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Abstract: VanityX is a prototype, low-level, real-time 3D rendering and computing platform. Unlike
most XR solutions, which integrate several commercial and/or open-source products, such as game
engines, XR libraries, runtime, and services, VanityX is a platform ready to adapt to any business
domain including anthropology and medicine. The design, architecture, and implementation are
presented, which are based on CPU and GPU asymmetric multiprocessing with explicit synchro-
nization and collaboration of parallel tasks and a predictable transfer of pipeline resources between
processors. The VanityX API is based on DirectX 12 and native programming languages C++20 and
HLSL 6, which, in conjunction with explicit parallel processing, the asynchronous loading and explicit
managing of graphic resources, and effective algorithms, results in great performance and resource
utilization close to metal. Surface-based rendering, direct volume rendering (DVR), and mixed reality
(MR) on the HoloLens 2 immersive headset are currently supported. Our MR applications are directly
compiled and deployed to HoloLens 2 allowing for better programming experiences and software
engineering practices such as testing, debugging, and profiling. The VanityX server provides various
computational and rendering services to its clients running on HoloLens 2. The use and test cases are
in many business domains including anthropology and medicine. Our future research challenges
will primarily, via the MetaverseMed project, focus on opening new opportunities for implementing
innovative MR-based scenarios in medical procedures, especially in education, diagnostics, and
surgical operations.

Keywords: 3D platforms; 3D engines; asymmetric parallel computing; surface-based rendering;
direct volume rendering; mixed reality; DirectX 12; HoloLens 2

1. Introduction

One of the biggest issues in real-time (online, interactive) 3D rendering is the lack of
time. We must calculate at least 24 images (frames) per second (fps), produce high-quality
images without tearing, and respond to user input with acceptable latency. In offline 3D
rendering, single images can be calculated much longer and later combined into a movie;
therefore, movies look better than interactive games, but the users cannot interact with
movies as they can with games or with scientific and medical simulations.

Three-dimensional rendering [1] is a process of calculating (generating) two-dimensional
images with depth (reliefs) from a scene. A scene is a collection of 3D objects, virtual
cameras, lights, and other entities needed for creating images. The rendering process is
based on a pipelined architecture, which, through various programmable and configurable
stages, produces images. In surface-based rendering, models are represented via polygonal
meshes, while in direct volume rendering (DVR), models are represented via volumes
of scalars (clouds of points). DVR is typically used with medical imaging obtained from
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scanning devices [2,3]. Using various triangulation techniques, clouds of points can be, via
isosurfaces [4], converted into triangle meshes.

There are many sources where the performance of interactive 3D rendering can be
accelerated, for example, in hardware (e.g., CPUs and GPUs), programming languages, 3D
libraries, 3D algorithms and data structures, 3D engines [5–8], and 3D applications. The
underlying hardware architecture for both online surface-based and volumetric rendering
is based on old-school parallel (concurrent) processing [9,10]. The management and the
sharing of graphics resources in this asymmetric parallel computing can be implicit and
explicit. In the former approach, the management is left to the drivers and runtimes, while
in the latter approach, fine-grain control and synchronization, e.g., via fences and resource
barriers, are given to the programmer, which could lead to a performance boost [11].
In comparison to the former approach, the latter one also provides explicit multi-GPU
rendering [8,12].

Three-dimensional libraries such as DirectX [13] and OpenGL [14] implement software
layers around the underlying CPUs and GPUs, providing a programming model (API)
mainly for tasks such as transferring data between CPUs and GPUs [15,16] and synchroniz-
ing their activities. They define rendering pipelines with configurable and programmable
stages and expose them to the programmers while 3D real-time engines such as Unity [17]
and Unreal Engine [18] typically provide object-oriented programming interfaces to the
underlying libraries as well as various data structures, acceleration algorithms, editors, and
tools for creating and rendering 3D scenes.

This paper presents the VanityX platform, which emerged as a prototype during
work on our MetaverseMed project [19], the goal of which was to ensure efficient and
constructive collaboration of the surgical team by providing interactive possibilities of
mixed reality. VanityX is an integral XR solution (platform): it has its own game engine that
can be configured to run on desktop and HoloLens 2 devices and a server that provides
computational and rendering services. Using services, the 3D model can be created and/or
prepared for rendering on more powerful desktop computers and transferred to a lighter
SOC application processor (the Qualcomm Snapdragon 850 CPU with the Adreno 630 GPU)
located in the back enclosure of the Hololens2, thus accelerating the 3D model blending
process and meeting the client requirements running on HL2 more efficiently. Additionally,
VanityX uses a proprietary API based on DirectX 12 and native programming languages
C++20 and HLSL 6, resulting in performance and resource utilization close to metal.
Similar systems could be realized using commercial/open-source components such as a
(Unity) game engine with an appropriate (Microsoft) runtime, (OpenXR) APIs, services,
etc. Integration of these components is usually time consuming and not an easy task,
resulting in questionable quality since the system as a whole could be more constrained
than the weakest component itself. Additionally, specific user requirements, such as
volumetric rendering in our case, were not part of the standard Unity assets and have
to be purchased from third parties. The mentioned drawbacks motivated us to build up
our own solution and share the experiences and hints with the community. The main
achievements presented in this paper could be highlighted as follows: (i) the presentation
of main VanityX’s architectural layers including the engine, components, libraries, and
services, all built on the top of DirectX 12, together with the implementation UML diagrams
realized on the Universal Windows Platform (UWP), and (ii) the presentation of application
structures including deployment on standard desktop computers and HL2 devices, together
with their performance indices, measured on two different GPUs.

Hence, the conceptual model for a 3D rendering and computational platform based
on DirectX 12 is developed and demonstrated. At this stage, all the core components are
implemented and their functionalities tested. Production level usage is planned through
entrepreneurship with the mentioned MetaverseMed project in the field of medicine. The
main purpose of the platform is to support the collaboration of medical teams to perform
tasks more efficiently. The application demonstrates that VanityX supports both surface-
based and direct volume rendering as well as the triangulation techniques that convert
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clouds of points into a set of triangles, needed due to the project’s functional requirements.
As we have already mentioned, such techniques in typical commercial game engines such
as Unity are generally left for third-party libraries.

In the sections that follow, the architecture of the platform is minutely described in
a top-to-bottom manner, from the higher abstraction level to the low-level details related
to implementation. The next section presents VanityX’s pipelined software architecture,
components, and layers and discusses its purpose with respect to its requirements. It also
describes VanityX’s main loop and the Vanity object, which acts as a proxy for interfacing
with UWP (Universal Windows Platform) constructs and integrating with the rendering
process. Section 3 presents VanityX’s design and its core C++ and HLSL types, with an
accent on wrapping the underlying DirectX 12 COM components. Section 4 deals with the
design and implementation of mixed reality on HoloLens 2 directly running on DirectX 12.
Section 5 provides insight into the development environment and tools we used, while in
Section 6, we turn our attention to testing examples and applications rendered by VanityX
on both standard and HoloLens 2 displays.

Finally, we finish off with Section 7, which concludes the paper, discusses our findings
and results, and gives suggestions and opportunities for future work.

2. VanityX Platform

As mentioned in the introduction, the platform supports an immersive environment in
which relevant information is visualized in real time for the medical team and which would
ensure their efficient collaboration. Calculated images, important for exchanging ideas
among team members, can be seen via head-mounted displays (HMD) such as Oculus
Quest and HoloLens 2 [20].

With reference to Figure 1, such devices allow for mixing real and digital objects on
the same scene. In virtual reality (VR), all objects in the scene are digital, and the user
cannot see real objects [21]. In augmented reality (AR), we have real and digital objects in
the scene with simple interactions via basic human senses, while mixed reality provides
more intensive interactions among real and digital objects in the scene, making the user
feel more immersed in the scene. The previous definitions are a bit vague, and recently, the
term extended reality (XR) has been coined for all three. Mixed reality can be applied in
almost any domain such as medicine [21] and, for example, in personal decision support
systems [22].
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Figure 1. Interactions between physical (e.g., a human) and digital objects. Immersive scenes support
a variety of interactions via multiple human senses.

In this way, the functional requirements of the platform are defined and supported by
appropriate software solutions that include surface-based and direct volume rendering,
the extraction of isosurfaces, dynamic tessellation, and the integration of computation,
rendering, and remote services [23,24]. On the other side, software architecture is strongly
influenced by quality (nonfunctional) requirements, such as immersive 3D graphics, in
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which at least 30 frames per second of high resolution (4K is recommended on flat displays)
images are generated. It is also important for the project’s goals to support rendering on
standard gaming machines (desktops) as well as on mixed reality headsets to ensure better
interoperability. Additionally, the platform supports high performance and scalability,
assuming fast rendering with low latency for high-poly models and textures, for volumes
obtained from high-resolution scanning devices such as MRI and CT and for solutions
with multiple interactive users. For programmability and reusability purposes, the sys-
tem is decomposed into software components (classes) that are incorporated into other
components and reused on different hardware architectures and rendering pipelines. The
following subsection minutely defines the layers and functionality of the realized software
architecture.

2.1. VanityX’s Software Architecture

Software architecture is strongly influenced by quality (nonfunctional) requirements.
With reference to Figure 2, VanityX provides a 3D engine, computational and rendering
services, and an API decomposed into four main layers: a layer that contains core façades
and its components such as the device and command objects, a layer that contains the
main rendering loop and the corresponding components such as event handlers and timers,
a layer that contains the Vanity object and components related to interfacing with the
operating system and interacting with the user, and the Vanity 3D library.
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top of DirectX 12. Applications are implemented on the Universal Windows Platform (UWP).

To fulfill low-level quality requirements, the VanityX engine is based on the DirectX
12 library. The DirectX 12 library is based on the Component Object Model (COM)—
its components are binary components and therefore are close to metal and very fast.
DirectX 12 supports the programming of CPUs in the C++ programming language and
the programming of GPUs in High-Level Shader Language (HLSL) [25]. HLSL comes in
six DirectX programming stages (shaders): vertex, geometry, compute, tessellation, pixel,
and ray tracing (DirectX 12 Ultimate) stages. DirectX 12 provides the DXGI library [26],
which manages low-level graphics hardware and features, such as adapters, outputs, and
resolutions, that are independent of the DirectX runtime.

Unlike DirectX 11, DirectX 12 allows programmers to explicitly synchronize tasks and
assets between the CPUs and the GPUs and therefore bring faster frame rates.

The Vanity Core façade is responsible for managing components that are related to the
DirectX 12 runtime and desktop applications, while the Vanity Core MR façade manages
DirectX 12 components that work with DirectX 12 runtime and HoloLens 2 applications—
the façades are discussed in more detail in Section 3.3. and Section 4.3. The Vanity Main is
a layer that implements the components of the main rendering loop—this is explained in
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the next section. The Vanity object implements components that provide the entry point
into the application and the injection of renderers into the main rendering loop.

The Vanity 3D Library supports common 3D math operations and functions, 3D data
structures, and algorithms—on both the CPU and the GPU. Low-level math operations and
functions on the CPU are implemented in C++20 and are built on top of the DirectXMath
library [27], which supports SIMD operations that are optimized for various versions of
Windows. On the GPU, the library is implemented in HLSL. The Vanity 3D library also
supports various algorithms such as intersections and collisions, the polygonization of
volumetric data, lightening and texturing, standard and proprietary formats, direct volume
rendering, and computation on GPUs.

The Vanity services provide computational (e.g., machine learning techniques on
multiple GPUs) and rendering solutions to its clients with limited resources and compu-
tational power while the Vanity server supports the services via asynchronous message
passing [9,28]. Details on VanityX libraries and network services are out of the scope of this
paper.

2.2. Vanity 3D Engine

The VanityX engine is a native prototypical low-level real-time 3D engine that provides
fast 3D rendering close to hardware-level rendering performance by explicitly managing
3D resources and explicitly synchronizing tasks between the CPU and the GPU in an
asymmetric parallel computing pattern. High performance and low latency are its key
nonfunctional requirements. We support both surface-based and direct volume rendering
of medical images on standard displays as well as on HoloLens 2, Microsoft’s MR HMD.
VanityX provides two core façades (C++ objects) for accessing underlying core DirectX 12
COM objects for both standard rendering and rendering to HoloLens 2. The Vanity object
is a proxy for entering the main rendering loop.

The following is typical client code for (1) instantiating the Vanity object, (2) passing a
renderer to it in a dependency injection manner, and (3) starting the rendering loop calling
method Run():

auto renderer = std::make_unique<Renderer>( . . . );
Vanity vanity{ std::move(renderer) };
vanity.Run();

To the best of our knowledge, the VanityX engine is currently the only 3D engine
supporting mixed reality (HoloLens 2) functionality on top of the DirectX 12 library.

3. Vanity Core Components

To support programmability, reusability, and unit and integration tests, core VanityX
classes are implemented as object-oriented wrappers around the underlying DirectX 12
COM objects, and because of this, the users of VanityX are not supposed to explicitly deal
with the underlying COM objects. For example, a COM object that implements interface
ID3D12Device2 is encapsulated in VanityX’s Device class via the winrt::com_ptr template—
a reference-counted COM smart pointer. Likewise, a COM object that implements interface
IDXGISwapChain4 is encapsulated in the SwapChain class. DirectX 12 creational free
functions that instantiate COM objects, such as D3D12CreateDevice(), are encapsulated in
VanityX’s methods.

Resources are buffers and textures. VanityX implements constant buffers, vertex
buffers, index buffers, front and back buffers, and depth stencil buffers. Specific descrip-
tor types such as descriptors for render targets and depth stencil buffers are cohesively
refactored into individual classes that inherit from class DescriptorHeapBase. VanityX
supports multidimensional textures in various texture formats as well as samplers that can
be configured for various address modes and filters.
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3.1. Vanity Object

The Vanity object is the entry point into Vanity’s 3D applications. It is primarily
responsible for hiding the complexity of managing interactions with UWP [29] and passing
the scene renderer into the main rendering loop.

With reference to Figure 3, the Vanity object does not directly instantiate an AppView
object—this is the job of the ViewFactory object. Its class implements the IFrameWorkView-
Source interface whose method CreateView() will instantiate an AppView object. The
Vanity object instantiates a ViewFactory object and passes it to a CoreApplication object
calling method Run(). The CoreApplication object represents an application by UWP. It
creates the AppView object by calling method CreateView(). An IRenderer object represents
the actual scene renderer—it is passed from the Vanity object to the AppView object.
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The AppView manages the states of a UWP application, which can be in Not Run-
ning, Running, and Suspended states. During activation, the application loads data asyn-
chronously and enters the Running state. On suspending, the application stores data
and enters the Suspended state. On resuming, the application restores data and enters
the Running state again. From the Suspended state, the application can be automatically
terminated, e.g., when the system is low on memory. VanityX components are designed to
be extended by inheriting their classes.

3.2. Main Rendering Loop

The AppView object allows for creating the main application window, handling
various input events, and implementing the lifecycle phases of the application such as
activation, suspending, resuming, and termination. During the activation of an AppView
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object, a sequence of methods is automatically invoked by the UWP runtime. For example,
method Initialize() instantiates the main loop object and injects the renderer into the main
rendering loop, while method Run() enters the main rendering loop.

The primary responsibility of the main rendering loop is the execution of the graphics
pipeline. It implements a standard execution pattern in which the pipeline must be initial-
ized, periodically executed, and shut down. With reference to Figure 4, the AppView object
instantiates the main loop object (class MainLoop) and passes (via a shared pointer) a scene
renderer (an instance of class Renderer) object to it. During the initialization process, the
main loop object instantiates a VanityCore object, or a VanityCoreMR object for HoloLens
2 applications, and a Timer object, which makes use of the hardware counters for the
calculations of various timings and statistics.
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In each rendering iteration, (1) events from dispatcher CoreWindow are processed,
(2) network messages from the server are processed, (3) the scene is updated for the current
frame, (4) the scene is rendered into the back buffer, and finally, (5) the scene is presented
onto the screen, as shown in the code snippet below:

dispatcher.ProcessEvents(...);
client.ProcessMessages(...);
auto currentframe = _main->Update(previousframe);
auto ok = _main->Render(currentframe);
if(ok) _main->Present(currentframe);
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3.3. Vanity Façade

The Vanity façade is responsible for creating core Vanity objects related to the core
types of the underlying DirectX 12 graphics pipeline and for providing easy access to them.
It is implemented via the VanityCore class.

With reference to Figure 5, to support a higher frame rate, the Vanity façade imple-
ments triple buffering. Its method Present() presents the content of the front buffer (the
swap chain) on the screen. A DescriptorHeapBase object implements a heap where resource
descriptors (views) are stored. Descriptors can be of various types such as constant buffer
view (CBV) and shader resource view (SRV). Heap types (default, upload, readback, and
custom) determine how resources can be accessed by the CPU and the GPU.
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The Device class encapsulates the functionality of DirectX 12 objects, which are used
for things such as creating resources, managing feature levels, and multisampling. The
SwapChain class implements triple buffering and handles things such as presenting front
buffers onto the display and resizing displays. The DXGIFactory class manages low-level
hardware features such as video adapters, outputs, and resolutions—it is, for example,
used for creating a SwapChain object.

The commands are submitted to a CommandQueue object. A CommandAllocators
object manages the allocations and deallocations of commands that are not immediately
executed by the GPU since it must synchronize with the CPU (they may run in parallel). The
synchronization is implemented via a Fence object that encapsulates a long integer value
and methods for the actual cooperation and synchronization between the processors—the
interaction is based on the traditional producer–consumer coordination pattern.
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3.4. Scene Object

With reference to Figure 6, the SceneObject class represents an object (model) that
can be rendered. It contains a Mesh object that represents the model’s geometry, multiple
Texture objects that represent the textures to be mapped onto the object, multiple Material
objects that describe its interactions with the light, and a World object that defines its
location in the scene. A Mesh object defines the topology of rendering primitives, a method
for asynchronous loading models and assets, a method for uploading the geometry to the
GPU, a method for binding the geometry to the pipeline, and a method for drawing the
geometry.
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The VertexBuffer and IndexBuffer objects manage buffers for vertices and indices,
respectively, while a BoundingVolume object is used for calculating intersections (collision)
with other objects on the scene. A VertexBuffer object contains a Draw<>() method, which
draws the scene object. It is parameterized by the type of the vertex (T), and a vertex can
have multiple attributes such as position, normal, texture coordinates, tangents, etc.

3.5. Pipeline Management

Resources are not directly bound to shader registers.
A root signature is an array of parameters that point to resource descriptors. It

describes the logical layout of pipeline resources, specifying which resources, such as
buffers, textures, and samplers, can be bound to the pipeline, as well as the GPU registers
the resources will be mapped to. For example, a world matrix for each frame is transferred
as a resource to the GPU; for triple buffering, we have three world matrices on the resource



Appl. Sci. 2023, 13, 5468 10 of 23

heap, and each matrix has a descriptor on the descriptor heap. A root signature contains a
parameter, which, depending on the frame, points to the corresponding resource descriptor.

Class RootSignatureBase implements the core behavior of the root signature, while
class DescriptorHeapBase implements the core behavior of the descriptors heap such
as binding descriptors and parameters to commands. Client apps inherit those classes
and add/override application-specific features. The pipeline accepts vertices and pro-
duces pixels (fragments). Vertices and indices are encapsulated in classes VertexBuffer
and IndexBuffer, respectively. A pipeline state is used to initialize configurable stages
and to set programmable shaders—all DirectX 12 shaders are supported, including the
compute shader. Class PipelineState implements the functionality for managing shaders
and configurable stages such as the rasterizer, depth, and blend states.

3.6. Managing Commands

Commands execute the rendering pipeline and start parallel tasks. VanityX provides
four classes for managing commands: CommandList, CommandQueue, CommandAlloca-
tors, and Fence.

A CommandList object is used to add commands that can be directly executed on the
GPU, as well as command bundles that are preprocessed and optimized by the GPU. The
CPU and the GPU can run in parallel. The synchronization object, via events and a set of
values, implements a producer–consumer coordination pattern in which the GPU is idle
when the queue is empty while the CPU is idle when the queue is full. The GPU and the
CPU make use of waiting and signaling primitives to synchronize their work.

With reference to Figure 7, a CommandList object can be in four states. Calling method
Create() on it, it enters the Empty state. Adding (recording) a command, the command
object transits to the Ready state and stays in that state as long as new commands are added
to it. Before being executed, the command object must be closed by calling method Close()
on it. By calling the Execute() method on the command object, it transits to the Submitted
state. A command object can be reused by calling method Reset(), in which case it enters
the Empty state again and can be used for recording new commands.
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4. Mixed Reality with VanityX

The mixed reality part of VanityX and the corresponding applications are designed,
implemented, and tested to run on the Microsoft HoloLens 2 immersive headset.

With reference to Figure 8, the Vanity Server provides various computational and
rendering services to the applications (engines) running on HoloLens 2 devices. The server
also interacts with a variety of medical devices, such as ROBOT, to retrieve medical data,
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images, and videos in the DICOM format [30] and transfer them to its MR applications.
To allow medical staff participating in medical procedures without wearing HoloLens 2
devices to see the images being rendered, the apps can mirror their screens onto external
ones.

Figure 8. VanityX platform supporting multiple HoloLens2 headsets.

4.1. HoloLens 2

HoloLens 2 is an amazing HMD device—it is an untethered holographic computer.
The heart of HoloLens 2 is the holographic processing unit (HPU) 2.0 [31,32] that

sits in the front enclosure. It receives data from various sensors, e.g., from the depth,
head-tracking, and eye-tracking cameras, processes them, and sends the processed data,
via the PCIe, to the SOC application processor (the Qualcomm Snapdragon 850 CPU with
the Adreno 630 GPU) located in the back enclosure. The application processor runs the app,
calculates (renders) the image, and sends the rendered image to the holographic processor,
which performs the late-stage reproduction (LSR) algorithm, correcting the position of the
hologram and thereby improving the hologram stability, and then sends the image to the
display module.

The HPU 2.0 performs various tasks related to scene management and control, such
as head and eye tracking; hand tracking and various gesture readings; spatial audio, which
makes the sound appear exactly from the position where the holograms are located; spatial
anchors [33]; and scene understanding, where it can recognize things such as walls and
floors. HoloLens 2 provides a MEMS (micro-electromechanical systems) laser display with
47 pixels for the degree of sight—its vertical field of view beta is 29◦, its horizontal field of
view alpha is 43◦, and its resolution for each eye is 2K (1363 × 2021).

4.2. MetaverseMed

Our current research and development activities in mixed reality are a part of the
MetaverseMed project [19]. We are focused on implementations of medical IT solutions
for HoloLens 2 on the top of the VanityX platform and their integration with medical
procedures. Our native engine is currently built on top of the HolographicSpace API [34],
but we also, for the sake of comparisons, implemented some features using the OpenXR
API [35] and the Unity engine.

For our prototype, we choose the native HolographicSpace API over the native
OpenXR API and commercial 3D engines. The Open API is the standard, and standards are
very useful when developing software for various devices—our XR platform is HoloLens 2.
Unity is currently based on DirectX 11 and therefore does not support explicit parallelism
(parallel rendering tasks) and a predictable transfer of pipeline resources between the CPU
and the GPUs.
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Figure 9 shows our testing of medical solutions based on the VanityX platform in
a real medical environment—interactions are implemented using the MRTK library [36]
with the Unity engine. By overlapping medical scans, in the form of 3D holograms, on
the patient’s body parts (organs), MetaverseMed will primarily empower medical staff,
accelerating diagnosis and improving the accuracy of surgical operations. Holograms blend
digital objects, such as medical images and volumes, with physical patients, making them
look transparent and therefore opening up opportunities for new medical scenarios that
were not possible before. Medical staff wearing HoloLens 2 headsets can always see their
surroundings, walk around, and interact with people, physical objects, and holograms.
MR training [37] will enable innovative ways of learning and sharing knowledge among
medical staff and students.
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Figure 9. Testing project MetaverseMed in a real medical environment. In the Cyber room, the
surgeons and radiologists practice and test eye tracking, head movements, voice commands, and
hand commands. Courtesy of prof. dr. Dragan Schwarz from private hospital Radiochirurgia, Zagreb,
Croatia.

Integrating VanityX holograms with the CyberKnife 7 radiation delivery system [38]
is our most challenging research—we will enable the surgeons and radiologists to observe
and manipulate medical holograms inside the patients as if they were transparent, helping
them improve the precision of diagnoses and surgical operations.

4.3. Vanity MR Façade

The Vanity MR façade represents core MR features, and it is implemented via the
VanityCoreMR class. It is responsible for creating core VanityX objects related to things
such as the holographic camera, spatial coordinates, pipeline resources, and descriptor
heaps.

Figure 10 shows some basic components of the Vanity MR Façade. Via the VanityCore
object, the VanityCoreMR accesses VanityX objects related to core types of the underlying
DirectX 12 graphics pipeline. The Fence class, in conjunction with command-based classes,
provides synchronization mechanisms (producer–consumer primitives) between the CPU
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and the GPU. The ViewProjection class represents both the view and projection matrices
for the left and right eyes. Class Buffer represents constant buffers for transferring cam-
era matrices for triple buffering, while class DescriptorHeapBase manages views for the
camera’s buffers.
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The HolographicCamera and the HolographicCameraPose classes are a part of the
UWP Holographic API [39]. The former provides rendering functionality for each frame
on the holographic display, which is represented via class HolographicDisplay, while the
latter represents the predicted position of the holographic camera for a particular frame.
The SpatialCordinateSystem class represents the user surroundings and positions (anchors)
where coordinate systems can be anchored and shared across devices—the class is a part of
the UWP Perception API [40].

4.4. VanityX vs. Unity

In addition to our approach, mixed reality applications for HoloLens 2 can be devel-
oped natively using the OpenXR API and using commercial engines such as Unity and
Unreal Engine.

For our research, we analyzed the Unity development process for MR applications and
compared that process with our approach. In Unity, MR applications can be implemented
in C Sharp or in JavaScript—we strongly prefer the first approach. Unity provides an XR
custom rendering pipeline and the Mixed Reality Toolkit (MRTK) [36], which simplifies
things related to the holographic space and 3D interactions in the scene. Unity performs two
compilations. The first compilation is from the Mono development environment to a UWP
application using the IL2CPP compiler, while the second compilation is from the UWP
application to an ARM64 application, which is then, using Visual Studio 2022, deployed to
the HoloLens 2 headset.

Compared to Unity, VanityX’s MR approach has the following advantages:

• VanityX is a computation and rendering platform with a server that provides computa-
tional and rendering services and an engine that can be configured to run on desktop
and HoloLens 2 devices. Unity is a 3D engine.

• Unity MR applications are based on DirectX 11 (support for DirectX 12 in the current
version (2021.2.14f1) is still experimental), and therefore, they utilize neither explicit
parallelism for transferring graphic resources between the CPU and the GPU nor the
explicit synchronization of tasks between the CPU and the GPUs, as VanityX does.
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• VanityX supports both surface-based and direct volume rendering as well as triangu-
lation techniques that convert clouds of points into a set of triangles. Such techniques
in Unity are generally left for third-party libraries.

5. Development Environments

The development environment for VanityX is based on Visual Studio 2022 and its
various tools, such as debuggers, performance analyzers, loggers, and unit testing tools.
For the sake of performance and explicit asymmetric parallelism, VanityX is based on
DirectX 12. Programming language C++20 is used to implement code on the CPU while
HLSL 6.* is used for implementing programmable stages (shaders) of the underlying
rendering pipeline. Desktop applications are tested on the NVIDIA Quadro RTX 4000 GPU
and NVIDIA RTX 1080Ti, while mixed reality applications are tested on the HoloLens 2
simulator [41], the emulator version 21H1 [42], and the development edition’s HoloLens 2
immersive headset.

5.1. Application Structure

A VanityX application instantiates a Vanity object passing a scene renderer to it, which
renders the scene, via the pipeline, onto the screen.

With reference to Figure 11, the renderer object inherits from the RendererBase class,
which implements interface IRenderer and provides basic rendering functionality such as
creating, initializing, and destroying window-based resources. The renderer object, via its
base class, inherits access to the VanityCore object and via that object has access to essential
engine objects such as DXGI, Device, and Command.
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Scene and pipeline objects are instantiated by the renderer object. The scene object, via
the co_wait operator and the std::future<> template, asynchronously loads and maintains
scene assets such as models, textures, and volumes while the pipeline object asynchronously
loads assets such as vertex and pixel shaders and binds them to the rendering pipeline. To
update resources on the GPU and draw the scene onto the back buffer, the main rendering
loop periodically calls the Update() and Render() methods from the renderer object.

The rendering object implements the observer pattern and, inside the main loop,
listens to various events it is registered for. For example, a SourcePressed event handler
manages gestures, such as a tap gesture. Input events can also be checked asynchronously.

5.2. Optimization

The VanityX engine and the applications based on it are optimized at three levels to
make them run more efficiently and to use fewer resources.

At the system level, we improve the utilization of the CPU and the GPU by imple-
menting explicit multitasking, explicit manipulation (placement) of graphic assets such as
meshes and textures, and triple buffering.

At the algorithmic level, we implement efficient 3D algorithms and corresponding data
structures. The former encompasses various algorithms such as intersections and collision
detection, while the latter includes data structures such as k-d trees as well as spatial
data structures that efficiently, in a hierarchical manner, manage the scene and the scene
objects. Both surface-based and volumetric models (cloud of points) are converted into our
proprietary binary formats (.vxm and .vxc) for faster reading, writing, and transferring.
To minimize the allocations from the free store, we prefer utilizing member objects to
implement one-to-one associations and custom allocators to implement associations with
multiple objects of the same class.

At the micro level, we utilize various techniques such as compile-time computation
via immediate functions, unfolding of recursive function calls, SSE (streaming SIMD
extensions) instructions, flattening branches, loop unrolling, and online compilations (via
the fxc compiler) to generate the best instruction set of the underlying GPU.

5.3. Debugging and Performance

To debug C++ code on the CPU, we use custom logging by tracing and recording
VanityX calls with multiple channels and verbosity and Visual Studio 2022′s debugger.

PIX for Windows is used for capturing and analyzing the Direct3D 12 calls that it
makes during a given frame. PIX implements a kind of offline (post-mortem) monitoring,
where the analysis is performed after the execution—it is contrasted to online monitor-
ing [28], where tools can gather information from the system being monitored and can
manipulate its dynamic behavior. We use PIX events (regions of time) and markers from
the WinPixEventRuntime API to demarcate regions being monitored. Function PIXBegin-
Event() labels the start of a user-defined region while function PIXEndEvent() labels the
end of that region. During the launching, PIX instruments the application being observed
by injecting the capture layer into it. Using PIX, we record monitoring data in the form of
GPU captures and use those traces for various debugging and analysis purposes, such as
visualizing bottlenecks and pipeline stalls.

With reference to Figure 12, we captured a GPU frame related to the graphics queue
and show the API calls that implement explicit synchronization between the CPU and the
GPU. The Wait() call is issued on the ID3DCommandQueue object. It makes the command
queue object wait until the specified fence reaches or exceeds the requested value. After the
scene has been drawn, the Signal() call is issued on the command queue object to set the
fence to the specified value. The Signal() call is issued again after the scene is presented to
the screen. The synchronization on the CPU side is performed via VanityX’s fence object,
as described in Section 3.6.
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Figure 12. Recording a drawing of a human abdomen consisting of eight organs. Each organ is
drawn using Direct3D 12′s method DrawIndexedInstanced()—the first parameter is the number of
indices that defines the mesh geometry (triangles).

5.4. Deployment to HoloLens 2

The target architecture for VanityX desktop applications is x64. HoloLens 2 mixed
reality applications are based on the ARM64 architecture, built on a desktop computer, and
deployed to and started on the HoloLens 2 headset. Using Visual Studio 2022, VanityX’s
mixed reality applications can be deployed via Wi-Fi or via USB.

Applications running on HoloLens 2 in the debugging mode can be remotely con-
trolled from the developing computer via standard debugging techniques such as stepping
through, watching variables, and setting breakpoints.

Once deployed, mixed reality applications can be started from HoloLens 2′s Start
Menu using taps, air taps, and voice commands.

6. Test Cases

Three types of testing were used: unit testing, integration testing, and end-to-end
testing. To test our components (units) individually and independently, we use the Google
Test framework integrated with Visual Studio 2022, while our integration and end-to-end
testing are performed via 3D test applications created for particular use case scenarios.

6.1. Surface-Based Rendering

In this kind of rendering, we are viewing only the surface (an approximation) of the
models being rendered and their interaction with light. A vertex is a basic element making
up a 3D object. It defines a point in space using x, z, and y coordinates as well as its other
attributes such as color, normal, texture, etc. Using vertices, programmers can create basic
rendering primitives such as points, lines, and triangles, and using the graphics primitives,
programmers can compose more complex 3D objects.

In VanityX, a mesh is a collection of triangles. In addition to meshes, which define the
geometry of a model, models can also contain other features that define their location and
appearance on the scene, such as materials, textures, and how they are affected by light.
VanityX supports surface-based rendering in the solid and wire-frame modes by directly
configuring the DirectX 12 rasterizer state in real time.

With reference to Figure 13, we show a human skull of a catholic saint that is rendered
in the solid mode and a human abdomen. The skull model represents a skull (cranium) of
a catholic relict—it is created by a professional 3D scanner and is a part of the Interactive
Virtual Shrine (IVS) project [43], which provides anthropological and religious aspects of
catholic relicts. Its vertex attributes are position, normal, and texture coordinates, and it
is rendered in the solid mode. The abdomen model is created by a DCC tool; its vertex
attributes are position, normal, and color; and it is rendered in the wire-frame mode without
culling back triangles.



Appl. Sci. 2023, 13, 5468 17 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 24 
 

attributes are position, normal, and color; and it is rendered in the wire-frame mode with-
out culling back triangles. 

  
Figure 13. Rendering triangle meshes with VanityX. The relict on the left side is stamped with the 
papal seal. It is provided by courtesy of Reverend Marijan Jelenić, the catholic church in Vodnjan, 
Croatia. On the right, we render a human abdomen. 

Table 1 and Figure 14 show the rendering times for each individual organ of a human 
abdomen on different GPUs. 

Table 1. Durations of rendering human organs on the NVIDIA RTX Quadro 4000 GPU. 

Organ Number of Vertices Number of Indices Duration (ns) 
Bile duct  896 1344 256 

Falciform ligament 5632 8448 1312 
Gall bladder 6528 9792 1184 

Pancreas 7360 11,040 1120 
Liver 12,448 18,672 2944 

Stomach 18,496 27,744 3808 
Small intestine 51,080 76,620 11,328 

Colon 114,332 171,498 25,952 

 

  

Figure 13. Rendering triangle meshes with VanityX. The relict on the left side is stamped with the
papal seal. It is provided by courtesy of Reverend Marijan Jelenić, the catholic church in Vodnjan,
Croatia. On the right, we render a human abdomen.

Table 1 and Figure 14 show the rendering times for each individual organ of a human
abdomen on different GPUs.

Table 1. Durations of rendering human organs on the NVIDIA RTX Quadro 4000 GPU.

Organ Number of Vertices Number of Indices Duration (ns)

Bile duct 896 1344 256
Falciform ligament 5632 8448 1312

Gall bladder 6528 9792 1184
Pancreas 7360 11,040 1120

Liver 12,448 18,672 2944
Stomach 18,496 27,744 3808

Small intestine 51,080 76,620 11,328
Colon 114,332 171,498 25,952
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6.2. Rendering Medical Imaging

Direct volume rendering (DVR) is best suited for medical and other scanned images.
A medical image represents a thin slice of a human body taken from a scanning device
such as computed tomography (CT) or magnetic resonance imaging (MRI). Each slice is
composed of individual pixels arranged into a rectangular grid—combining individual 2D
images into a 3D grid, we obtain clouds of points. An element in the 3D grid is called a
voxel (volume element).

Many techniques including deep and machine learning [44] have been developed
for the segmentation [45], reconstruction [46], and registration [47] of images, including
medical ones. VanityX supports various volume rendering techniques such as texture-based
rendering, ray-cast rendering, and rendering using transfer functions. With reference to
Figure 15, we render a slice of a human abdomen (liver) and a human skull. The slice of a
human abdomen is anonymized and rendered using texture-based rendering, where each
axial slice is represented as a texture mapped (sampled) onto a quad. The human skull is
rendered using transfer functions that map scalar data onto color and opacity to depict
relevant features of the model being rendered.
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Figure 15. Volume rendering via textures and transfer functions. On the left is a model provided
courtesy of Dragan Schwarz from hospital Radiochirurgia, Croatia, while the second model is a
free one.

6.3. Isosurfaces

A scalar field is a function that assigns numbers such as densities and attenuation to
points in R3. For volume visualization, computer graphics make use of implicit surfaces
(isosurfaces) that are explicitly defined via field functions. There are many techniques
for constructing isosurfaces from scalar fields, such as Delaunay triangulations [48] and
marching cubes [49]. VanityX makes use of the marching cubes algorithm to construct
isosurfaces via triangle meshes from volumetric data acquired from CT and MRI scanning
devices.

With reference to Figure 16, we show a 3D surface-based model that is triangulated
using the marching cube algorithm. The model represents a triangle mesh of a human brain
triangulated from a free volumetric model. Triangle meshes in VanityX are implemented
via DirectX triangle lists. A triangle mesh must be two-manifold, where each edge is shared
by two faces—only boundary edges may belong to one face. Traversal to neighboring faces
is allowed only through edges, and passing through vertices is not allowed.

In some cases, triangle meshes generated by the marching code algorithm are not
two-manifold and therefore might be rendered with holes, so we developed a simple
3D tool to visualize marching cubes cases and spot potential errors. The right picture in
Figure 16 shows a case where five voxels have bigger values than the threshold, and we
use three triangles for creating a part of the isosurface.
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Figure 16. On the left, we show a triangulated human brain. The model is rendered in the wire-
frame mode without back culling. On the right, we inspect a marching cubes case. Two polygons
(three triangles) are used to cover five voxels.

6.4. Rendering on HoloLens 2

All previous examples run on HoloLens 2. In this example, we demonstrate how a
mesh of a human abdomen is rendered on the HoloLens 2 immersive headset.

Figure 17 shows how a model of a human abdomen and its organs (holograms) are
rendered in the solid mode on the HoloLens 2 physical device. The same rendering image
is achieved using the HolographicSpace and OpenXR APIs. Figure 13 shows how the same
model of the human abdomen is rendered on a standard flat display in the wire-frame
mode. Note that the colors of organs are not real.
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Figure 17. Rendering a model of human abdomen on HoloLens 2 in solid mode with culling back
vertices. The textures are not real—they are chosen to highlight organs such as the pancreas and liver.

With reference to Figure 11, the Renderer class represents the rendering functionality
for each frame on the holographic display. A Scene class manages eight scene objects that,
via triangle meshes, represent organs of a human abdomen: liver, stomach, small intestine,
colon, bile duct, gall bladder, pancreas, and falciform ligament. The scene object asynchronously
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loads models, shaders, and pipeline resources. The Pipeline class manages the underlying
graphics pipeline. It makes use of a PipelineState object to set the programmable pipeline
stages (shaders). The CommandList class executes the pipeline, providing explicit asym-
metric multiprocessing between the Qualcomm Snapdragon 850 CPU and the Adreno 630
GPU in exchanging resources and executing tasks in parallel.

The RootSignature class, via the RootParameter objects, represents the resources that
can be bound to the rendering pipeline as well as the resources that can be bound to a
particular programmable stage. A DescriptorHeap object holds the positions of individual
organs (holograms) in the world space relative to the holographic camera as well as the view
and projection matrices for each eye—all pipeline resources are allocated to support triple
buffering.

With reference to Figure 9, physicians, radiologists, and surgeons wearing a HoloLens
2 headset can interact with the holograms by using gestures including taps and voice
commands such as Select, which will bring the hologram of interest to the position of the
gaze, which can be obtained via eye-tracking mechanisms.

7. Discussions and Conclusions

Our ideas and concepts for creating an agile real-time 3D rendering and computing
platform that runs close to metal and supports surface-based rendering, direct volume
rendering, and mixed (extended) reality on HoloLens 2 have proved to be very successful
and enlightening. We described the design, architecture, and implementation choices of
our platform as well as of the 3D engine in detail and compared our decisions and choices
with other approaches. It is worth mentioning that the platform is currently a prototype in
which only core functionalities are implemented, and the production level usage is planned
through the entrepreneur company alongside the MetaverseMed project [21] in the field of
medicine.

VanityX is based on network services and explicit asymmetric multiprocessing be-
tween the CPU and the GPU, explicit control of how pipeline resources are distributed and
exchanged, and asynchronous loading of 3D assets. It supports two rendering paradigms:
surface-based rendering, where models are constructed via triangle meshes with variable
vertex types, and direct volume rendering, where models are represented via a set of scalars
that can be rendered using texture-based rendering, ray-casting techniques, and transfer
functions. Using isosurface generation techniques, we generate triangle meshes from vol-
umes of scalars. It is worth mentioning that the implementation of these possibilities is not
trivial and is the subject of very intensive research activity [6].

VanityX provides an object-oriented programming model that hides the underlying
DirectX 12 COM objects and makes use of two programming languages that are close to
hardware: C++ and HLSL. We support two platforms: desktops with flat screens with high
resolutions and mixed reality using the HoloLens2 immersive headset. We deploy directly
to the HoloLens 2 and therefore allow for standard software practices such as debugging
and profiling the source code. Since our findings and results have opened new questions
and identified new research directions, they strongly motivate further investigations.

Future research will be in two directions: (1) general 3D research and (2) investigations
of using mixed reality in medicine. We will further investigate techniques and algorithms
to support 3D rendering and the use of parallel computing techniques on both CPUs and
GPUs, such as implementing rendering on multiple GPUs and implementing various
polygonization techniques on GPUs using the tessellation stage. Our future research in
analyzing medical imaging will use machine learning algorithms, especially those that can
recognize malignancies. We also aim to use ray-casting techniques from DirectX 12 for our
volume rendering techniques.

The primary business domain for which we will continue our research in mixed reality
is medicine, via project MetaverseMed. It will primarily empower medical radiologists,
clinicians, and surgeons by accelerating diagnosis and improving the precision of surgical
operations by projecting medical images in the form of 3D holograms on the patient’s body
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parts, resulting in faster and better care and outcomes. Holograms (blend) digital objects,
such as medical images and volumes, with physical patients to look like they are a part of
the patients. MetaverseMed will also, via simulated training, enable continuous learning
and the sharing of experience and knowledge among healthcare workers and students.

Our most challenging investigation is the integration of VanityX holograms with the
CyberKnife 7 radiation delivery system to enable medical experts, especially radiologists
and surgeons, to see and manipulate medical holograms inside the patients as if they were
transparent, thereby helping them improve the accuracy of surgical operations. A big
research area will be telehealth to empower multidisciplinary medical teams to collaborate
remotely, perform virtual cooperation and consultations, and make (more accurate) diag-
noses and plans. However, although the system is raised and its functionality established,
there are some issues that have to be appropriately evaluated and tested in real settings.
One typical example is the evaluation of real-time remote 3D rendering of medical images
using GPUs, well founded in [8]. Having in mind that one of the system’s key advances is
related to team collaboration, determining the maximum load of a specific system based on
the quality of service (QoS) is scheduled as a future research task.
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