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Abstract: The swelling pressure of bentonite changes dramatically due to diffused nuclear radiation
heat and underground osmosis, causing the failure of the buffer isolation layer in deep geological
repositories for the disposal of high-level radioactive waste. A detailed overview of the relevant
research results on the swelling pressure variation of bentonite under thermo-chemical effects is
presented in this paper. The results showed that the values of the swelling pressure obtained by
different test methods are dissimilar. The swelling pressure of bentonite decreased with the increasing
pore solution concentration; nevertheless, the effect of temperature on the swelling pressure is still
controversial. At the micro-level, crystal layer swelling and double- layer swelling are generally
considered to be the main factors affecting the swelling pressure; the pore structure and water
distribution of bentonite will change owing to thermo-chemical effects. At the macro-level, involving
intergranular stress, a mechanical parameter was proposed to explain the mechanism of the changes
in the swelling pressure of bentonite. Finally, future research directions for the study of the evolution
of bentonite swelling properties under thermo-chemical effects are proposed, based on the current
research results.

Keywords: thermo-chemical; swelling pressure; test methods; microscopic properties; intergranular
stress

1. Introduction

With the rapid evolution of nuclear energy, a large amount of high-level radioactive
waste (HLW) has been produced [1]. Disposing of this high-level radioactive waste safely,
in an environmentally friendly way, and effectively for a long time has become a major
problem that requires urgent solutions worldwide. At present, the most effective and
feasible method of disposal of HLW is deep geological disposal, which requires choosing a
suitable site (crust with poor water content, good stability, far from human activity zones,
etc.) to set up an engineering barrier, buffering and sealing the tanks containing HLW in a
deep geological repository at a depth of 500–1000 m from the surface to prevent the waste
from being transported to the biosphere in case of a spill [2]. Bentonite, which contains a
large amount of montmorillonite, is internationally recognized as a buffer/backfill material
for the deep geological disposal of HLW due to its characteristics of low permeability, large
swelling, strong adsorption, and good thermal conductivity [3,4]. Furthermore, bentonite
not only has the important characteristics of buffering and backfilling, but also has the
advantages of low cost, wide distribution, easy mining, and easy processing; so, it has
become the preferred buffering backfilling material around the world. In China, Gaomiaozi
bentonite produced in Xinghe County, Inner Mongolia, was selected preliminarily as the
base material for buffering/backfill material [5,6].

Bentonite is in an unsaturated state after the construction of deep geological reposi-
tories. As the groundwater level rises, the compacted bentonite absorbs water (solution)
undergoing an expansive deformation that can tightly enclose the waste tank and fill the gap
between the buffer material and the surrounding rock mass, fully blocking the surrounding
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rock and the waste tank. In the meantime, a sufficiently large swelling pressure under
almost constant volume conditions can improve the sealing efficiency of bentonite [7–9],
which is the main governing factor for the stability of subsurface structures. However, the
near-field chemical conditions are complex during the operation of an HLW repository [10],
as bentonite draws water from the surrounding rock and becomes gradually saturated
due to subsurface infiltration. This will result in changes in the chemical concentration
of bentonite pore water. Moreover, the temperature in the repository will be changed on
account of the diffuse nuclear radiation heat. In the long term, problems such as the loss
of bentonite’s swelling properties may arise. Therefore, the study of bentonite’s swelling
performance under coupled chemical and temperature gradients field conditions is a crucial
issue for the safe operation of nuclear waste repositories.

The swelling characteristics of compacted bentonite have been extensively investigated
by scholars in the past decades. Focusing on this theme, this paper systematically describes
the progress and limitations of the studies on bentonite swelling pressure under the effect
of thermochemistry, with regard to the experimental test methods, the law and mechanism
of swelling pressure variations under the influence of pore solution concentration and
temperature, etc. On this basis, an outlook of future research developments to understand
the influence of thermo-chemical effects on bentonite swelling pressure is provided.

2. Test Methods for Swelling Pressure

The swelling pressure can be measured by different methods, but different test meth-
ods produce different swelling pressure values [9,11,12]. It should be emphasized that
it is ideal to think of the swelling pressure as the pressure measured when bentonite is
wetted under the condition of limited volume [13]. The constant volume method, con-
stant load method, and paired swell test (PS-test) were proposed to measure the swelling
pressure [14].

The constant volume method for measuring the swelling pressure is based on strain
control techniques [15,16] including the zero-swell test and the direct method. The main
difference between the two approaches is that the latter measures the swelling pressure
directly using a pressure transducer, such as the S-type load cell shown in Figure 1. The
zero-swell method prevents the specimen from expanding by applying a vertical stress,
which is generally around the year 2000 [11,17]. It is challenging to guarantee optimal
swelling readings and constant volume conditions during the test, and the soil pressure
is very sensitive to load increments during the test [9,18], especially in the zero-swell
test [14]. Furthermore, the swelling pressure will be overestimated due to the friction
between the specimen and the consolidator ring during the recovery of the specimen to
the initial volume [9]. In spite of this, the value measured with the zero-swell method is
only one-third of the value measured with the swelling reloading test [9,17]. The reason
is that the soil particles in the swelling reloading test are sufficiently hydrated, especially
under low load conditions, whereas soil particle swelling is restricted and hydration is
not sufficient in the constant volume method. Large errors with the direct method are
due to the device’s characteristics, including the stiffness of the sensor [19,20], and the
corresponding swelling pressure error can reach a maximum of 1–2 MPa [9].

The constant load test methods include the swell-consolidation test and the double
consolidation test. The swell-consolidation method involves compressing the specimen
after free swelling for 24 h until it returns to its initial state of porosity or height, which is
typical of the constant load method [14]. The swelling pressure is the pressure necessary
for the sample to return to its initial height [11], similarly to the swelling pressure of the
free-swelling method. The difference between the swell-consolidation method and the
swell-reload method is that the latter applies compression to the specimen in steps, with
an interval of 24 h between each step [9], which ensures the full swelling of the specimen
and also increases related errors such as friction; the swelling pressure is the vertical stress
required to restore the specimen to its original state. The “extra” macroscopic void fraction
generated during the initial swelling at low pressure results in higher swelling pressure
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measured by the swell-consolidation method compared to the constant volume method [21].
The double consolidation test was performed on two samples, one of which was wetted,
swollen and completely submerged, and its maximum expansion was recorded after 24 h
of expansion, while the other was compressed at natural moisture content, and the amount
of compression was equal to the swelling of the wetted sample; the vertical stress was
defined as the swelling pressure [14]. Apparently, the constant load method is constrained
by the free-swelling method [14]. The values measured by the double consolidation test are
significantly higher than the values obtained by the free swelling test [22].
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Figure 1. Schematic view of the experimental setup using a constant-volume cell, according to [14].

The PS-test is a simple, reasonable, and reliable swelling test based on the improvement
of the loading of the tested specimen; its validity has also been confirmed by other numerous
tests. Its most important advantages are that it does not require a complicated setup or
design, uses conventional consolidation equipment, and does not need the provision of
constant volume conditions. On the other hand, the disadvantage is that two samples are
needed at the same time. The principle is that the response of one specimen is used to
refine the load step of the second specimen and that a small incremental load-controlled
swelling does not cause excessive water absorption in the soil specimens [14].

Many optimization test schemes were proposed according to the different properties
of the above-mentioned test methods. For example, as early as in 1975, Bishop et al. [23]
proposed a triaxial instrument that could directly measure the vertical swelling of a sample
in a hydraulic triaxial stress path cell; it could predict the swelling potential of the soil
under test better than the consolidation test method [11]. A new constant-volume sensor,
developed by Tang et al. [9], could measure the swelling pressure without both any strain
adjustment and the influence of test equipment stiffness, thereby reducing the measurement
errors (Figure 2). To reduce diaphragm deformation under external pressure, a mercury-
filled pore gap is introduced below the diaphragm in the BER-A-58S pressure sensor utilized
in the upper portion. The upper-pressure transducer is in contact with the upper surface of
the sample for the direct measurement of the swelling pressure. Figure 3 shows the diagram
equipped with this pressure transducer used with the constant volume method without
manual load adjustment, which makes it very convenient for monitoring the long-term
changes in swelling pressure.
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Accuracy, directness, simplicity, and long-term monitoring have become important
criteria for selecting a test method. In addition, the different loading and wetting conditions
used by a method will also cause the achieved swelling pressure to behave differently [11].
For instance, at constant volume, the swelling pressure is surprisingly reduced after wetting
in soil subjected to a high initial vertical stress [9].

In recent years, microstructural investigations of the bentonite swelling pressure have
clarified the causes of swelling pressure variation in relation to the test method. It was
shown that similar swelling pressures obtained by different tests depended on their similar
micro- or macro-porosity. The swelling pressure will show a good consistency, independent
of the test method, when the samples are wetted under a sufficiently high vertical stress [21].
In general, the constant volume test is still the most commonly used method in current
research [24–26].

3. Influence of Thermo-Chemical Effect on the Swelling Pressure

This review mainly discusses the changes of the swelling pressure from the perspective
of crystal layer swelling and double electric layer swelling in the presence of salt solutions
and in different temperature conditions, almost ignoring the influence of mineral alteration
during this process.

Generally, the crystalline-layer swelling mechanism involving the internal minerals
and the diffusive double-layer swelling mechanism involving the mineral particles are
considered to be the main swelling mechanisms of bentonite [27] and are commonly
considered to analyze the changes in swelling pressure in complex environments [28].
As shown in Figure 4, the wedging of water molecules into the crystalline layers leads
to the crystalline layer swelling. The swelling changes from crystalline-layer swelling to
double-electric-layer swelling when the number of water layers in the crystalline layers
reaches a certain value [27,29,30]. Both swelling mechanisms are referred to as interlayer
swelling. Interlayer swelling above 22 Å is associated with double-layer swelling, and
interlayer swelling between 10 and 22 Å is associated with crystalline layer swelling
caused by the adsorption of water molecules and is determined by the layer charge of clay
minerals, exchange cations, and the attraction between water molecules and polar surface
groups [31–34]. The crystalline layer interval and the thickness of the diffusion double layer
are essential factors in the study of the magnitude of the swelling pressure, and changes in
temperature and pore solution can lead to changes in both, thus affecting the magnitude of
the swelling pressure.
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3.1. Effect of the Pore Salt Solution Concentration on the Swelling Pressure

Studies have shown that the increase of the pore solution concentration leads to a
decrease in bentonite expansibility [3,36,37]. Different types of solutions have different
effects on the swelling pressure of bentonite.

The concrete material in an HLW repository is gradually degraded during the inter-
action with pore water producing an alkaline solution, while montmorillonite, the main
mineral component of bentonite, is dissolved gradually by the alkaline solution [38,39].

As shown in Figure 5, GMZ01 bentonite with a montmorillonite content up to 75.4%
was tested for its constant-volume swelling pressure in the presence of different saline
solution concentrations and types of infiltration, while maintaining the temperature at
20 ± 1 ◦C [26]. According to the classical double- layer theory, increasing the solution
concentration will inhibit the swelling of the double layer [40], and the thickness of the
diffusion double layer is inversely proportional to the square root of Na+ concentration [16].
Therefore, high-concentration saline solutions will reduce the repulsive force between the
particles, leading to a decrease in the swelling pressure. It is obvious that the ion types, Ca2+

and Na+, had similar effects on the swelling pressure at low concentrations, but when the
concentrations were greater than 0.5 M, the inhibition of the swelling pressure of bentonite
by Ca2+ was not so obvious compared to that induced by Na+. A greater base spacing
of Ca-based montmorillonite under constant volume conditions was reported [41], and
Chen et al. [42] suggested that Ca2+ replacement changed the pore fabric characteristics,
leading to a greater crystalline-layer swelling deformation. However, with regard to
the diffusive double-layer swelling, the Gouy-Chapman model [43,44] suggested that
the higher the electrolyte valence type and the electrolyte concentration, the smaller the
double-layer thickness.

Several researchers attribute the greater swelling pressure in the presence of Ca2+ to
the fact that its action produces larger and thicker particles [45], and the bilayer effect is not
so pronounced; so, bentonite has greater mechanical strength and greater swelling pressure.

As shown in Figure 6, where the effect of temperature was ignored, the constant-
volume swelling pressure test was performed on GMZ Na–bentonite with 75.4% bentonite,
initial water content of 11.92%, dry density of 1.7 Mg/m3; the swelling pressure curve
showed three phases [24]. Analogously, when the dry density was high, 1.7 Mg/m3, and
the initial water content was relatively low, i.e., 10.76%, the swelling process under the
action of the saline solution comprised three stages: firstly, crystalline swelling, followed
by the breakup of quasicrystals, and then double-layer swelling [26]. The first stage was
characterized by a rapid increase in the swelling pressure, marked by increased interlayer
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cation hydration, and as the cation concentration continued to increase, water molecules
within the crystals left the crystal layer, which gradually inhibited the swelling of the crystal
layer [46]. The second stage was the transition from crystalline to permeable swelling, with a
small decrease in the swelling pressure due to the swelling of soil particle agglomerates and
the collapse of the soil skeleton, which was manifested by the splitting of thick quasicrystals
into fine quasicrystals and the filling of large pores (inter-agglomerate pores). The third
stage was the double-layer swelling stage, where the swelling pressure increased again,
and the crystalline swelling became less pronounced; for specimens infiltrated with the
salt solution or distilled water, the final swelling pressure in this stage was maintained in
equilibrium [47].
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Zhang et al. [48] proposed to distinguish the two swelling mechanisms by the pore
ratio. Similarly, ignoring the temperature change, the swelling pressure of GMZ01 bentonite
with 75% montmorillonite content was investigated, and the combined effect of double-
layer swelling and crystal-layer swelling was distinguished from the swelling caused by
the crystal-layer swelling effect with a critical pore ratio of 0.41. In the case of low porosity
(less than 0.41), a diffusion double layer could not form [49], and the swelling pressure
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increased with the increasing concentration but was not particularly pronounced. Thus,
the swelling pressure could be explained by the theory of crystalline-layer swelling with
increasing cation valence, on the basis of which, Ca2+ will lead to a greater crystalline-layer
swelling compared to Na+ [42]. The swelling pressure increased with the increasing pore
solution concentration for pore ratios less than 0.5 [50]. Combined with the above analysis,
this stage was considered to be the crystal-layer swelling control stage, and the swelling
pressure was almost generated by the swelling between the crystal layers.

The above study investigated the variation of the swelling pressure from the perspec-
tive of the pore ratio under the action of two swelling mechanisms, while some studies
further analyzed the reasons for the variation of the swelling pressure from the perspective
of the variation of soil–water interfacial forces. For illustration purposes, the concepts of
accumulated wedging pressure (AWP) and dissipated wedging pressure (DWP) were used
to determine the development of the swelling pressure in terms of the competition between
the two pressures [35].

The wedging pressure results from the wedging of water molecules into the interlayer
of montmorillonite, interparticle swelling, and the competition between the dissociation
of the initially accumulated montmorillonite layer and aggregated particles, due to the
continuous entry of water molecules and the deformation, damage, and dislocation of
the bentonite block, leading to pressure dissipation. It manifests as small pore formation
and large pore collapse when the latter process predominate [51]. The concept also links
the flatness of the pore structure to the ultimate stabilization of the swelling pressure, the
essence of which remains inseparable from the swelling mechanism of the mineral crystal
layer and the interparticle double layer.

3.2. Effect of Temperature on the Swelling Pressure

Elevated temperatures can have an impact on bentonite and its engineering properties.
For example, simulations of high-discharge waste disposal in China have shown that
thermal swelling and saturation processes may affect a tank stability for long periods [52],
as higher temperatures can provoke montmorillonite dehydration [53]. The effect of
temperature on the swelling pressure is highly controversial. Liu et al. [25] used distilled
water and performed constant-volume swelling pressure tests on GMZ bentonite particle
mixtures at different temperatures. It was shown that the swelling pressure changed faster
and gradually increased with higher temperatures (Figure 7). A similar phenomenon was
also indicated by some related studies [5,54]. Nevertheless, other tests also showed that the
swelling pressure decreased with the increasing temperature [55–58].
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In contrast, some studies have shown opposite effects of temperature on different
bentonite types, such as heating leading to an increase in the swelling pressure of Na-based
bentonite and a decrease in the swelling pressure of Ca-based bentonite [59]. This can be
attributed to two main mechanisms: osmotic pressure and the net effect of crystalline lattice
shrinkage. Lattice shrinkage caused by the dehydration of the interlayer space and the
increase in osmotic pressure at the interlayer contact is different for the two clays, with
lattice shrinkage dominating in Ca-based bentonite, and the increase of osmotic pressure
dominating in Na-based bentonite. Different bentonite types produce different responses
to temperature variation; therefore, combined with the swelling mechanism, it can be
concluded that the effect of temperature on hydration greatly influences the variation of
the final swelling pressure of bentonite.

Hydration causes an increase in the interlayer pore volume of clay minerals, leading
to the swelling of clay particles and, thus, to the formation of clay aggregates [60]. The
bentonite swelling potential is influenced by the water content due to the coupling of
micro- and macro-structures caused by hydration [61]. As shown in Figure 7, a test was
conducted by injecting distilled water at the bottom of the specimen, and the results were
analyzed. Firstly, the water entering from the bottom caused the soil particles to swell and
densify, and thus the swelling pressure increased rapidly; however, the swollen particles
prevented further water penetration, which slowed down the increase in the swelling
pressure. Finally, the reduced strength of the wetted particles was counteracted by the
rearrangement of the upper particles, and thus a plateau in the development of swelling
pressure occurred [25]. The dual-structure model may explain the reduction of the particle
strength in the wetted state [62,63]: on the one hand, wetting increased the interlayer
distance between the clay flakes leading to the swelling of the clay aggregates, and on the
other hand, wetting weakened the macro-structural resistance.

Liu et al. [25] provided a comprehensive explanation of the relationship between
swelling pressure and temperature, indicating that the variation of the swelling pressure
with temperature depends on the competition between hydration pressure, hydraulic
pressure, and osmotic pressure thermo-tropic response. The Na-based GMZ bentonite with
a dry density of 1.45 mg/m3 in the study exhibited an enhanced swelling pressure as it
possesses a large number of pores between the particles, and the temperature-dependent
increase of its swelling pressure was affected by the enhanced water pressure and osmotic
pressure masking the limited decrease in hydration force. Therefore, the effect of tempera-
ture on the swelling pressure depends not only on hydration but also on the pore water
pressure and electrolyte properties.

3.3. Coupled Thermo-Chemical Effect on the Swelling Pressure

Chen et al. [28] conducted alternating wetting tests using distilled water and NaCl
solutions of different concentrations on Na–GMZ bentonite with an initial dry density of
1.7 g/cm3 at 20 ◦C and 60 ◦C, as shown in Figure 8. The results showed that when the
thermo-chemical effect was coupled, the increase of temperature and electrolyte concen-
tration was not conducive to the development of swelling pressure, and in the multi-step
salination–desalination process, the initial swelling pressure of the sample could not be
fully restored after saline circulation. The possible causes were the irreversible interpore
collapse and the further homogenization of the clay structure at the macrostructural level.

Similar results were obtained with the swelling pressure test of monovalent bentonite
with the same dry density, in India [58]. In addition, that study showed that a high
temperature can promote the expansion of bivalent bentonite. In general, the swelling
pressure of the divalent bentonite increased monotonically and then stabilized, while the
collapse occurred in the middle of the monovalent bentonite and increased again after
equilibrium. When the thermo-chemical effect was coupled, the swelling pressure of
monovalent bentonite was greatly reduced, but that of divalent bentonite was very small.
Compared with the equilibrium swelling pressure when using distilled water wetting at
25 ◦C, the inhibition effect of a 0.1 M NaCl solution was less than the promotion effect of
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95 ◦C temperature on the swelling pressure. Therefore, under the condition of 95 ◦C and
0.1 M NaCl solution infiltration, the equilibrium swelling pressure of bivalent bentonite
still increased. However, when the sample was soaked in a CaCl2 solution with the
same concentration and at the same temperature, the equilibrium swelling pressure of
bivalent bentonite was reduced. The authors attributed this to the combined effect of high
temperature, leading to the expansion of the soil particles, and the increase of microscopic
pore water pressure. At the same time, when low-concentration Na+ was exchanged with
Ca2+, the exchanged Na+ was hydrated until the exchange process was saturated, which
promoted permeability and expansion [46]. However, this study did not take into account
the phenomenon of mineral alteration occurring in bentonite. The microscopic mechanism
of bentonite swelling pressure variation under coupled thermo-chemical effects needs to be
further refined and studied.
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4. Effect Mechanism of Swelling Properties

Generally, the mechanistic explanation of macroscopic phenomena ultimately requires
microscopic-scale evaluations. Thermo-chemical effects will have a great impact on the
microstructure of the soil, and as a consequence, it is essential to consider the variations
occurring in the microstructure of bentonite with the hydration process when describing
the expansion behavior of bentonite. Aside from pore distribution, another important
factor affecting the microstructure of soil is water distribution in the pores, which has a
strong control effect on the mechanical and seepage characteristics of unsaturated soil.

4.1. Pore Distribution

Clay represents a complex porous structural body, with clay layers and interlayer pores
composing a basic unit of clay particles, such as montmorillonite lamellae and interlayer
pores, as shown in Figure 9 [60]. Water in clay soils includes microstructural water and
macro-structural water [64]. As shown in Figure 9, water in interparticle and interlayer
pores is microstructural water, i.e., adsorbed water, and water in interaggregate pores is
macrostructural water. The surface of the clay particle unit carries a negative charge, and
a diffuse double layer is formed between the clay particles, such as the diffused double-
electric-layer water layer at the crystallite scale, shown in Figure 4b. The clay particles
and the inter-clay pores form the basic clay aggregate, then the aggregates and the inter-
aggregate pores develop a representative basic clay unit. Consequently, the clay block
can be roughly divided into interlayer pores, intergranular pores, and inter-aggregate
pores at three levels of pore space, and fractures visible to the naked eye develop from the
inter-aggregate pores.
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Investigating bentonite microstructure entails the study of the pore structure of ben-
tonite as well as its mineral composition. Freeze–drying techniques [64,66] and mercury
intrusion pore size measurement (MIP technique) [67,68] were used to obtain PSD distri-
bution curves and thus distinguish between macro- and micropores. Nevertheless, the
limitations of the MIP technique itself [69–71], combined with the differences in clay types,
led to different pore size measures. For example, when the specimen was a mixture of ben-
tonite and Callovo–Oxfordian (COx) claystone with low dry density, the average pore sizes
of its three main pore groups were 10–22 µm for macro-pores, 0.17–0.52 µm for mesopores,
and about 25 nm for small pores [60].

Ma et al. [72] investigated the microstructure of saturated bentonite samples with a
moisture content of 0.46 in the wet–dry cycle and found that micro-pores and macro-pores
corresponded to 12 nm and 6 µm; they considered the size of 500 nm as a threshold to
distinguish between intra-aggregate and inter-aggregate pores. Zhang et al. [21] performed
MIP analysis of compacted MX80 Wyoming bentonite samples with 80–92% montmoril-
lonite content and identified small and large pore groups with major pore sizes of 17 nm
and 21 µm, respectively; pores with a diameter of less than 100 nm were considered
micro-pores [35]. In addition, scanning electron microscopy (SEM) tests can provide high-
precision clay images to study the structural changes of clays more visually, and X-ray
diffraction (XRD) can evaluate the changes in the composition of clay minerals to determine
the causes of changes in swelling pressure [24,73], as well as measure variations in mineral
layer spacing as a support condition for changes in the swelling pressure [74]. The structure
determines the properties, and the complex structure of clays dictates that variations in
swelling properties are significantly influenced by changes in pore distribution and pore
water status.

4.2. Pore Water Status

Pore water refers to water that is confined to soil pores or clay minerals, and the
properties of pore water are changed by the interaction between soil particles and pore
water. The pore water status of soils also affects their mechanical properties to some
extent. Studies on soil moisture characteristics suggested that soil moisture is controlled
by two mechanisms: capillary and adsorption [75,76]. Adsorption predominates under
high suction, and capillary dominates under low suction [77,78]. Ma et al. [72] tested the
wet–dry cycle with different suction values in powder and compacted Ningming expansive
soils. When the suction reached 24 MPa, the SWCCs curves of the two kinds of soil samples
coincided. Therefore, the suction pressure of 24 MPa was defined as the threshold for
capillary and adsorption of the soil samples, distinguishing capillary and adsorption effects
in expansive soil with a quantitative suction magnitude. Meanwhile, some constant-volume
experiments provided similar results [79]. The variation of absorbed water content in the
soil with temperature is controlled by two mechanisms: pore water potential and soil
structure. The pore water potential of adsorbed water is smaller than that of capillary
water and decreases with the decrease in temperature [80]. According to Le Chatelier’s
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principle [81], an increase in temperature facilitates the desorption process and inhibits
the exothermic process. According to the thermodynamic theory Equation (1), both cation
and surface hydration processes are exothermic because the adsorbed water is adsorbed
on the crystal surface, the entropy of the system decreases, ∆Sa < 0, and then the enthalpy
of adsorption becomes ∆Ha < 0; therefore, adsorption is exothermic [82]. The decrease in
temperature enhances hydration, influencing the entropy of the hydration reaction [83].

∆Ga = ∆Ha − T∆Sa = 0 (1)

The absorbed water content increases with the decrease in temperature, which can be
attributed to the decrease in pore water potential and the increase in micro-pore volume,
as shown in Figure 10. Depending on the Yang–Laplace equation, capillary suction can
be described by Equation (2) [82]. As the temperature increases, under a given suction
Pc, the water-saturated pore diameter d decreases, with the decrease of surface tension
(σ) and contact angle (θ) the faster the speed decreases. This results in a reduction in the
amount of capillary water [84,85]. Thus, the conversion of adsorbed water to capillary
water with inreased temperature and the further loss of capillary water will be detrimental
to the retention of water in clays. Liu et al. [82] demonstrated that the water retention
capacity of three bentonite samples decreased with increasing temperature for a given
suction condition. In both restricted- and free-swelling conditions, bentonite water retention
capacity will decrease with the increasing temperature (20–80 ◦C), and this is especially
evident when the suction is low [57].

Pc =
4σ cos θ

d
(2)

The adsorbed water content is simultaneously controlled by the pore solution con-
centration, which increases to the detriment of the adsorbed water [80]. It is clear that
an increase in the pore solution concentration will inhibit the development of the bilayer
thickness, according to Equation (3). However, the role of salt concentration on crystal
layer swelling needs to be further investigated. As regards the changes in pore structure,
the adsorbed water content is affected by the salt concentration in the same way as the
micro-pore volume. Norrish et al. [86] concluded that, although salt concentrations less
than 1 M have little effect on the swelling of crystalline layers, the increased electrolyte
concentration leads to the dehydration of montmorillonite by osmosis, which is detrimental
to the occurrence of inter-montmorillonite hydration. Thus, high salt concentrations have
an inhibitory effect on hydration.
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The thickness of the double electric layer is calculated by [40]:

1
K

=

(
ε0DkT

2n0e2v2

) 1
2

(3)

1
K is the thickness of the double layer, ε0 is the vacuum coefficient, D is the dielec-

tric constant, k is the Boltzmann constant, T is the temperature, n0 is the pore solution
concentration, e is the unit charge, and ν is the ionic valence.

Significantly, because of the thermo-chemical effects on pore water, as shown in Figure 10 [80],
the volume of micro-pores decreased, and the volume of macro-pores increased with
increasing salt concentrations, and micro-pores were more frequent at low temperatures.
In addition, it was observed that more water was adsorbed at low temperatures and
in high-salt-concentration environments, which seems to be contrary to the theory. By
investigating the effective activation energy [87], which is known as the energy barrier
for water molecule conversion, Tian et al. [87] found that elevated salt concentrations
accelerated the water molecule relaxation and produced a higher effective activation energy
compared to samples saturated with distilled water, enhancing water molecule adsorption
to some extent. In reality, such water with a short relaxation time is somewhat different
from adsorbed water or exists in the form of hydrated ions surrounded by water molecules,
an effect that is more pronounced in the presence of saline solutions, masking the inhibition
of the double electric layer and the reduction of the micro-pore volume by the increase of
the pore solution concentration; hence, the higher measured adsorbed water content [80].
Bentonite exposed to a concrete-leaching groundwater solution introduced at elevated
temperatures showed a decrease in macro-pore volume and an increase in micro-pores,
with the average pore size decreasing from 6 nm to 4 nm [88]. This phenomenon suggests
that a high-temperature situation may also lead to an increase in micro-pores; so, the study
of adsorbed water content should take into account the pore structure in the case of coupled
thermo-chemical effects.

In conclusion, dry and wet cycles destroy the soil pore structure and weaken the
water retention capacity of bentonite; elevated temperatures reduce the water retention
performance of bentonite; increased salt concentrations are detrimental to the development
of micro-pores and the adsorption of adsorbed water, thereby reducing the swelling capacity
of bentonite. When the thermo-chemical effects act simultaneously, combining with changes
in soil structure, thermodynamic properties, and ion hydration effects, their influence on
the pore water status becomes more complex. As a consequence, more in-depth studies
are essential.

4.3. Intergranular Stress

At present, studies on the swelling mechanism of bentonite generally remain at the
microscopic level. A few scholars have proposed a new formula to determine the effective
stress in unsaturated soil from a macroscopic perspective, which can describe the stress state
in unsaturated soil well [89,90]. In 2014, Wei [91] proposed a theory of intergranular stress
acting between soil particles, which comprehensively characterized the physicochemical
interactions between soil particles from a macroscopic perspective.

Wei [91] introduced the concept of equilibrium solution and pointed out that the
measured pore pressure is not the same as the true pore pressure within the soil. For
bentonite, when the soil is saturated with an aqueous solution, the magnitude of the water
pressure within the pore space is not uniform due to the physicochemical interaction
between pore solution and soil water. The equilibrium solution is defined as the water in
a measurement vessel that has reached equilibrium with a pore solution without surface
action of the soil particles. The soil is in equilibrium with the sensor, when measuring the
pore pressure. In other words, we determine the pore pressure by measuring the pressure
of the equilibrium solution, whereas the instrument measures only the potential energy of
the water and not the mechanical pressure.
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Wei [91] deduced the expression of true pore pressure considering that the water
potential energy in the pore is the same as that in the container at an equilibrium state:

pl = pl
w + Π (4)

where pl
w is the actual pore water pressure in the soil, and there is a difference Π from the

measured pore pressure pl ; Π is called generalized osmotic pressure. Intergranular stress is
defined as:

σ′′ = σ− (pl
w + Π) (5)

where σ′′ is the intergranular stress; σ is the total stress.
This generalized osmotic pressure reflects the interaction between soil particles and

pore water and is divided into two components: the Donnan osmotic pressure and the pres-
sure derived from surface forces. The Donnan osmotic pressure relates to the concentration
difference between the pore solution and the equilibrium solution. The second compo-
nent of generalized osmotic pressure is the pressure caused by surface forces, including
the surface tension of the interface, the electrostatic force, Van der Waals gravity, electric
double-layer repulsion, etc. The equation is:

Π = ΠD − ρ
lH2O
⊕ Ωl (6)

In the equation, ρ
lH2O
⊕ is the mass density of pure water, equal to 1.0 g/cm3, ΠD is the

Donnan osmotic pressure, and Ωl is the surface potential energy caused by microscopic
surface forces. Donnan osmotic pressure is the pressure caused by the pressure difference
betwe en the internal and the external concentration of the soil related to the porosity and
solution concentration in the soil. It is expressed by:

ΠD =
RTρ

lH2O
⊕

MH2O
ln

 a
lH2O
A

alH2O

 (7)

where MH2O is the molar mass of water, equal to 18 g/mol, a
lH2O
A is the activity of water in

the equilibrium solution, which is equal to the molar fraction of water in the equilibrium
solution in the ideal solution, alH2O is the activity of water in the soil pore solution, which
is equal to the molar fraction of water in the soil pore solution in the ideal solution. Ωl is
expressed as:

nlρlΩl(T, nl) =nl
0ρlΩl(T, nl

0) +
∫ nl

0

nl

[
sM(T, nl)−ΠD(T, nl)

]
dnl (8)

where nl is the volume fraction of water, defined as the volume of water in the pore as a

proportion of the total volume, pl is the density of water, for dilute solutions, ρl ≈ ρ
lH2O
⊕ , sM

is the measured (or controlled) matrix suction, pl
W is the measured pore pressure, nl

0 is the
volume fraction of pore water at saturation, equal to the porosity n.

The intergranular stress expression can consider the physicochemical effects between
particles and unitize the infiltration, capillary, and adsorption effects caused by physic-
ochemical interactions, which can better describe the behavior of bentonites in terms
of strength and deformation. Moreover, the capillary and physicochemical pressure at
the microscopic scale can be better applied to the intergranular stress expression at the
macroscopic scale, in unsaturated soils.

Ma et al. [92] experimentally researched the effect of pore solution on the swelling
pressure of expansive soils, pointed out that the variation of the swelling pressure is
determined by the intergranular stress, described the swelling pressure variation from the
perspective of macro-mechanics, and proposed a model of swelling force prediction. The
superiority of this model for swelling pressure prediction was confirmed by validating



Appl. Sci. 2023, 13, 5580 14 of 18

it on several bentonites with different properties (Figure 11). Overall, studies of the
effect of intergranular stress on the swelling pressure of bentonite under thermo-chemical
effects are still relatively rare and lack extensive experimental validation; therefore, further
investigation is necessary.
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5. Conclusions and Prospects

In recent years, scholars have conducted elaborate studies on the swelling pressure of
bentonite in the deep geological repositories of HLW, focusing on experimental methods,
influencing factors, change patterns, and intrinsic influencing mechanisms. However,
considering the coupled thermochemistry and hydrodynamics phenomena involved in the
actual nuclear waste containment process, the existing research findings still have certain
limitations. Additional research is desired in the future in the following areas:

(1) Various test methods will result in different values of measured swelling pressure. A
comparative analysis of different test methods should be conducted, specifically considering
the coupled environmental effects in the nuclear waste containment process to identify the
optimal test method.

(2) Diffuse nuclear radiation heat is a major influencing factor in nuclear waste con-
tainment. Considering the effect of temperature, studies on the hydrodynamic properties
of bentonite remain to be conducted.

(3) Analysis of the mechanism of swelling pressure changes: from the microscopic
perspective, the process and mechanism of swelling pressure changes still lack profound
recognition. In addition, from the macro-mechanics perspective, there are only sporadic
studies which generally lack experimental verifications. In the future, the analysis of the
swelling pressure variation law and the internal mechanism of swelling pressure evolution
needs to be further refined.
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