and the membership u(x) ∈ [0, 1] of C is a random number with a stable tendency, then
u(x) is distributed on the universe U for short as cloud, and each (x, u(x)) is referred to as a
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cloud droplet [23]. Then x satisfies: (1) x ∈ U, (2) x is a random instantiation of concept C,
(3) x satisfies the Formula (1), and the certainty of x belonging to concept C can be obtained
by Formula (2). {

x ∼ N(Ex, En′2)
En′ ∼ N(En, He2)

(1)

u(x) = exp(− (x− Ex)2

2(En′)2 ) (2)

In the formula, Ex refers to the expected value of the spatial distribution of cloud
droplets in the domain of discourse, which is the point that can best represent the qualitative
concept. En represents a measure of the uncertainty of qualitative concepts, which can be
used to describe the span of clouds and reflect the dispersion of cloud droplets. Both Ex
and En can be fitted from the training set data. He is a measure of entropy En uncertainty,
which represents the degree of entropy dispersion. According to Reference [24], He is 0.004
in this paper.

When modeling multiple categories on the same attribute, the generated multiple
Cloud Models may appear to be overlapped together, and the degree of overlap reflects
the accuracy of the model. Let C1(Ex1, En1, He1) and C2(Ex2, En2, He2) be two orthogonal
Cloud Models. Then the intersection degree of both is defined as in Equation (3):

S(C1, C2) =

{ 3(En1+En2)−|Ex1−Ex2|
3(En1+En2)+|Ex1−Ex2|

, 3(En1 + En2)− |Ex1 − Ex2| > 0

0, 3(En1 + En2)− |Ex1 − Ex2| ≤ 0
(3)

In the formula, En1 and En2 are the entropy of the two models, and Ex1 and Ex2 are the
expectation of the two models. It can be seen that when 3(En1 + En2) − |Ex1 − Ex2| ≤ 0,
the orthogonal Cloud C1 and the orthogonal Cloud C2 have no overlapping part, and the
degree of overlapping of the two is 0. There is a crossover part between Orthogonal Cloud
C1 and Orthogonal Cloud C2 when 3(En1 + En2) − |Ex1 − Ex2| > 0. The smaller the value
of |Ex1 − Ex2| is, the larger the overlapping part is. When Ex1 = Ex2, the expectations of
C1 and C2 are the same, and the degree of overlap is considered to be 1.

2.1.2. Gradient Boosting Decision Tree

The forward distribution algorithm is adapted from Gradient Boosting Decision
Tree [25]. The initial value of the model is set to F0(x), which is usually a constant. The
model of step m is Fm(x), and the newly added classification regression tree can be obtained
by minimizing the loss function L(x), which can be calculated using Equation (4).

Fm(x) = Fm−1(x− 1) + αmhm(x)

hm = argmin
N
∑

i=1
L(yi, Fm−1(xi) + h(xi))

h

(4)

where L is the loss function, αmhm(x) is a regular term to prevent overfitting and the value
range of α is (0, 1].

The gradient descent method is used for training the optimal model. The negative
gradient value of the loss function in the current model Fm−1(x) is taken as the direction of
gradient descent, as shown in Equation (5).

Fm(x) = Fm−1 − αm
N
∑

i=1
∇FL(y, Fm−1(xi))

αm = argmin
α

N
∑

i=1
L(yi, Fm−1(xi))− α

∂L(yi ,Fm−1(xi))
∂Fm−1(xi)

Fm(x) = Fm−1(x) + vαmhm(x)

(5)
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In the formula, v represents learning rate. The smaller the learning rate, the more
CART is needed, and the final error will be smaller. However, it will also increase training
time. Therefore, it is necessary to control the learning rate and the number of CART at the
same time to determine a model with fast speed and high precision.

2.1.3. Support Vector Machines

Support Vector Machine is a kind of generalized linear classifier which classifies data
by supervised learning, whose output is only 0 or 1. In order to extract the correlation
probability from the output of support vector machine, some scholars have proposed a
variety of methods. Platt’s method [26,27] is used in the study, which uses the Sigmoid
function to map the output to the interval [0, 1], as shown in Equation (6).{

Pab( f (x)) = 1
1+ea f (x)+b

f (x) = sign[(∑m
i=1 αiyiK(xi, x)) + b]

(6)

In the formula, m is the size of the training data set, αi is the Lagrange multiplier,
K(xi, x) is the kernel function and b is the threshold parameter based on the training set.
The parameters a and b can be obtained by minimizing the negative log-likelihood function
of the training instance,

min
z=(a,b)

F(z) = −∑l
i=1 (ti log(pi) + (1− ti) log(1− pi)) (7){

t+ = N++1
N++2

t− = 1
N−+2

(8)

where ti is new label of class, +1 becomes t+, −1 becomes t− and N+ and N− are the points
of class 1 and class 2, as showed in Equations (7) and (8).

2.2. Improved D-S Evidence Fusion Collapse Risk Assessment

In the identification framework of Θ, an evidence can be expressed as Equation (9) [28].
In the formula, θ is any real proposition in P(Θ). The meaning of (θ,Pθ,j) is that the
probability mass of the evidence ej pointing to proposition θ is Pθ,j.

ej =
{

θ, pθ,j
}
|∀θ ⊆ Θ, ∑

θ⊆Θ
pθ,j = 1

}
(9)

In the formula, ej is evidence, and “j = 3” represents three sources of evidence, which
are advanced geological forecast data, instrument monitoring data and field inspection
data. The identification framework Θ = {I, II, III, IV}, which represents the risk levels are I,
II, III and IV, respectively.

Improved D-S theory in this study combines credibility rj (0 ≤ rj ≤ 1) and importance
tj (0 ≤ tj ≤ 1). Generally speaking, credibility is an objective existence, indicating the ability
of ej to evaluate correctly compared with other evidence, and importance can be subjectively
determined according to the information source of the generated evidence which reflects
the relative importance of ej compared with other evidence in the combination of pieces
of evidence.

Firstly, the value of credibility needs to be obtained. At present, the measurement
methods of uncertainty include conflict measurement and confusion measurement [29,30].
Aggregated uncertainty is used to calculate the confidence level of each evidence learned
from the probabilistic classification model, as shown in Equation (10). In the formula, Pθ,i
is the trust of focus element θi, and n is the total number of focus elements, which is 4 in
this study.

rj = 1 +
∑θ∈Θ pθ,j log2 pθ,j

log2 n
(10)
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In the formula, rj is the degree of trust. n is the total number of focal elements, which
is 4 in this paper, indicating the number of risk levels in the identification framework. PΘ,j
denotes the basic probability distribution value (BPA) corresponding to the risk level.

Secondly, the value of importance needs to be calculated. In the environment of model
learning and verification, the importance rating is directly determined by its contribution
to the accuracy of the model. Minimum class-wise F1-score can limit the contribution of
low-quality evidence. So, the importance of each evidence is set to min{class-wise F1-scores}
in the probability classifier, which combines precision and recall, as shown in Equation (11).

tj = min
{

Pj ·Sj
Pj+Sj

}
Pj =

TPi
TPi+FPi

Sj =
TPi

TPi+FNi

(11)

In the formula, tj denotes the importance. TPi means that both the true value and the
predicted value are Positive. FPi indicates that the true value is negative but the predicted
value is positive. FNi indicates that the true value is positive but the predicted value
is negative.

Finally, in order to obtain non-high-conflict evidence, the original BPA needs to be
adjusted by credibility and importance to obtain BPA used for evidence fusion. The
adjusted evidence is fused in pairs, and the overall evidence fusion result is obtained after
normalization, as shown in Equation (12).

pi,e(3) =
m̃i,e(3)

∑
i∈{I,I I,I I I,IV}

m̃i,e(3)

m̃i,e(3) = (1− r3)m̃i,e(2) + (1− r2)(1− r1)m̃i,3 + m̃i,e(2)m̃i,3
m̃i,e(2) = (1− r2)m̃i,1 + (1− r1)m̃i,2 + m̃i,1m̃i,2

m̃i,j =
tj pi,j

1+tj−rj

(12)

In the formula, m̃i,j represents the BPA value after the combination of trust and
importance, that is, the BPA corresponding to the i focal element of evidence j. tj and rj
are the importance and credibility corresponding to the evidence of article j, respectively.
m̃i,e(2) represents the BPA value after the fusion of two evidences. m̃i,1 denotes the BPA
distribution of the first evidence. m̃i,2 denotes the BPA distribution of the second evidence.
m̃i,3 denotes the BPA distribution of the third evidence. m̃i,e(3) represents the BPA value
after the fusion of three evidences. pi,e(3) represents the final result of the three-evidence
fusion after normalization.

3. Case Study
3.1. Case Background

Wenbishan Tunnel is a two-lane separated extra-long tunnel, located in Sanming,
Fujian, with a left tunnel length of 4786 m and a right tunnel length of 4760 m. In this paper,
the right-hand tunnel (YK223 + 375~YK228 + 135) is taken as the object of study, with a
360-m-long section of V-grade surrounding rock and a 1567-m-long section of IV-grade
surrounding rock. The geological longitudinal section of the tunnel in the right panel is
shown in Figure 2. The geological conditions in the tunnel are complex, and most of the
surrounding rocks are residual clay and granite with different degrees of weathering. In
the section from YK223 + 473 to YK223 + 728, the joints and fissures are developed, the rock
is more broken and the rock is a mosaic fracture structure. During the construction process,
it is very easy to cause tunnel collapse. Therefore, there is an urgent need to conduct a
collapse risk assessment of this tunnel section to reduce the damage caused by the collapse.
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3.2. Collapse Risk Assessment Based on Advance Geological Forecast Data

According to the Guide to Construction Safety Risk Assessment for Highway Bridge
and Tunnel Projects, the risk level of tunnel collapse is divided into four levels: low (level I),
moderate (level II), high (level III) and very high (level IV). Combined with the effective
data available for advanced geological prediction, the tunnel collapse risk evaluation index
system is established, as shown in Table 1. The uniaxial compressive strength of rock is a
direct reaction of rock hardness. The smaller the value, the softer the rock and the greater
the risk of collapse. The integrity coefficient of rock mass can be obtained by converting
the longitudinal wave velocity of rock mass. The smaller the value, the more incomplete
the rock and the greater the risk of collapse. The angle between the main structural plane
and the tunnel axis describes the combination relationship between the tunnel axis and the
main structural plane of the chamber. The larger the angle, the more unstable the chamber
and the greater the risk of collapse. The discontinuous structural plane state reflects the
state of the chamber control structural plane. The more serious the corrosion, the worse
the nature of the filling, the worse the stability of the chamber and the greater the risk
of collapse.

Table 1. Indices and criterion for tunnel collapse risk assessment.

Evaluation Indicators
Collapse Level

I II III IV

Uniaxial compressive strength of
rock/MPa 80~120 30~80 10~30 5~10

Surrounding rock integrity factor 0.75~1 0.45~0.75 0.2~0.45 0~0.2
Angle between the main structural

surface and the cave axis/◦ 80~90 50~80 10~50 0~10

Discontinuous structural surface state 0~0.2 0.2~0.5 0.5~0.8 0.8~1

There are four types of risk levels in the advanced geological forecast datasets, namely
Level I, Level II, Level III and Level IV. Each risk level has four attributes, which are uniaxial
compressive strength of rock, surrounding rock integrity factor, angle between the main
structural surface and the cave axis and discontinuous structural surface state. In this
study, a dataset of 100 tunnel collapse cases is collected to form a training dataset for tunnel
advance geological forecasting. The four attribute values are used as inputs and the model
parameters are obtained after the inverse cloud generator, as shown in Table 2. With the
obtained model parameters, a forward cloud generator is created. The test samples are fed
into the forward cloud generator to obtain the tunnel collapse risk assessment.
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Table 2. Cloud Model parameter values of four detection indicators.

Indicators
I II III IV

Ex En He Ex En He Ex En He Ex En He

Uniaxial compressive
strength of rock/MPa 80 6.67 0.004 60 8.33 0.004 20 3.33 0.004 7.5 0.83 0.004

Surrounding rock integrity
factor 0.875 0.042 0.004 0.55 0.05 0.004 0.25 0.042 0.004 0.1 0.033 0.004

Angle between the main
structural surface and the

cave axis/◦
85 1.67 0.004 65 5 0.004 30 6.67 0.004 5 1.67 0.004

Discontinuous structural
surface state 0.1 0.033 0.004 0.25 0.05 0.004 0.6 0.05 0.004 0.9 0.033 0.004

In the section YK223 + 473~YK224 + 073, samples are selected every 10 m, and a total
of 60 cross-sections are selected as test samples. The Cloud Model for the four risk classes
under the four attributes is shown in Figure 3. There are overlaps in level I and level II of
the property “uniaxial compressive strength of rock”, level III and level IV of the property
“integrity coefficient of surrounding rock”, and level I and level II of the property “state of
discontinuous structural surface”. According to Equation (3), the overlapping degree of uni-
axial compressive strength of rock is SA[(I, I I), (I I, I I I), (I I I, IV)] = [0.38, 0, 0], the overlap-
ping degree of surrounding rock integrity factor is SB[(I, I I), (I I, I I I), (I I I, IV)] = [0, 0, 0 .2],
the overlapping degree of angle between the main structural surface and the cave axis
is SC[(I, I I), (I I, I I I), (I I I, IV)] = [0, 0, 0] and the overlapping degree of discontinuous
structural surface state is SD[(I, I I), (I I, I I I), (I I I, IV)] = [0.25, 0, 0]. It can be seen that
the overlap degree is greater than 0, namely SA(I, I I) = 0.38 > 0, SB(I I I, IV) = 0.3 > 0,
SC(I, I I) = 0.25 > 0. Therefore, there will be some error in predicting the overall collapse
level by using the advanced geological forecast data.
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The collapse risk assessment of the test samples is predicted using the forward cloud
generator obtained above, whose results are shown in Table 3. The classification accuracy
is 62%, which still has a big error. This may be due to the fact that expert field research
methods are used to determine the actual collapse risk level in the training set, which
may be subject to human judgment errors and lead to slight discrepancies between the
assessment results and the actual situation.

Table 3. Risk assessment results based on advanced geological forecast data.

Index
Probability

over
Level I

Probability
over

Level II

Probability
over

Level III

Probability
over

Level IV
Predicted
Label

True
Label Index

Probability
over

Level I

Probability
over

Level II

Probability
over

Level III

Probability
over

Level IV
Predicted

Label
True
Label

No. 1 0.35 0.45 0.1 0.1 II I No. 31 0 0.01 0.54 0.45 III IV
No. 2 0.15 0.7 0 0.15 II II No. 32 0.4 0.55 0 0.05 II I
No. 3 0.1 0.2 0.1 0.6 IV III No. 33 0.22 0.78 0 0 II II
No. 4 0.06 0.6 0.2 0.14 II II No. 34 0.35 0.5 0.15 0 II I
No. 5 0.1 0.1 0.65 0.15 III III No. 35 0 0.05 0.85 0.1 III III
No. 6 0 0.18 0.2 0.62 IV IV No. 36 0.45 0.01 0.54 0 III I
No. 7 0.55 0.15 0.2 0.1 I I No. 37 0.36 0.1 0.46 0.08 III I
No. 8 0.2 0 0.7 0.1 III III No. 38 0 0.45 0.55 0 III II
No. 9 0.1 0.9 0 0 II II No. 39 0 0.94 0.06 0 II II
No. 10 0 0.88 0.12 0 II II No. 40 0 1 0 0 II II
No. 11 0.74 0.06 0.1 0.1 I I No. 41 0.1 0.9 0 0 II II
No. 12 0.35 0.03 0.52 0.1 III I No. 42 0.86 0.04 0.1 0 I I
No. 13 0.15 0 0.75 0.1 III III No. 43 0 0 0.1 0.9 IV IV
No. 14 0 0 0.95 0.05 III III No. 44 0 0.14 0.86 0 III III
No. 15 0.4 0.48 0.1 0.02 II I No. 45 0.8 0.2 0 0 I I
No. 16 0.85 0 0.05 0.1 I I No. 46 0 0.6 0.4 0 II III
No. 17 0.7 0 0.3 0 I III No. 47 0 0.92 0.08 0 II II
No. 18 0 0.76 0.04 0.2 II II No. 48 0.1 0.2 0.65 0.05 III III
No. 19 0 0.4 0.6 0 III II No. 49 0.48 0.42 0.1 0 I II
No. 20 0.1 0.1 0.72 0.08 III III No. 50 0.1 0.42 0 0.48 IV II
No. 21 0 0.1 0.9 0 III III No. 51 0.6 0.1 0 0.3 I I
No. 22 0.54 0.46 0 0 I II No. 52 0 0.4 0.06 0.54 IV II
No. 23 0.58 0 0.4 0.02 I III No. 53 0 0.95 0 0.05 II II
No. 24 0.05 0.75 0 0.2 II II No. 54 0.05 0.42 0.48 0.05 III II
No. 25 0 0.53 0.44 0.03 II III No. 55 0.03 0.87 0.1 0 II II
No. 26 0.7 0 0.15 0.15 I I No. 56 0.1 0.82 0 0.08 II II
No. 27 0.75 0.1 0.15 0 I I No. 57 0 0 0.14 0.86 IV IV
No. 28 0.12 0.88 0 0 II II No. 58 0.42 0.02 0 0.56 IV I
No. 29 0 0 0.4 0.6 IV III No. 59 0 0.9 0.1 0 II II
No. 30 0 0.85 0.15 0 II II No. 60 0.55 0.45 0 0 I II

3.3. Collapse Risk Assessment Based on Site Inspection Data

Site inspection evaluation indicators can be divided into four categories: design factors,
geological factors, construction factors and management factors. Design factors include
excavation span and depth-to-height ratio. Geological factors include surrounding rock
grade and bias. Construction factors include the main stiffness of initial support, stratum
reinforcement measures, excavation methods and waterproof and drainage measures. Man-
agement factors include monitoring and measurement, construction quality qualification,
accuracy of geological survey and timeliness of main support. According to the Guide to
Highway Bridge and Tunnel Construction Safety Risk Assessment, the above 12 judgment
indicators are divided into four levels, as shown in Table 4.

There are four collapse risk levels in the site inspection data set, which are Level I, Level
II, Level III and Level IV. The number of features for each risk level is 12. The input of the test
set is {x1, . . . , x12}. The data label is tunnel collapse risk grade, which can be determined
according to expert site investigation. The model output is the failure probability value of
tunnel collapse. The predicted result is the collapse risk level corresponding to maximum
value of collapse failure, which is compared with the data label values to obtain the model
prediction accuracy.

The number of features in the site inspection test set is 12, and the number of samples
is 60. Due to the small number of samples, the neural network model is not applicable,
so the Gradient Boosting Decision Tree model in traditional machine learning is chosen.
The collapse risk assessment model is constructed by calling the GradientBoostingClas-
sifier module in the scikit-learn library. The key parameters include n_estimators and
learning_rate. The grid search method is used to find the optimal hyperparameters. The
parameter search range of n_estimators is [60, 80, 100, 120, 14]. The parameter search range
of learning_rate is [0.001, 0.01, 0.1, 1, 1.5, 2].
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Table 4. Evaluation index and collapse risk factor grade.

Evaluating Indicator
Factor Level

I II III IV

Design factors Excavation span (m) (x1) <7 7~10 10~14 >14
Depth-to-height ratio (x2) >20 15~20 10~15 <10

Geological
factors

Surrounding rock grade (x3) 81~100 61~81 41~60 <40
Bias (x4) <10◦ 10~25◦ 25~40◦ >40◦

Construction
factors

Excavation methods (x5) CRD CD Bench cut method Full face method

Stratum reinforcement
measures (x6)

Full section curtain
grouting and

advance support

Pipe shed support
and advance

support

Curtain grouting
and advance

support

Anchor bolts and
advance support

Waterproof and drainage
measures (x7) 76~100 51~75 26~50 0~25

main stiffness of initial
support (x8) >2 1~2 0.5~1 <0.5

Management
factors

monitoring and
measurement (x9) >4 times/day 3 times/day 2 times/day 1 times/day

Construction quality
qualification (x10) 90~100% 80~90% 70~80% 60~70%

Accuracy of geological
survey (x11) >90% 75~90% 60~75% <60%

Timeliness of main
support (x12) <30 min 30~60 min 60~120 min >120 min

An optimization search experiment is conducted for n_estimators and learning rate.
The Receiver Operating Characteristic (ROC) Curve is used for model evaluation. The
closer the ROC curve is to the vertical axis, the better the model performance is, conversely,
the worse the model performance is. In addition, the model can be evaluated by AUC (area
under the ROC curve). Macro-averaging and micro-averaging are different methods to
achieve classification accuracy calculations, and both can be used to evaluate the model.
The larger the value, the larger the area, the better the model performance. The result of
model parameters training is shown in Figure 4.
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(a) The receive operating characteristic curve of model when learning_rate is the variable. (b) The
receive operating characteristic curve of model when n_estimators is the variable.

Figure 4a shows the results of model training when n_estimators is fixed value and
learning_rate is the variable. Figure 4b shows the results of model training when learn-
ing_rate is fixed value and n_estimators is the variable. As learning_rate increases, AUC
and ACC (Accuracy) first increases and then decreases. As n_estimators increases, AUC
and ACC (Accuracy) first increases and then decreases. As can be seen from the figure, The
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optimal model is obtained when learning_rate is equal to 1 and n_estimators is equal to
100. AUC and ACC are both at maximum, which are 0.96, and 95.5%. The reason is that
the model will overfit if n_estimators and learning_rate are too large, while the model will
underfit if n_estimators and learning_rate are too small.

Through the trained model, the above 60 tunnel sections are used as samples for risk
assessment, and the results are shown in Table 5. The classification accuracy reaches 56%,
which is too low to be used for construction site guidance. The results of on-site inspection
come from expert experience, which are greatly influenced by subjectivity. In addition, due
to the small data set and uneven distribution of the number during model training, the
prediction accuracy of some risk levels is too low, and the overall accuracy is reduced.

Table 5. Risk assessment results based on site inspection data.

Index
Probability

over
Level I

Probability
over

Level II

Probability
over

Level III

Probability
over

Level IV
Predicted
Label

True
Label Index

Probability
over

Level I

Probability
over

Level II

Probability
over

Level III

Probability
over

Level IV
Predicted

Label
True
Label

No. 1 0.4 0.2 0.1 0.3 I I No. 31 0 0.15 0 0.85 IV IV
No. 2 0.25 0.55 0.1 0.1 II II No. 32 0 0 1 0 III I
No. 3 0 0.2 0.8 0 III III No. 33 0.12 0.88 0 0 II II
No. 4 0.08 0.52 0.3 0.1 II II No. 34 0.05 0.95 0 0 II I
No. 5 0.3 0.4 0 0.3 II III No.35 0 0.1 0.8 0.1 III III
No. 6 0.1 0.3 0.5 0.1 III IV No. 36 0.44 0.56 0 0 II I
No. 7 0.9 0.1 0 0 I I No. 37 0.45 0 0.55 0 III I
No. 8 0.1 0.1 0.6 0.2 III III No. 38 0 0 0.85 0.15 III II
No. 9 0 0 0.96 0.04 III II No. 39 0 0.84 0.16 0 II II
No. 10 0.18 0.82 0 0 II II No. 40 0.12 0.78 0.1 0 II II
No. 11 0.82 0 0.03 0.15 I I No. 41 0 0.74 0.16 0.1 II II
No. 12 0.4 0.6 0 0 II I No. 42 0.84 0.14 0.02 0 I I
No. 13 0 0.1 0.9 0 III III No. 43 0.1 0.8 0.1 0 II IV
No. 14 0 0 1 0 III III No. 44 0.15 0 0.85 0 III III
No. 15 0.05 0.2 0.1 0.65 IV I No. 45 0.86 0 0.04 0.1 I I
No. 16 0.7 0.3 0 0 I I No. 46 0 0 0.35 0.65 IV III
No. 17 0 0.55 0.45 0 II III No. 47 0.92 0 0.08 0 I II
No. 18 0 0.85 0.15 0 II II No. 48 0 0 0.85 0.15 III III
No. 19 0.2 0 0 0.8 IV II No. 49 0.58 0 0.42 0 I II
No. 20 0.7 0.1 0.1 0.1 I III No. 50 0 0.4 0.6 0 III II
No. 21 0.1 0 0.9 0 III III No. 51 0.8 0 0.2 0 I I
No. 22 0.56 0.44 0 0 I II No. 52 0 0.48 0.52 0 III II
No. 23 0 0.6 0.4 0 II III No. 53 0 0.9 0.1 0 II II
No. 24 0 0.86 0 0.14 II II No. 54 0 0 0.25 0.75 IV II
No. 25 0 0.08 0.4 0.52 IV III No. 55 0.1 0.8 0 0.1 II II
No. 26 0.85 0.05 0 0.1 I I No. 56 0 1 0 0 II II
No. 27 0.75 0.15 0.1 0 I I No. 57 0 0 0.25 0.75 IV IV
No. 28 0 0.75 0 0.25 II II No. 58 0.45 0.01 0 0.54 IV I
No. 29 0.75 0.1 0.15 0 I III No. 59 0.2 0.7 0.1 0 II II
No. 30 0.05 0.95 0 0 II II No. 60 0.6 0.4 0 0 I II

3.4. Collapse Risk Assessment Based on Instrument Monitoring Data

The instrument monitoring data include surface settlement, vault settlement displace-
ment and horizontal convergence displacement in the shallow buried section, which reflects
the stability of the tunnel support after the initial lining. The effect of surface settlement
for deep tunnels is often not considered, and only the vault settlement displacement and
horizontal convergence displacement are selected for collapse risk analysis. According to
the national standard for Technical Specification for Highway Tunnel Construction (JTG/T
3660-2020), and Technical Specification for Monitoring and Measurement of Highway
Tunnels (DB 35/T 1067-2010), the daily change rate and cumulative deformation are taken
as indicators. The farther the monitoring point is from the palm surface, the larger the
accumulated displacement limit value is, so the cumulative displacement value needs to
be multiplied by a factor ζ. These two judgment indicators are divided into four levels,
as shown in Table 6. The accumulated displacement needs to be multiplied by a factor ζ
according to the distance between the measurement point and the palm surface. According
to the Standard for Technical Specification for Monitoring and Measurement of Highway
Tunnels (DB 35/T 1067-2010), the relationship between ζ and D is shown in Table 7, where
B is the span of the excavated tunnel.

The instrument monitoring datasets have four types of risk levels, which are Level I,
Level II, Level III and Level IV. The number of features for each risk level is 2, which are
vault settlement displacement and horizontal convergence displacement. The inputs to the
test set are the monitored values of vault settlement and horizontal convergence. The tunnel
collapse level is the output of model. Then, according to the most unfavorable principle,
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the larger collapse risk level is used as the label. The output is the tunnel collapse failure
probability value. The collapse level corresponding to the maximum value of collapse
failure probability is the collapse level predicted by the model. The model prediction
accuracy is obtained by comparing the model prediction values with the labeled values.

Table 6. Classification of monitoring measurement data.

Tunnel Collapse Level Daily Deformation (mm/d) Cumulative Deformation (mm)

I (Safe) 0 ≤ x < 2 0 ≤ y < 50
II (Deformation is formed) 2 ≤ x < 5 50 ≤ y < 100
III (Small-scale collapse) 5 ≤ x < 10 100 ≤ y < 200
IV (Large-scale collapse) 10 ≤ x < 20 200 ≤ y < 300

Table 7. Coefficient (ξ) of cumulative deformation (y).

Distance from Monitoring
Point to Palm Face (D) 1B 2B 3B 4~6B

ξ 0.5 0.75 0.85 1

A collapse risk assessment model is built based on the scikit-learn machine learning
library. The number of features in the instrument monitoring datasets is 2. The test
set sample is 60 tunnel cross-sections in Section 3.2. The supervised learning model is
chosen because the samples need to be trained with labels. In this paper, a Support Vector
Machine with the key parameters of kernel function, kernel function parameters and
penalty parameters is selected. Based on the fact that both the number of features and
the number of samples are small, and the number of features is much smaller than the
number of samples, Radial Basis Function (RBF) is selected as the kernel function. The
key parameters are the penalty parameter C and the kernel function parameter gamma.
A grid search method to find the optimal hyperparameters (C, gamma). The parameter
optimization range of C is 0.05, 0.1, 0.15 and 0.2. The parameter optimization range of
gamma is 0.001, 0.002, 0.004 and 0.006. The classification probability distribution chart of
tunnel collapse risk level is shown in Figure 5.

Figure 5a shows the classification probability distribution chart when gamma is 0.004,
and C are 0.05, 0.1, 0.15 and 0.2, respectively. The result shows the relationship between
classification probability and color. The darker the color is, the lower the classification
probability value is. It can be seen that there is a point where it has clearly deviated from
the other points when C is 0.05, and the level is II. However, all points are gathered together
when C is 0.1, 0.15, 0.2, and the level is II. When C is 0.05, 0.1, 0.15 and 0.2, the model
classification accuracies are 63.6%, 68.3%, 68.3% and 68.3%, respectively. This is due to the
fact that the larger the parameter C is, the easier the model is to be overfitted. From the
above analysis, the optimal value of C is 0.1. Figure 5b shows the classification probability
distribution chart when C is 0.1, and gamma are 0.001, 0.002, 0.004 and 0.006, respectively.
It can be seen that there are two points where it has clearly deviated from the other points
when gamma is 0.001, and the level is II. There is one point where it has clearly deviated
from the other points when gamma is 0.002, and the level is II. However, all points are
gathered together when gamma is 0.004, 0.006, and the level is II. When gamma is 0.001,
0.002, 0.004 and 0.006, the model classification accuracies are 63.6%, 68.3%, 68.3% and
68.3%, respectively. This is due to the fact that the larger the parameter gamma is, the easier
the model is to be overfitted. From the above analysis, the optimal value of gamma is 0.004.
In summary, the optimal parameter C is 0.1, and the optimal parameter gamma is 0.004.

The collapse risk assessment of the test samples based on instrument monitoring data
is predicted, and the results are shown in Table 8, which can obtain risk assessment accuracy.
Obviously, a large part of the prediction results deviates from the true value. This is due to
the error of monitoring data caused by the operation error of construction personnel, or the
judgment error caused by the fact that the vault settlement displacement and horizontal
convergence displacement cannot fully reflect the surrounding rock support state.



Appl. Sci. 2023, 13, 5606 13 of 19

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 21 
 

No. 24 0 0.68 0 0.32 II II No. 54 0 0.85 0.15 0 II II 
No. 25 0 0.58 0.42 0 II III No. 55 0 0.9 0.1 0 II II 
No. 26 0.8 0 0 0.2 I I No. 56 0.1 0.6 0.1 0.2 II II 
No. 27 0.6 0.3 0.1 0 I I No. 57 0 0 0.3 0.7 IV IV 
No. 28 0 0.85 0.1 0.05 II II No. 58 0.42 0.1 0 0.48 IV I 
No. 29 0 0 1 0 III III No. 59 0.1 0.8 0.1 0 II II 
No. 30 0.05 0.65 0 0.3 II II No. 60 0.7 0.25 0.05 0 I II 

 

  
(a) (b) 

Figure 5. Classification probability distribution for different parameters. (a) C are 0.05, 0.1, 0.15 
and 0.2. (b) gamma are 0.001, 0.002, 0.004 and 0.006. 

3.5. Collapse Risk Assessment Based on Multi-Source Data Fusion Method 
In order to solve the problem of unreliable evaluation results of a single information 

source, the improved D-S theory is used to fuse multi-source data. This method combines 
the different results of the above three single evaluation models. The importance value is 
chosen based on the classification measures of each model by the rule (min{F1-scores}). 
The classification performance for the above three models is summarized by Equation 
(11). The result is shown in Table 9. According to the rule (min{classwise F1-scores}), the 
importance values of each model in the fusion process are [0.5; 0.33; 0.57]. To illustrate the 
fusion process, six test samples were selected for analysis. The three-source information 
fusion training results are compared with three single-source training results, as shown 
in Table 10. In the table, bold values represent the probability of the maximum risk level 
obtained by the model. The following conclusions can be obtained: 
(1) The multi-source information fusion model has good fault tolerance. The fusion 

model can correct the wrong classifier result by the important rating and reliability. 
Taking the test sample section No. 5 as an example, the collapse failure probability 
value obtained by the three single-information source model are 

]0.15 ,65.0 ,1.0 ,1.0[1, =θp  , ]0.3 0 ,4.0 ,3.0[2, ，=θp   and ]0.5 ,4.0 ,1.0 ,0[3, =θp  . Ac-
cording to Equation (10), the credibility can be obtained as 

Figure 5. Classification probability distribution for different parameters. (a) C are 0.05, 0.1, 0.15 and
0.2. (b) gamma are 0.001, 0.002, 0.004 and 0.006.

Table 8. Risk assessment results based on instrument monitoring data.

Index
Probability

over
Level I

Probability
over

Level II

Probability
over

Level III

Probability
over

Level IV
Predicted
Label

True
Label Index

Probability
over

Level I

Probability
over

Level II

Probability
over

Level III

Probability
over

Level IV
Predicted

Label
True
Label

No. 1 0.5 0.3 0 0.2 I I No. 31 0 0 0 1 IV IV
No. 2 0 0.3 0.6 0.1 III II No. 32 0.35 0.65 0 0 II I
No. 3 0.2 0.6 0.1 0.1 II III No. 33 0 0.75 0.25 0 II II
No. 4 0.04 0.1 0.5 0.36 III II No. 34 0.4 0.55 0 0.05 II I
No. 5 0 0.1 0.4 0.5 IV III No. 35 0 0 0.9 0.1 III III
No. 6 0.02 0.1 0.28 0.6 IV IV No. 36 0.44 0 0.56 0 III I
No. 7 0.7 0.2 0.1 0 I I No. 37 0.46 0 0.04 0.5 IV I
No. 8 0 0 0.86 0.14 III III No. 38 0 1 0 0 II II
No. 9 0.1 0.9 0 0 II II No. 39 0.25 0.58 0.17 0 II II
No. 10 0 0.86 0.14 0 II II No. 40 0 0.78 0 0.22 II II
No. 11 1 0 0 0 I I No. 41 0.05 0.95 0 0 II II
No. 12 0.4 0 0.6 0 III I No. 42 0.4 0.6 0 0 II I
No. 13 0 0.32 0.68 0 III III No. 43 0 0 0.2 0.8 IV IV
No. 14 0.1 0.1 0.7 0.1 III III No. 44 0 0.2 0.6 0.2 III III
No. 15 0.4 0.06 0.54 0 III I No. 45 0.9 0.1 0 0 I I
No. 16 0.65 0.05 0.2 0.1 I I No. 46 0 0.6 0.4 0 II III
No. 17 0 0.1 0.9 0 III III No. 47 0 0.85 0 0.15 II II
No. 18 0.2 0.75 0.05 0 II II No. 48 0 0.25 0.75 0 III III
No. 19 0 1 0 0 II II No. 49 0.55 0.45 0 0 I II
No. 20 0 0 0.95 0.05 III III No. 50 0 0.4 0 0.6 IV II
No. 21 0 0.2 0.8 0 III III No. 51 0.75 0.1 0.1 0.05 I I
No. 22 0.6 0.35 0 0.05 I II No. 52 0.56 0.44 0 0 I II
No. 23 0 0 1 0 III III No. 53 0.2 0.7 0 0.1 II II
No. 24 0 0.68 0 0.32 II II No. 54 0 0.85 0.15 0 II II
No. 25 0 0.58 0.42 0 II III No. 55 0 0.9 0.1 0 II II
No. 26 0.8 0 0 0.2 I I No. 56 0.1 0.6 0.1 0.2 II II
No. 27 0.6 0.3 0.1 0 I I No. 57 0 0 0.3 0.7 IV IV
No. 28 0 0.85 0.1 0.05 II II No. 58 0.42 0.1 0 0.48 IV I
No. 29 0 0 1 0 III III No. 59 0.1 0.8 0.1 0 II II
No. 30 0.05 0.65 0 0.3 II II No. 60 0.7 0.25 0.05 0 I II

3.5. Collapse Risk Assessment Based on Multi-Source Data Fusion Method

In order to solve the problem of unreliable evaluation results of a single information
source, the improved D-S theory is used to fuse multi-source data. This method combines
the different results of the above three single evaluation models. The importance value is
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chosen based on the classification measures of each model by the rule (min{F1-scores}). The
classification performance for the above three models is summarized by Equation (11). The
result is shown in Table 9. According to the rule (min{classwise F1-scores}), the importance
values of each model in the fusion process are [0.5; 0.33; 0.57]. To illustrate the fusion
process, six test samples were selected for analysis. The three-source information fusion
training results are compared with three single-source training results, as shown in Table 10.
In the table, bold values represent the probability of the maximum risk level obtained by
the model. The following conclusions can be obtained:

(1) The multi-source information fusion model has good fault tolerance. The fusion model
can correct the wrong classifier result by the important rating and reliability. Taking
the test sample section No. 5 as an example, the collapse failure probability value
obtained by the three single-information source model are pθ,1 = [0.1, 0.1, 0.65, 0.15],
pθ,2 = [0.3, 0.4, 0, 0.3] and pθ,3 = [0, 0.1, 0.4, 0.5]. According to Equation (10), the
credibility can be obtained as [r1, r2, r3] = [0.733, 0.685, 0.707]. It can be seen from
Table 9 that the importance value of the fusion model is [t1, t2, t3] = [0.5, 0.33, 0.57].
According to Equation (12), the value of BPA, which is combined credibility and
importance rating, can be obtained asm̃I,1 m̃I I,1 m̃I I I,1 m̃IV,1

m̃I,2 m̃I I,2 m̃I I I,2 m̃IV,2
m̃I,3 m̃I I,3 m̃I I I,3 m̃IV,3

 =

0.068 0.068 0.438 0.109
0.000 0.297 0.243 0.135
0.000 0.153 0.102 0.256

.

Firstly, evidence e1 and evidence e2 are fused, and the probability distribution re-
sult after fusion is [m̃I,e(2), m̃I I,e(2), m̃I I I,e(2), m̃IV,e(2)] = [0.020, 0.119, 0.299, 0.083].
Then it is fused with evidence e3, and the probability distribution result after fu-
sion is [m̃I,e(3), m̃I I,e(3), m̃I I I,e(3), m̃IV,e(3)] = [0.006, 0.068, 0.133, 0.067]. After nor-
malization, the final BPA result after fusion is [PI,e(3), PI I,e(3), PI I I,e(3), PIV,e(3)] =
[0.1, 0.2, 0.4, 0.3]. The actual collapse level is Level III. As shown in Table 10, wrong
conclusions are given by traditional D-S model. The reason is that the improved D-S
model takes into account the importance and credibility, which allows e1 to correct e2
and e3. Through the above analysis, the traditional D-S model is highly sensitive to
high conflict evidence when there is a high conflict of evidence, so its performance
is poor. In contrast, the improved D-S model, which can be corrected for incorrect
classifiers based on the importance rating and confidence of the correct classifier, has
better fault tolerance.

(2) The multi-source information fusion method proposed in this paper simultaneously
considers information from three sources: advance geological forecast data, site in-
spection data and instrument monitoring data, which provide a more comprehensive
understanding of tunnel collapse risk, thus reducing data uncertainty and improving
the accuracy of assessment. Compared with the single information source risk assess-
ment method, the multi-source information fusion assessment has higher accuracy.

(3) When the evaluation results of three single information sources has high conflict (e.g.,
Tunnel section No. 5), the fusion result of the improved D-S theory is better than the
traditional D-S theory. The traditional D-S theory accumulates consensus support
only and rejects a proposition completely if it is opposed by any evidence, no matter
what support it may acquire from any other evidence. As a result, when three kinds
of single information evaluation give high conflict results, the traditional D-S theory
will give a fusion result contrary to common sense. The improved method has high
accuracy when merging high conflict information sources because of considering the
importance rating and credibility.
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Table 9. Classifier training results.

Evidence Level Precision Recall Specificity F1-Score Support

E1

I 0.62 0.5 0.89 0.55 16
II 0.74 0.68 0.83 0.71 25
III 0.56 0.6 0.84 0.58 15
IV 0.38 0.75 0.91 0.5 4

E2

I 0.6 0.56 0.86 0.58 16
II 0.68 0.6 0.8 0.64 25
III 0.53 0.54 0.84 0.53 15
IV 0.25 0.5 0.89 0.33 4

E3

I 0.67 0.5 0.91 0.57 16
II 0.75 0.72 0.83 0.73 25
III 0.69 0.73 0.89 0.71 15
IV 0.5 1 0.93 0.67 4

Table 10. Fusion results of the probability over classes for six samples.

Sample
Index

Classifier
Outputs

Probability
over Level I

Probability
over Level II

Probability
over Level III

Probability
over Level IV

Predicted
Label True Label Description

No. 1

E1 0.35 0.45 0.1 0.1 II I
E2 0.4 0.2 0.1 0.3 I I
E3 0.5 0.3 0 0.2 I I

K = 0.897, t = [0.5, 0.33, 0.6], r = [0.790, 0.707, 0.671]
D-S 0.68 0.26 0 0.06 I I

Improved D-S 0.5 0.3 0 0.2 I I

No. 2

E1 0.15 0.7 0 0.15 II II
E2 0.25 0.55 0.1 0.1 II II
E3 0 0.3 0.6 0.1 III II

K = 0.883, t = [0.5, 0.33, 0.6], r = [0.741, 0.790, 0.791]
D-S 0 0.9 0 0.1 II II

Improved D-S 0 0.8 0.2 0 II II

No. 3

E1 0.1 0.2 0.1 0.6 IV III
K = 0.968 > 0.95.
Only the result

of Improved
D-S is correct.

E2 0 0.2 0.8 0 III III
E3 0.2 0.6 0.1 0.1 II III

K = 0.968, t = [0.5, 0.33, 0.6], r = [0.763, 0.834, 0.892]
D-S 0 0.75 0.25 0 II III

Improved D-S 0 0.33 0.67 0 III III

No. 4

E1 0.06 0.6 0.2 0.14 II II
E2 0.08 0.52 0.3 0.1 II II
E3 0.04 0.1 0.5 0.36 III II

K = 0.862, t = [0.5, 0.33, 0.6], r = [0.801, 0.735, 0.834]
D-S 0 0.9 0.1 0 II II

Improved D-S 0 0.8 0.2 0 II II

No. 5

E1 0.1 0.1 0.65 0.15 III III
K = 0.9735 > 0.95.
Only the result

of Improved
D-S is correct.

E2 0.3 0.4 0 0.3 II III
E3 0 0.1 0.4 0.5 IV III

K = 0.9735, t = [0.5, 0.33, 0.6], r = [0.733, 0.685, 0.707]
D-S 0 0.15 0 0.85 IV III

Improved D-S 0.1 0.2 0.4 0.3 III III

No. 6

E1 0 0.18 0.2 0.62 IV IV
E2 0.1 0.3 0.5 0.1 III IV
E3 0.02 0.1 0.28 0.6 IV IV

K = 0.874, t = [0.5, 0.33, 0.6], r = [0.786, 0.779, 0.834]
D-S 0 0 0.2 0.8 IV IV

Improved D-S 0 0.05 0.15 0.8 IV IV

4. Discussion

There is no doubt that the single-source information assessment method can also assess
the risk of tunnel collapse. However, a single source of information does not fully reflect
the environment of tunnel construction, resulting in a certain deviation and low accuracy
of the assessment results. In order to compare the single information source method
and the multi-source information fusion method, the single information source model,
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the traditional multi-source information fusion method and the improved multi-source
information fusion method are used to evaluate the collapse risk. The risk assessment
of 60 tunnel sections in Wenbishan Tunnel is conducted, and the evaluation results of
different models are shown in Figure 6. In order to illustrate that the proposed method can
improve the high conflict evidence, the high conflict risk of YK223 + 473 tunnel section in
the fault zone is evaluated and analyzed. The two-dimensional scatter plot of traditional
evidence conflict and improved model evidence conflict is shown in Figure 7. The following
conclusions can be obtained:

(1) Figure 6 is the confusion matrix diagram of different models. The ordinate represents
the test results, the abscissa represents the real results and the numbers in the diagram
represent the number of tunnel sections. In Figure 6a, the total number of tunnel
sections is 60, which is the sum of all tunnel sections in the figure. In the figure, the
number 8 indicates that the number of tunnel sections with ‘risk prediction grade
I and actual grade I’ is 8. Similarly, the number 4 indicates that the number of
tunnel sections with ‘risk prediction grade II but actual grade I’ is 4. Therefore, the
number of tunnel sections with the same prediction level and the actual level can be
obtained by adding the numbers of the diagonals in the figure, that is, the number of
tunnel sections predicted by the model is correct. The ratio of the number of tunnel
sections to the total number of tunnel sections can obtain the prediction accuracy of
the model. The accuracy of Advanced Geological Prediction (Figure 6a) is 62% ((8 + 17
+ 9 + 3)/(8 + 4 + 3 + 1 + 3 + 17 + 3 + 2 + 2 + 2 + 9 + 2 + 0 + 0 + 1 + 3)). Similarly, the
accuracy of Field Inspection (Figure 6b) is 56%, the accuracy of Instrument Monitoring
(Figure 6c) is 68%, the accuracy of Traditional D-S (Figure 6d) is 73% and the accuracy
of Improved D-S (Figure 6e) is 88%.

(2) The accuracy of the single-source information evaluation method (Figure 6a–c) is less
than 70%, which cannot provide accurate decision-making suggestions for construc-
tion. The single information source method does not fully consider the risk factors
of collapse, making the assessment slightly biased. The accuracy of the traditional
D-S evidence fusion method is 73% (Figure 6d), which is slightly higher than that of
the single-source information evaluation method, but the accuracy is still low, and it
cannot provide accurate guidance for the construction site. As shown in Figure 6e, the
multi-source information fusion method has a high evaluation accuracy (88%). This is
because the multi-source information model comprehensively considers the advanced
geological forecast, on-site inspection and monitoring data, making the evaluation
model closer to the actual situation. At the same time, the proposed method considers
the importance and credibility, ameliorating the high conflict evidence, making full
use of the available information, and improving the accuracy of the evaluation results.

(3) The traditional D-S method and the proposed method are used to evaluate the risk
of section YK223 + 473 respectively. Taking the conflict threshold as the reference
value, the traditional D-S method (Figure 7a) has some evidence conflict values higher
than the threshold and are more discrete. After the proposed method (Figure 7b) is
identified and adjusted, the excess evidence conflict has been greatly improved, which
is basically below the threshold. In addition, the adjusted evidence conflict values are
relatively concentrated and less discrete. The analysis results further show that the
proposed method not only has higher recognition accuracy, but also can effectively
improve the high evidence conflict.
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5. Conclusions and Future Work

Based on the improved D-S model, a high-accuracy multi-source data fusion method
is proposed in this research, which can achieve accurate assessment of tunnel collapse risk.
In this method, the evidence conflict coefficient K is used as the identification index, and the
credibility and importance are introduced. The weight coefficient is determined according
to whether the conflicting evidence is divided into two situations. The advanced geological
forecast data, on-site inspection data and instrument monitoring data are trained by CM,
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GBDT and SVC, respectively, to obtain the initial BPA value. Finally, the identified conflict
evidence is adjusted by combining the weight coefficient, and the overall collapse risk
value is obtained by fusing the evidence from different sources. The methods developed in
this paper have the following innovations and capabilities:

(1) It can synthesize multi-source information to obtain a more accurate result for tun-
neling collapse risk assessment. Due to many influencing factors, the tunneling
collapse risk assessment is a multi-attribute decision making problem. Single-source
assessment methods have difficulty fully considering all risk factors, resulting in
biased prediction results. The performance of the fused model is better than the single
information sources model with higher precision.

(2) Compared with the traditional D-S theory, the improved method has more advantages
in dealing with high conflict information. When the risk assessment results of three
single information sources are inconsistent, the improved fusion model considers
the importance rating and credibility of the assessment results, which improves the
accuracy of the final assessment results.

The method proposed in this paper still has limitations. Experts still need to participate
in the entire assessment process, which means that a truly fully automated risk assessment
has not been achieved. The tunnel collapse training data set is still very small, and a big
data system needs to be developed nationwide. In addition, this method cannot predict the
risk status of the next construction process, and further research is needed.
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