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Abstract: The impact–echo method is a superior method for detecting the health of concrete struc-
tures, but it has the disadvantage of significant errors when identifying structural boundaries. In
order to overcome this limitation, this paper proposes a calculation method using a cross-sectional
vibration mode in combination with the impact–echo method to detect concrete columns. The
variation of the predominant frequency in the mid-column region and the critical boundary is stud-
ied. The influence of the edge on the detection results is analyzed. The differences in eigenvalues
under different cross-section vibration modes are revealed. A quantitative method for evaluating
concrete health using the impact–echo method is further established. Through field tests and finite
element simulation calculations, it was verified that the eigenvalues in the fixed mode are very
consistent with the predominant frequency measured near the edge region. This makes up for the
defect of inaccurate measurements when the impact–echo method is used to detect the edge area of
concrete members. The impact–echo method can be better used for the non-destructive testing of
concrete members.

Keywords: impact–echo; finite element simulation; dominant frequency; column edge

1. Introduction

When installing a frame column at a construction site, the reserved steel bar be-
tween the frame column and the floor may be uncompacted during the connection, re-
sulting in delamination defects, which in turn affect the overall safety performance of the
building [1,2]. Among the non-destructive testing techniques commonly used to evaluate
the structural conditions of concrete, the impact–echo (IE) method is an effective method
for detecting the internal working conditions of the concrete, the thickness of the steel
protective layer, the thickness of the slab, and the bonding conditions of the lower interface.
When the internal acoustic impedance of the concrete component is uniform, the compo-
nent can be regarded as a linear elastic, isotropic medium that will produce tensile and
compressive deformation. The IE method can detect concrete elements according to the
change of frequency, and the fundamental frequency obtained by vibration is converted
into the thickness of the member by the equation [3–8]. However, in the actual applica-
tion process, the detection results of the impact–echo method are greatly affected by the
boundary conditions. Therefore, this paper mainly studies the influence of the edge of the
measured object on the impact–echo without defects and material degradation.

Pospisil, K., has proven that the impact–echo method is more sensitive to reinforce-
ment conditions. The dominant frequency displacement obtained through fast Fourier
transform corresponds to the change of steel bars in concrete beams. Studies have shown
that steel damage or fracture affects the predominant frequency. Therefore, in the finite
element simulation, the influence of the steel bar on the model needs to be considered [9].
Kee, S.H., et al. proposed in their study that the water or harmful materials in concrete
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causes various durability problems by reducing the stiffness of concrete. In addition, they
can cause certain defects or delaminations in concrete members. These factors affect the
accuracy of the impact–echo method. Therefore, when designing the test, it is necessary to
supervise the site to ensure that the test components meet the required standards during
the pouring process and eliminate the possibility of internal defects [10]. Xiangyang Xu
analyzed a series of high-order vibration modes of thin-walled beams. Analyzing high-
order vibration modes in these structures requires more accurate and precise methods. The
overall vibration modes related to the deformation of rigid sections, such as bending and
torsion, can be detected through classical and shear refinement theories [11,12]. Lee, C.,
proposed that in practice, vibration sensors (such as displacement sensors, accelerometers,
and microphones) are located near the tapping point to measure the dynamic response
of the object. The measured transient time signal reveals the maximum (peaks) of certain
frequencies dominated by non-propagating waves (or resonance modes) via Fourier trans-
form (amplitude spectrum). The interpretation of non-propagating waves is an important
process in IE data analysis. The fundamental thickness stretch mode normally dominates
the spectral response of a plate if there are no near-surface defects, such as cracking, debond-
ing, and honeycombs, in the concrete [13]. In the process of test and simulation detection,
the predominant frequency detected in the middle of the column is the eigenvalue of the
fundamental thickness stretch mode of the column.

When the impact–echo method is used to detect the concrete columns, the predominant
frequency within a specific range from the edge has a low-frequency offset. In this paper,
the two-dimensional cross-section of the concrete column is simulated using the finite
element method to determine whether the predominant frequency under the influence of
boundary conditions was related to the eigenvalue change of the cross-section vibration
mode [14–19]. By analyzing the signals collected at the boundary of the concrete column,
it was found that the decrease in the dominant frequency was related to the torsional
deformation of the column. Currently, the sensor does not identify the thickness frequency
of the concrete column but the eigenvalue under the fixed mode.

2. Background
2.1. Principle of Impact–Echo Method

The impact–echo method is a non-destructive testing method that uses transient
impact to excite low-frequency stress waves to propagate the inside of the object to be
tested. The generated P and S waves propagate along the hemisphere wavefront inside
the structure, and the R wave propagates on the surface of the structure to be measured.
During the propagation of stress waves, reflections occur when significant defects are
encountered in the medium [20]. The transient resonance caused by reflection changes the
displacement of the surface of the structure to be measured, and then the signal generated
by the resonance is received by the sensor near the impact point. Usually, the signal that
the sensor is able to receive is generated by P waves. The displacement waveform signal
with periodic property is obtained by signal amplification, and then the time-displacement
signal can be converted into amplitude spectra via fast Fourier transform (FFT) [21]. The
dominant frequency in the amplitude spectra reflects the thickness or internal defect of the
structure. The specific location of the thickness or defect of the structure can be calculated
using the following formula [22,23].

f =
βk
n

CP
T

(1)

where

CP =

√
E(1 − ν)

ρ(1 + ν)(1 − 2ν)
(2)

k is the geometric correction coefficient; T is the cross-sectional thickness of the struc-
ture; n is a constant that depends on the acoustic impedance and generally takes 2 or 4 [24];
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β is a correction coefficient with a value range of 0.75~0.96; CP is the longitudinal wave
velocity; and E, ρ, and ν are the elastic modulus, density, and Poisson’s ratio of the test
object, respectively [25,26].

2.2. Experimental Verification

This section examines the impact–echo test of the concrete column carried out via a
field test to verify the phenomenon of the deviation of the predominant frequency and
determines the influence range of the boundary to provide experimental support for the
subsequent numerical simulation.

The boundary region was detected using SPC-MATS and impact–echo instruments, as
shown in Figure 1, respectively. The test was based on the theory of stress wave propagation.
During the test, the excitation signal was generated at the excitation point of the steel ball
with a diameter of 17 mm. The sensor received the signal of the surface particle vibration,
amplified it in the signal amplifier, and transmitted it to the instrument host. The analog
signal was converted into a digital signal. The received signal was processed by analytical
software to obtain the predominant frequency of the impact signal at different distances
from the boundary. During the test, the acquisition time of the instrument was 8.192 ms,
the sampling interval was 2 µs, the number of acquisitions was 4096, and the acquisition
frequency was set to 500 kHz. The test instruments used the data acquisition system to
receive the voltage signal generated by the vibration of the small steel ball on the surface of
the component to be tested by the sensor. Therefore, the sensor should be in complete and
stable contact with the surface of the component to be tested.
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Figure 1. (a) SPC-MATS instrument; (b) impact–echo instrument.

In this paper, in order to facilitate the study of the frequency offset phenomenon of
concrete columns under boundary conditions, the band tape was used to detect the line
at the edge. A survey line was arranged at the edge every 1 cm from the middle of the
column to the edge. The direction of the survey line was perpendicular to the ground, and
each survey line was numbered in turn using numbers 1, 2, and so on, as shown in Figure 2.
The concrete density was 2400 kg/m3, the elastic modulus was 3.25 × 1010 Pa, and the
Poisson’s ratio was 0.2 (The concrete strength grade is C40). Since the test site was at a
construction site, both ends of the column were fixed between the floor and the foundation.

2.3. Numerical Models

Because in the actual detection process, the knock position, the sensor placement
position, and the intensity of each knock are slightly different, it affects the received signal.
Therefore, it is necessary to carry out numerical analysis to understand the transient impact
response of the concrete column. The strain generated by the shock wave on the concrete
surface is deficient. Therefore, the linear elastic material model suits concrete with low
strain levels. In the impact–echo test, the excitation of the stress wave is generated by a
small steel ball (17 mm in diameter) falling onto the surface of the concrete. In this paper,



Appl. Sci. 2023, 13, 5590 4 of 12

to accurately simulate the actual impact load, ABAQUS/Explicit was used to simulate
and analyze the transient impact process of a steel ball falling from a certain height on
the surface of a concrete column (in the simulation, the falling process of a steel ball
was simplified as a semi-periodic harmonic force [27]). The displacement of particles on
the surface of concrete members was collected near the impact point so as to obtain the
propagation information of stress waves in concrete members. On this basis, the time
domain diagram of the harmonic motion was transformed into a frequency spectrum
diagram via fast Fourier transform (FFT) for specific analysis. In this paper, the response
of stress waves under the boundary condition of the concrete column is studied and the
influence of boundary conditions on the signal is discussed. The ABAQUS finite element
simulation was used to simulate the signal received by the signal sensor when the steel
ball was knocked near the boundary of the concrete column, then the signal was extracted
by Origin software to perform Fourier transform in order to obtain the spectrum diagram,
and the change in its predominant frequency was analyzed. The impact form is shown in
Formula (3).

F(t) =

{
Fmax sin

(
πt
tc

)
0 ≤ t ≤ tc

0 t > tc
(3)

The maximum simulated concentrated force was 30 N. The duration of shock action
was calculated by the formula (12–74 µs) [28,29]. The signal was collected every 2 × 10−6 s,
and the corresponding sampling frequency was 500 kHz. The maximum effective frequency
generated by the small steel ball was about 17.1 kHz because the density of concrete was
2400 kg/m3, the elastic modulus was 3.25 × 1010 Pa, Poisson’s ratio was 0.2, the wave
velocity calculated by Formula (2) was 4000 m/s, and the wavelength was approximately
23.39 cm when calculated. Then, according to Formula (4), the maximum mesh size was
estimated to be 10 mm. The unit type was C3D8R, where C is the entity, 3D represents
three dimensions, 8 is the number of nodes of the unit, R is the reduced integral unit, and
the grid is divided by sweeping.

Lmin ≤ λmin
20

(4)

The end surfaces of concrete columns often cause many frequency peaks to appear in
the spectra of the simulation results, and this is because a reflection phenomenon occurs
when the stress wave reaches the end surface of the concrete column during the propagation
process. This paper creates an infinite element on the end surface of the concrete column,
extending the column’s end surface infinitely so that the waves inside the member are
not affected by the influence of the end surface. At the edge, 5 cm is used as the node for
impact, from the middle of the column to the boundary, and 5 cm above the impact point is
used as the signal receiving point. When entering the mutation range, the node accurately
arranges an impact point for each 1 cm. The model is shown in Figure 3.
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3. Impact Response of Concrete Column
3.1. Experimental Result

In the experiment, the time history curve data obtained in the middle of the column
and the data obtained at the boundary were Fourier transformed by the computer to obtain
the dominant frequency corresponding to the column and the edge. The specific results are
shown in Figure 4:
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Table 1 shows the test results of concrete columns via the SPC-MATS and impact–
echo methods, respectively. After analyzing the collected signal, the typical dominant
frequencies in the influence range of the column and the boundary were compared. From
the analysis of the test results, it can be seen that the predominant frequency in the middle
of the concrete column is 2.686 kHz, and the dominant frequencies at the edge are 2.563 kHz
(impact–echo) and 2.441 kHz (SPC-MATS). When the two instruments detect the concrete
column’s edge area, the predominant frequency’s value decreases. As the acquisition point
is closer to the central area of the column when the acquisition point crosses a specific
node, the predominant frequency mutates. This is because when the collection point is
located in the edge area of the column, the tapping causes the column to undergo torsional
deformation. When the collection point is closer to the middle area of the column, it
is converted to the bending deformation of the column. The sensor records different
modal frequencies.

Through the above test results, it can be seen that the edge causes inevitable in-
terference in impact–echo detection. When the acquisition point is located in the edge
area, the predominant frequency corresponds to the dominant frequency generated by
torsional deformation. When the acquisition point is located in the middle of the col-
umn, the predominant frequency corresponds to the dominant frequency generated by
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bending deformation. In order to determine the influence range of the edge on the predom-
inant frequency, it is necessary to further use the finite element software to simulate each
working condition.

Table 1. Comparison of typical dominant frequencies of the edge test results.

Edge Distance (cm) 1 10 19 20 The Middle of the Column

Impact–echo measured value (kHz) - 2.563 - 2.686 2.686

SPC-MATS measured value (kHz) 2.441 2.441 2.686 2.686 2.686

3.2. Edge Simulation Results

In order to study the transient response of concrete frame columns under point impact,
a three-dimensional finite element simulation was carried out. During the analysis, a
dynamic load was applied at the edge of the column and the predominant frequency
obtained by the analysis at the receiving point was compared with the predominant
frequency in the central region of the column.

The time history curve and predominant frequency of the central region of the column
obtained were via simulation. The results are shown in Figure 5:
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As can be seen from Figure 4, the simulated predominant frequency of the middle part
of the concrete is 2.563 kHz. To further study the influence of the edge on the dominant
frequency, the acquisition points were set up every 5 cm from the column to the edge for
the application of the load and the acquisition of the signal, and the results are shown in
Figure 6:
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The simulation position is impacted at different positions from the edge, and the
spectrum analysis results are as follows:

Table 2 shows that the simulation results are divided into two parts after analysis. In
the range of 1–15 cm from the edge, the predominant frequency of the signal acquisition
point was 2.319 kHz, which was lower than the predominant frequency of the central region
of the column. When the distance from the edge is 20–35 cm, the predominant frequency
of the signal acquisition point changed from 2.319 kHz to 2.563 kHz and then remained
unchanged. Interestingly, the amplitude corresponding to the dominant frequency also
changed. This was because the column was subjected to torsional deformation at the edge.
At this point, the impact energy was only absorbed by the column angle, the bending
deformation was large, and the amplitude was at its highest level. If the tapping point is
located in the middle of the column, the mass of the column absorbs the impact energy
and the bending deformation remains small, so the amplitude is low. Therefore, when the
predominant frequency is at a low frequency, the amplitude decreases with the increase in
distance. When the striking point is located in the middle of the column, the amplitude
increases with the distance. Preliminary simulation showed that the frequency mutation
was located 15–20 cm from the edge. Combined with Table 3, the variation of predominant
frequency and amplitude in this range was analyzed. When the distance from the edge was
14~18 cm, the predominant frequency of the signal acquisition point was still low. When the
distance from the edge was 19~21 cm, the frequency of the signal acquisition point became
the dominant frequency in the middle of the column. At the same time, the amplitude
corresponding to the main frequency also changed. Based on the above two tables, it can
be seen that for 700 × 700 mm concrete columns, when the impact–echo method is used
to detect at 19 cm from the edge, the predominant frequency changes, and the amplitude
carried by the low frequency gradually decreases with the distance from the edge. The
amplitude accepted by the high frequency increases with the distance from the edge.

Table 2. The edge collects signal analysis results from every 5 cm.

Distance (cm) 1 5 10 15 20 25 30 35

Frequency (kHz) 2.319 2.319 2.319 2.319 2.563 2.563 2.563 2.563

Amplitude (10−6 m) 0.515 0.305 0.186 0.154 0.163 0.173 0.181 0.183

Table 3. The edge collects signal analysis results from every 1 cm.

Distance (cm) 14 15 16 17 18 19 20 21

Frequency (kHz) 2.319 2.319 2.319 2.319 2.319 2.563 2.563 2.563

Amplitude (10−6 m) 0.159 0.154 0.149 0.145 0.141 0.146 0.163 0.165
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3.3. Cross-Sectional Mode

The above experimental results show that the measurement accuracy is biased when
the impact–echo is within the influence range of boundary conditions. This is because the
transient response excited by the impact–echo is composed of multiple resonance frequen-
cies caused by the cross-sectional vibration mode. The echo response from the concrete
column is mainly controlled by the wave propagating in its cross-section. Various reflec-
tions and interferences produce cross-sectional vibration modes with different frequencies.
The sensor accepts the natural frequency excited by the ball in different modes. During
the test, the experimenter has different frequencies received by the sensor because of the
sensor’s different placement and the impact force of the hammer on the measured object.
At this point, the excited wave is also affected by the boundary, resulting in a deviation
between the measurement accuracy and the amplitude. The corresponding vibration mode
is excited when the specified frequency is one of the structure’s natural frequencies.

It has been shown that the response of a rod subjected to a short-term transverse
impact consists of frequencies corresponding to the cross-sectional vibration pattern of
the rod [30,31]. In the case of concrete columns, it is shown that the boundary response
also consists of multiple natural frequencies associated with the vibration pattern. The
eigenvalue analysis of the two-dimensional finite element model of the concrete column
were used to obtain the vibration mode and the corresponding natural frequency. The
plane strain finite element model can be used to solve the cross-section mode shape and the
corresponding eigenvalues. In the case of two-dimensional cross-section concrete columns,
the signal response is also composed of multiple natural frequencies related to the vibration
mode. The numerical model uses linear elastic and isotropic material properties to simulate
the working conditions of the cross-section of the concrete column. When there are steel
bars in the model, the measured dominant frequency is the same as that of the dense
concrete with the same thickness. The reflection frequency generated by the interface
between concrete and steel bars cannot be identified. This phenomenon is mainly due to
the limited interface of the steel bars and the curved shape, resulting in weak echo reflection
intensity. Therefore, in the finite element simulation, the influence of steel bars is small
and can be ignored, except for large-diameter steel bars and exposed bars. The density,
elastic modulus, and Poisson’s ratio were 2360 kg/m3, 30,000 MPa, and 0.2, respectively.
The longitudinal wave velocity was 4000 m/s. The following is the analysis results of the
cross-sectional eigenvalues of concrete columns.

Figure 8 shows the shapes and eigenvalues of the two main cross-sectional modes
of concrete columns. The shape coefficient for a square cross-section was usually 0.87,
and n was 2. The predominant frequency calculated by the Formula (1) was 2.5 kHz.
Consistent with the simulation results and compatible with the modal two eigenvalues.
It can be seen that when the acquisition area is located at the center of the column, the
predominant frequency obtained by the analysis is the eigenvalue corresponding to Mode
2 in the cross-section vibration mode. At this point, wave propagation is not affected by the
boundary.
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When the acquisition area is located in the influence range of the edge, the finite
element simulation result is 2.391 kHz, which conforms to the eigenvalue corresponding to
mode one. According to the above research, the predominant frequency in the middle of
the column, the second eigenvalue of the mode, is taken as the primary frequency f 0. The
eigenvalue of the first mode is 0.9 f 0.

4. Result Validation

The column size in the above test and simulation was 700 × 700 mm. In order to verify
that the reduction of predominant frequency is a common phenomenon in the edge region
of concrete columns and to determine the relationship between the region’s influence range
and the column’s size, concrete columns with cross-section sizes of 400 × 400 mm and
1000 × 1000 mm were simulated and calculated. Table 4 is the detection data of the
400 × 400 mm column. The frequency change trend is shown in Figure 9.

Table 4. The edge collects signal analysis results from every 1 cm (400 × 400 mm).

Distance (cm) 4 5 6 7 8 9 10 11

Frequency (kHz) 4.027 4.027 4.027 4.027 4.027 4.515 4.515 4.515

Amplitude (10−6 m) 0.420 0.397 0.374 0.352 0.328 0.311 0.318 0.326
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According to the analysis results of the receiving point signal, when the impact is loaded
at each interval of 1 cm in the range of the 400 × 400 mm column distance edge mutation,
the predominant analytical frequency of the signal at 4–8 cm from the edge is 4.027 kHz and
the predominant analytical frequency of the signal at 9–11 cm from the edge is 4.515 kHz.
The mutation point is 9 cm from the edge. Within this range, the amplitude of frequency
4.027 kHz gradually decays from 0.420 × 10−6 mm to 0.328 × 10−6 m, and the amplitude of
frequency 4.515 kHz gradually increases from 0.311 × 10−6 m to 0.326 × 10−6 m. It can be
seen that the frequency 4.027 kHz offset range of the 400 × 400 mm column is 1–8 cm from
the edge, and the amplitude carried by the frequency gradually decreases with the increase
in the distance from the edge. The frequency amplitude of 4.515 kHz gradually increases
with the distance from the edge, and finally, the predominant frequency tends to be stable.

Table 5 is the detection data of the 1000 × 1000 mm column. The frequency change
trend is shown in Figure 10.

When the 1000 × 1000 mm column is impacted at each interval of 1 cm from the
edge mutation range, the predominant analytical frequency of the signal at the distance of
24–27 cm from the edge is 1.709 kHz, the predominant analytical frequency of the signal
at the distance of 28–31 cm from the edge is 1.831 kHz. The mutation point is 28 cm from
the edge. In this range, the amplitude carried by the low-frequency 1.709 kHz gradually
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decreases from 0.145 × 10−6 m to 0.135 × 10−6 m, and the amplitude carried by frequency
1.831 kHz gradually increases from 0.132 × 10−6 m to 0.136 × 10−6 m. It can be seen
that frequency 1.709 kHz offset range of the 1000 × 1000 mm column is 1–27 cm from the
edge, and the amplitude carried by frequency gradually decreases with the increase in the
distance from the edge. The amplitude carried by frequency 1.831 kHz gradually increases
with the distance from the edge, and finally, the predominant frequency tends to be stable.
Figure 11 shows the edge influence range of two different sizes of concrete columns.

Table 5. The edge collects signal analysis results from every 1 cm (1000 × 1000 mm).

Distance (cm) 24 25 26 27 28 29 30 31

Frequency (kHz) 1.709 1.709 1.709 1.709 1.831 1.831 1.831 1.831

Amplitude (10−6 m) 0.145 0.143 0.139 0.135 0.132 0.133 0.135 0.136
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According to the simulation of the above three different section sizes of concrete
columns, the influence range of the edge region can be judged. When the striking point is
located within the scope of the edge influence distance, the predominant frequency of the
receiving point signal produces a low-frequency offset phenomenon within this distance,
which will cause errors in the actual test. The frequency mutation occurs at a particular
position as the distance between the striking point and the edge moves further away. Then,
the predominant frequency tends to be stable. For concrete columns with different widths,
when the tester uses the impact–echo method to detect the width of the concrete column
in the range of 0.23 to 0.28 times, the phenomenon of predominant frequency reduction
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occurs. An actual field test should avoid a range detection of 0.3 times thickness, as at this
point, it no longer causes the phenomenon of predominant frequency reduction.

5. Conclusions

According to the research, when the impact–echo method is used to detect concrete
columns, the analytically obtained predominant frequency is affected by the edge and the
frequency value is reduced. In this paper, to determine the influence range of the edge, the
method of field test combined with numerical simulation was used to analyze the frequency
under relevant working conditions. The vibration mode of the square cross-section was
simulated using the plane strain finite element model, and the natural frequency of each
mode was calculated to further explain the influence of the boundary on the predominant
frequency. Through the above research, the main conclusions are as follows:

(1) When the impact point is located in the edge region’s influence range, the predominant
frequency’s value decreases. When the impact point is farther away from the edge, the
predominant frequency returns to the normal level and the predominant frequency is
related to the width of the concrete column.

(2) When the impact–echo method is used in the actual detection, when the detection area
is located at 0.3 times the width of the measured object, in addition to considering the
influence of the internal defects of concrete and the dominant frequency of material
degradation, it is also necessary to consider the influence of the component boundary
on the detection results.

(3) Through the plane strain finite element simulation, the dominant frequency at the
edge is 0.9 times the thickness frequency. The dominant frequency is the natural
frequency corresponding to the specific mode under the cross-section. When the
distance between the acquisition point and the edge of the concrete column becomes
larger, the influence of the edge is also reduced and the dominant frequency is restored
to the thickness frequency corresponding to Mode 2.
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