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Abstract: Risk assessments of people who are trapped are an important basis for scientific and
effective emergency rescue after an earthquake. Currently, most models are based on the kilometer
grid scale or community scale that gauge the population and extent of the earthquake burial under
distinct intensities. The estimation results of the methods are on coarse scales; therefore, the methods
cannot meet the requirements of rapid rescue after an earthquake. In response to the above statements,
this study uses multi-source data to propose a way to estimate the number and distribution of people
trapped under the scale of single buildings. Firstly, we use pre-earthquake optical high spatial
resolution remote sensing images for building detection, and then we combine them with multi-
source data for population distribution simulation. Secondly, indoor ratio assessment models are
constructed by analyzing human behavior. Then, aerial remote sensing images are used for building
seismic damage level detection. Finally, based on these three factors, a single building crush burial
estimation model is constructed to obtain the number and distribution of personnel trapped. In this
paper, the reliability of the proposed workflow is demonstrated by the casualty results in experiments
conducted in the nearby Moxi town after the Luding 6.8 magnitude earthquake on 5 September 2022.
For future natural disaster events, this method can provide reliable information support and decision
references for earthquake emergency rescue.

Keywords: people trapped; multi-source data; distribution evaluation; earthquake emergency rescue

1. Introduction

In recent years, natural disaster events have become more frequent, including many
mega-earthquakes that have caused more serious casualties in combination with climate
change [1,2]. According to data published by the United Nations Office for Disaster Risk
Reduction (UNDRR), they predicted that more than 750,000 people would be killed in
earthquake disasters between 2001 and 2020, accounting for 59% of all disaster deaths.
Although scientists have been searching for ways to predict earthquakes, mankind has not
yet been able to fully grasp the mechanism of earthquakes and their precursors. Currently,
no country in the world can accurately predict earthquakes [3]. Therefore, an accurate
emergency response after an earthquake is an effective and critical means of reducing
earthquake casualties.

The occurrence of large earthquakes is usually accompanied by the collapse of many
buildings and people who are trapped [4]. If emergency rescuers can quickly access trapped
people in the disaster area after an earthquake, it can greatly improve the efficiency of
emergency rescue and save more lives to a maximum extent. However, after a destruc-
tive earthquake, the disaster area often suffers from communication and transportation
disruptions and lagging access to disaster information. As a result, rescuers are unable
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to accurately understand the distribution and number of trapped people in the disaster
area in a timely manner, so the establishment of a scientific and effective pressure burial
assessment system is crucial for emergency command decisions [5].

Due to the lack of specific disaster information at the early stage of rescue, some
researchers have estimated the degree of damage of buildings according to the level of
the earthquake disaster, so as to establish a statistical model to predict the total number
of large-scale buried personnel [6,7]. A.W Coburn et al. [8] investigated the relationship
between collapsed buildings and human casualties. He et al. [9] achieved a rapid as-
sessment of the post-earthquake blind field by constructing a correlation model between
mortality and injury rates and earthquake intensity at different administrative area levels.
Freire et al. [10] combined urban population density with seismic hazard rating to derive
potential casualties in seismic hazard risk areas for the specific planning of subsequent
rescue needs and investigated the relationship between collapsed buildings and human
casualties. Feng et al. [11] established an empirical function for earthquake personnel
losses, using the relationship between seismic parameters and the number of casualties
reported from historical data. So et al. [12] calculated the relationship between multiple
earthquake deaths and buildings, and proposed the impact of different building structures
on the number of casualties. Xu et al. [13] proposed a method for assessing earthquake
crushers based on building collapse, which was based on the relationship between the time
of earthquake onset and the number of casualties. Xiao et al. [14] proposed a model for
estimating the crush and burial rate with the a priori probability of personnel in terms
of the indoor population rate and building collapse rate. Wu Chen et al. [15] analyzed
the statistics of the number of casualties of historical earthquakes in China and obtained
an empirical pressure burial rate calculation equation based on the building collapse rate.
Utilizing remote sensing methods, Ranjbar et al. [16] suggested calculating the number of
casualties based on the time of the earthquake, the structural material of each building, and
the extent of destruction. Huang et al. [17] proposed a robust wavelet v-SVM earthquake
casualty estimation model using multi-source data. These methods mainly focus on the
assessment of the number of casualties after the earthquake, and most of the assessment
units are at the municipal level, which cannot effectively reflect the regional differences in
the distribution of buried personnel and the identification of key areas.

So, the assessment method based on the population kilometer grid is widely used.
Yang [18] gave a preliminary method for calculating the number of trapped people in a
kilometer grid by fully considering the factors affecting the buried people. Yu et al. [19]
programmed and optimized Yang’s equation, and the evaluation results analyzed by arith-
metic cases can identify where the key areas of buried people are. Zhou et al. [20] combined
the kilometer grid data of the Gansu Province with localized parameter improvement for
the earthquake formula. The applicability of the pressure buried personnel distribution
assessment method for Gansu area was improved. Bai et al. [21] established a model
for the number of people buried by earthquakes based on the grid and high-precision
house data for the Ludian and Yiliang earthquakes in the Yunnan Province as an example.
Bing et al. [22] proposed a method to assess the number of buried people due to building
collapse in an earthquake disaster by combining the estimation model of earthquake ca-
sualties with the assessment unit of township residential land. Wei et al. [23] established
an assessment model for the number of people trapped in collapsed buildings in an earth-
quake to show the distribution in a kilometer grid distribution as an example of the Ludian
earthquake and verified the accuracy of the assessment results.

There have been many studies related to people who are trapped in Table 1, but the
existing studies have limitations: (1) The requirement of data in most methods involve a
wide range of information and data. These data are costly to obtain and slow to update.
Moreover, the lack of such basic data in the currently available emergency database makes
the applicability of existing methods insufficient. (2) Existing models that can be used
directly are more conducive to estimating the overall casualty situation in the region.
Although the km grid method is more refined for personnel buried pressure prediction,
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with the development of sensors in aerospace technology and the increasing demand for
emergency efficiency, a more refined personnel buried pressure model can be attempted
to be constructed, forming the rough prediction of the overall number of people buried
pressure in a large range, the prediction of personnel buried pressure in km grid scale, and
then the prediction of personnel buried pressure in fine individual buildings. Therefore,
this paper proposes an evaluation model of earthquake-trapped personnel using remote
sensing images, UAV images, and multi-source geographic data through the simulation
of population distribution, the construction of personnel in the indoor population rate,
and the degree of building damage after the earthquake to analyze the key rescue areas
for emergency rescue work. Finally, this paper uses the town of Moxi, the epicenter of the
recent earthquake in Luding, Sichuan, as a case study for experiment and analysis.

Table 1. Modeling and methods approaches.

Estimation Modeling Methods References

Seismic-based statistical model

Adding the earthquake-related parameters fitting function
to the post-earthquake casualty data [8–10]

Adding the material structure and collapse rate of buildings
with the post-earthquake casualty data [11–13,15]

Based on the prediction model of building collapse rate and
chamber rate [14]

Based on multi-source data [16,17]

Statistical model based on kilometer grid Statistical model was optimized by superimposing
multi-source data with kilometer grid as unit [18–23]

2. Methods

From the point of view of fine rescue, this paper constructs an estimation model of
buried personnel in a single building. As illustrated in Figure 1, the model is mainly divided
into two stages: “Pre-earthquake Key Information Extraction” and “Post-earthquake Risk
Assessment of Seismic People Trapped”.
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Figure 1. Flowchart of the proposed work.

Pre-earthquake stage is for extraction of the key information factor of people trapped.
Pre-earthquake high-resolution satellite imagery is used to obtain building edge informa-
tion; Point of Interest (POI) data are used to obtain building function; and Digital Surface
Model (DSM) data are used to obtain building height information. Statistical yearbooks are
used to obtain demographic data for the study area. Based on the information obtained
above, we used a “Population Distribution Model” to simulate the distribution of the local
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population and to study the indoor population rate assessment under different building
attributes and different time periods.

Post-earthquake stage is an estimation of people trapped after earthquake based
on multi-source data. Post-earthquake aerial imagery is used to extract the damaged
buildings and the results are fed into our proposed single building burial model, as shown
in Equation (1), to finely estimate and analyze seismic people trapped in earthquake.

Bp = Pi × Pt × Dd (1)

where Bp represents the estimation number of people trapped in a single building; Pi repre-
sents the number of people in a single building; Pt represents indoor population rate; and
Dd represents degrees of building damage. It is important to emphasis that the description
of trapped people in buildings in this paper does not include those who were quickly
removed from danger either by themselves or by mutual rescue. These people may die,
be seriously injured, or buried too deeply to save themselves or each other during an
earthquake. In this paper, referring to previous research findings on the rate of serious
injury and mortality of personnel at different degrees of damage [24–26], the burial rate
is taken to be 1/300 in the severely damaged building state and 1/20 in the destroyed
building state.

2.1. Pre-Earthquake Phase
2.1.1. Population Distribution

The true spatial distribution of the population should be conducted using a census.
However, this approach is both costly and difficult to achieve. To address this issue, this
paper explores the intrinsic link between building size, building function, and people
distribution, using an area weighting method to refine the population of different age levels
to each building. The specific calculation process is shown in Equations (2)–(4).

Pi = P1 + P2 (2)

P1i =
S
Si
× T (3)

P2i =
S
Si
× R (4)

In the above equation, Pi stand for the population in the building with function i.
P1, P2, and S, respectively, stand for the resident population, random population, and floor
area of the building with function i. Si, T, and R, respectively, stand for total building area
in different functions, total population, and total mobile population under the function of
the administrative district where they are located.

Since the population distribution of each building is not counted in most undeveloped
areas, we need to simulate the population of each building according to different age groups
and different building functions. Firstly, we will simulate the total number of resident
staff in buildings with the same function. According to the work of different groups, we
will divide them into the following groups: 0–14 years old, 14–60 years old, and over
60 years old, and we will allocate different age groups to the same function according to
their functions. For example, the 0–14-year-old group is mainly in education during the
day and accommodation at night. In the daytime, the total number of schools is equal
to the total number of permanent residents aged 0–14. Then, population distribution of
individual buildings is conducted according to Equation (3), which concerns the proportion
of each school area to the total area of education services. Through the study of indoor
population in Sichuan area [27,28], the functional areas of each age group in different time
periods were summarized. Tables 2 and 3 below show the corresponding architectural
functions at different ages and times.
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Table 2. Different ages on weekdays in the functional area.

Age 8:00–17:30 17:30–22:00 22:00–8:00

0–14 Educational services
Accommodation service

Commercial service
Leisure service

accommodation service

14–60
Hospital service

Livelihood service
Enterprise office

Accommodation service
Hospital service

Livelihood service
Commercial service

Leisure service
Enterprise office

Educational services

Accommodation service
Leisure service

Enterprise office
Educational services

Tourist attraction

60+
Leisure service

Accommodation service
Tourist attraction

Livelihood service
Accommodation service Accommodation service

Random population Tourist attraction
Accommodation service

Commercial service
Leisure service

Accommodation service
Commercial service

Leisure service

Table 3. Different ages in the rest weekdays in the functional area.

Age 8:00–17:30 17:30–22:00 22:00–8:00

0–14
Educational services

Leisure service
Commercial service

Accommodation service
Commercial service

Leisure service
Accommodation service

14–60

Accommodation service
Hospital service

Livelihood service
Commercial service

Leisure service
Enterprise office

Educational services

Accommodation service
Hospital service

Livelihood service
Commercial service

Leisure service
Enterprise office

Educational services

Accommodation service
Leisure service

Enterprise office
Educational services

60+
Leisure service

Accommodation service
Tourist attraction

Livelihood service
Accommodation service Accommodation service

Random population Tourist attraction
Accommodation service

Commercial service
Leisure service

Accommodation service
Commercial service

Leisure service

1. Building area S

The content of basic geographic data varies from region to region around the world,
and not all regions have real-time updated building mapping data. This paper proposes a
method to obtain the area of pre-earthquake buildings based on remote sensing images,
with professional manual correction, to form relatively accurate vector data of buildings.
The U2-Net network [29] is used to detect building edge information, which is able to
capture much contextual information in imagery and increase the depth of the architecture
without significantly increasing the computational cost. Vectorization and manual inspec-
tion were carried out based on the above results, and the roof area was calculated using the
computational geometry function in ArcGIS.

In addition, DSM data are used to obtain the floor height of the building. This method
uses the center of the building as a rectangular buffer zone, the plural of DSM points
within the building contour as the building elevation, and the plural of DSM points in
the non-building area within the buffer zone as the ground elevation, and calculates the
number of floors by calculating the building height. The floor height of the building is
taken with reference to the Residential Design Code, which depicts the height of ordinary
residential floors as 2.6–2.80 m, and the floor height of stores is generally between 4.5 and
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5.1 m. Therefore, the height of ordinary residential floors in this paper is set to 2.7 m, and
the floor height of stores is set to 4.8 m. Finally, the area of the top surface of the building
multiplied by the height of the floor is obtained.

2. Identification of the building function i

As buildings are an important part of cities, the functional classification of urban
buildings can provide a favorable basis for the division of urban functional areas, assist
government departments in managing and making decisions on the distribution and
allocation of urban planning [30–32], land use [33], resources [34], and population [35], and
help promote the sustainable development of urbanization construction [36]. In our study,
the results of the determination of building function can effectively improve the accuracy
of the indoor population rate, and can be effectively applied to the risk assessment of the
seismic people trapped.

In this paper, a method of functional classification of buildings based on high-resolution
remote sensing imagery is proposed and used. Firstly, the building edge information in
the pre-earthquake high-resolution remote sensing images is extracted using deep learning
method. Then, the POI data are sorted and classified according to the experimental idea,
and finally, the two are fused together to realize the functional judgment and classification
of single buildings before a disaster.

There are too many types of POI data, and a single functional building often contains
multiple POI points. Consider the similarity of multiple functions, it is necessary to delete
and merge POI data. In this paper, according to the Classification Standard of Land
Use Status (GB/T21010-2017), building functions are divided into 8 categories, including
accommodation service, hospital service, livelihood service, enterprise office, commercial
service, tourist attraction, educational service, and leisure service. The data classification
results are shown in Figure 2.
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2.1.2. Indoor Population Rate

The indoor population rate is used to describe the presence of people in a building
during a certain period, which involves many factors, such as the specific time of day
(day, night, and holidays), weather conditions, occupant density, population size, and the
living and production conditions of the residents. In the field of earthquakes, the indoor
population rate is mainly related to geographical location, working days and non-working
days, age of residents, buildings with different functions, earthquake occurrence time,
population structure, and occupation. Of course, some factors are indefinite, such as
climatic conditions and interim policies. The occupancy rate is the ratio of the number
of people in the building to the accommodated population, and it takes a value in the
range of 0–1. In previous studies, the indoor population rate is mostly determined for a
specific area based on surveys of local occupancy patterns, requiring significant human and
financial resources, which are not universally applicable. Moreover, the indoor population
rate with buildings of detailed function has been less studied. To obtain the results of indoor
population rate with universal applicability, we studied the results of indoor population
rate with universal applicability based on Sichuan population’s activity literature [27,28].
The specific relationships are shown in Figures 3 and 4.
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The indoor population rate is considered to be related to a variety of factors, both
definite and indefinite, such as the moment of earthquake, working days or rest days,
population size, population structure, occupation, and building function. Individual
movements of people are more random, but group population movements have a certain
regularity. Each day can be divided into two categories: working day or rest day, and the
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24 h day can be divided into 7 periods. Stage A stands for sleep period (22:00 the previous
day to 06:30 the next day). Stage B stands for morning commute (06:30–08:00). Stage C
stands for working period (08:00–12:00). Stage D stands for rest period (12:00–13:30).
Stage E stands for working period (13:30–17:30). Stage F stands for evening commute
(17:30–19:00). Stage G stands for rest period (19:00–22:00).

By analyzing the behavioral characteristics of the population at various times of the
work and rest day, the economic census data are combined to quantify the indoor population
rate. The social activity patterns of the various sectors and the indoor population rate of
the functional buildings are summarized in this study. The indoor population rate of each
functional building on working days is shown in Figure 3 and the indoor population rate
of each functional building on rest days is shown in Figure 4.

For buildings with weekday accommodation service, the indoor population rate is
0.95 in stage A, when the population is basically asleep. In stages B–F, during working
hours, only the elderly and young children (0–2 years old) are present in buildings with
this function, so the indoor population rate is 0.2. In stage G, when the population is resting
at home after work, the indoor population rate takes 0.8. For buildings with a rest day
accommodation service, the indoor population rate is still 0.95 in stage A. In stage B and G,
there are trips, so the indoor population rate is 0.6. In stages C–F, there are generally home
and travel behaviors, so the indoor population rate is taken as 0.4.

The hospital service is divided into inpatient and outpatient, with medical and nursing
staff, outpatients, inpatients, and escorts during daytime, and inpatients, escorts, and
medical and nursing staff on duty at night. Therefore, the indoor population rate of stage A,
B, F, and G is basically the same as 0.5. The indoor population rate of stage C and E is 0.9 for
working hours. During lunch break, medical and nursing staff and accompanying staff are
out, so the indoor population rate of D is 0.7. On rest days, the general number of medical
and nursing staff is reduced, and the general number of patients remains unchanged, so
0.5 is the indoor population rate of stages A, B, F, and G. A score of 0.8 is used as the
indoor population rate of stages C and E for working hours, and 0.6 is used for the indoor
population rate of stage D.

Livelihood service is mainly for public facilities, transportation facilities, and other
services. Staff need to serve the residents, so their work time is earlier than the company
enterprise. Additionally, their off-time is later than the company’s. So the indoor population
rate of stage A is taken as 0.05. The indoor population rate of stages B, F, and G is 0.7.
The indoor population rate of stages C–E is 0.9. The rest days are generally taken as the
same value.

The travel time of enterprise office on weekdays is concentrated; stage A and G are
off-duty rest time, due to the duty and property staff, and the indoor population rate is 0.05.
In stages B and F, most people commute, and so the indoor population rate is 0.3. There
are a few office workers in stages C and stage E, and so the value is 0.9. Stage D includes
catering and leisure, and so the value is 0.6. All rest days are taken as 0.05.

Commercial service operations are usually slightly later than corporate offices. The
indoor population rate of stage A is 0.05. The indoor population rate of stage B is 0.3. The
indoor population rate of stage C and E businesses is less, at 0.4. Stage E time is more
concentrated for the passenger, so the indoor population rate is 0.9. Stage G time gradually
decreases for the passenger, so the indoor population rate is 0.6. Rest day commercial
service traffic is more, and therefore, the rate of stage A is 0.05. The indoor population rate
of stage B is 0.3. The traffic is more concentrated in the stage C–F periods, and the indoor
population rate is 0.9. The traffic decreases gradually in the stage G period, and the indoor
population rate is 0.6.

The general traffic flow of tourist attractions on weekdays is concentrated in stage
C–E time periods, and the indoor population rate is 0.6. Stages B and F gradually decrease,
and the indoor population rate is 0.2. Stages A and G are in the scenic area closed states, and
the indoor population rate is 0.05. The traffic flow of rest days is surplus to weekdays, and
so for stage C–E time periods, the indoor population rate is 0.8. Stages B and F gradually
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decrease, and the indoor population rate is 0.2. Stages A and G are in the scenic area closed
states, and the indoor population rate is 0.05.

Educational services are mainly for kindergartens, elementary school, and secondary
schools. The indoor population rate of stages A and G on weekdays is 0.05. Stages B and F
are for commuting time, and the indoor population rate is 0.1. Stages C–E are for the school
period, and the indoor population rate is 0.9. All stages are 0.05 during the rest days.

Leisure service weekday traffic focuses in the off-hours, so the indoor population rate
of stage A is 0.05. The indoor population rate of stages B–F is 0.1. After a gradual increase
in personnel after work, the indoor population rate of stage G is 0.4. R = When rest day
traffic increases, which is generally concentrated in stages D–G, then the indoor population
rate is 0.6. When stages B and C number are less, then the indoor population rate is 0.2.
The indoor population rate of stage A is 0.05.

2.2. Post-Earthquake Phase

Damage class classification guidelines have been proposed for building damage as-
sessment [37]. For remote sensing assessment, some detailed wall damage and structural
damage are difficult to detect in most existing guidelines for classifying damage levels in
remote sensing images. As shown in Table 4, we classified buildings into only three classes
for emergency remote sensing assessment after earthquakes compared to the European
Large Earthquake Scale (EMS98) [38]. The differences of buildings with almost undamaged
grade, partial collapse grade, and damage grade in remote sensing images can be seen
in Figure 5.
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Table 4. Building damage grade of the remote sensing image.

EMS98 Ours

Grade Name Description Grade Name Description

Negligible to slight damage No structural damage; slight
non-structural damage

Almost
undamaged

The structure of the building is
complete, and the main structure has

not collapsed or partial collapseModerate damage Slight structural damage;
moderate non-structural damage

Substantial to heavy damage Moderate structural damage;
heavy non-structural damage Partial collapse

Partial collapse of the building, or
partial damage to the roof, or damage
to the parapet; 10–50% deformationVery heavy damage Heavy structural damage; very

heavy non-structural damage

Destruction Very heavy structural damage Damaged

The whole building collapsed
completely, or the roof collapsed

completely, or more than 50% of the
main structure collapsed with overall

distortion, deformation, or tilt

Since post-earthquake detection requires a fast and accurate method, this paper uses
the method of Fast r-cnn [39] for building damage, and extracts the center point of the
rectangular box as the result of building damage grade, and then aligns the center point as
a vector that is superimposed on the building vector layer.

3. Study Area and Data
3.1. Study Area Profile

The seismic event studied here is the 2022 Luding earthquake in Sichuan, China. An
Ms 6.8 earthquake occurred in Luding County, Ganzi Tibetan Autonomous Prefecture,
Sichuan Province, with a depth of 16 km on Monday, 5 September, at 12:52 a.m. The
earthquake killed 97 people, 21 people were lost, and 423 people were injured (including
6 critically injured and 42 seriously injured). The earthquake reached a maximum intensity
of 9 degrees, resulting in a higher number of casualties and severe damage to infrastructure
and houses compared to earthquakes of the same intensity [40]. The victim area mainly
involves seven townships in Luding County, Ganzi Tibetan Autonomous Prefecture, such
as Moxi town, Detou town, Yanzigou town, and Dewei town. In this paper, the township
site of the extremely hard-hit area of Luding earthquake, the township of Moxi, is selected
as the experimental area, covering 3.5 km2 area of Vaihingen. The model construction of
post-earthquake personnel burial pressure is based on multi-source data.

3.2. Data Descriptions

According to the experimental idea and techniques, the pre-earthquake images were
acquired by Google Earth service; the post-earthquake images were acquired by a small
unmanned aerial vehicle (UAV). In addition, this research paper used some other types of
auxiliary data such as POI (Point of Information). The details of the data used in this paper
are shown in Table 5.

Table 5. Description of the data used in the study.

Data Type Acquisition
Time Source Spectral

Band
Spatial

Resolution

Pre-earthquake image April 2021 Google Earth RGB 0.6 m
Post-earthquake

image September 2022 UAV RGB 0.1 m

DSM data May 2021
National Earthquake

Response Support
Service

- 0.1 m

POI data April 2022 AMap - -
Population statistics December 2021 Statistical Yearbook - -
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4. Experimental Results
4.1. Building Extraction Results

In this paper, the U2-Net network uses 3600 samples (512 × 512) as the training
set, 1200 samples (512 × 512) as the validation set verification set, and 1200 samples
(512 × 512) as the prediction set. Its hyper parameters are set to default (initial learning
rate lr = 1 × 10−4, betas = (0.9, 0.999), eps = 1 × 10−8, weight decay = 0), epoch = 350. Its
extraction results are shown in Figure 6. Precision, Recall, F1-Score, and IoU as accuracy
indicators are selected for verification, where Precision reaches 75.45%, Recall reaches 62.54%,
F1-Score reaches 68.39%, and IoU reaches 56.58%. From the results, the U2-Net network
model detection results can reduce the workload of manual vectorization and improve the
efficiency. The data in the red box in Figure 6 (the township site of Moxi) are of a densely
built-up area, which is used in the later experiment.

precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1− Score = 2× precision× Recall
precision + Recall

(7)

IoU =
Ap ∩ Ar
Ap ∪ Ar

(8)

where TP denotes the area of correctly predicted buildings. FP and FN are the mispredicted
correct and incorrect areas of the buildings. Ap and Ar represent the predicted and true
areas of buildings, respectively, in each damage grade.
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4.2. Building Function Identification Results

From the results as shown in Figure 7, the accommodation services including the
residential and hotel are relatively large in the town of Moxi, and the commercial services
are also more developed, which is in line with the functions of the tourism industry in Moxi.
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4.3. Building Floors Number Results

The results of the building floor number determined using DSM are shown in Figure 8.
From Figure 8, there are few high-rise buildings in the site of Moxi town, and the floor
height is generally lower than four stories.
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The floor area of the building can be calculated using the number of floors. The
number of buildings and the overall area are counted, and the results are shown in Table 6.
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Table 6. Buildings and overall area statistics.

Building Function Number Total Area (m2)

Accommodation service 745 500,406.91
Hospital service 5 7988.28
Leisure service 10 8468.25

Livelihood service 24 41,733.30
Enterprise office 12 13,515.43

Commercial service 157 229,199.30
Tourist attraction 3 4704.00

Educational services 5 6924.99
Total 961 812,940.46

4.4. The Rural–Urban Population Results

According to the Luding Statistical Yearbook, the rural–urban population of the
township of Moxi is 3131, of which 16.54% are aged 0–14, 65.53% are aged 15–59, and 17.93%
are aged 60 or older. Due to the epidemic control, the floating population consists of about
300 people, who are mainly tourists. The results of their population distribution are shown
in Figure 9. In the experimental area, the building has a population of more than 100 people
and its main functions are business, accommodation services, educational services, and
tourist attractions. Functions of 10–100 people buildings include accommodation services
(78.4%), commercial services (14.8%), livelihood services (3.4%), educational services (2.3%),
and hospital services (1.1%). Before obtaining post-earthquake images, the detailed damage
situation of buildings cannot be known. Therefore, when remote sensing images are
not acquired after the earthquake, the focus should be on the accommodation services,
commercial services, education services, and tourist attractions in the area.
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4.5. Test Results of Damaged Buildings

The buildings were extracted using the Fast r-cnn network in the post-earthquake
phase. The paper sketched 1000 samples of VOC (512 × 512) for training, accounting for
about half of the images, and the other half for testing (lr = 1 × 10−3, epoch = 300), if the
intersection-over-union between the ground truth annotation and the predicted bounding
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box is greater than 0.5. The building damage results are shown in Figure 10. The results
are shown in Table 7. The resulting centroid vectorization is then superimposed on the
pre-earthquake building vector layer. The results are shown in Figure 11. The building
damage rate is high, which is in accordance with the findings in the literature [32].
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Table 7. Buildings damage grade accuracy evaluation.

Buildings Damage Grade Damaged Partial Collapse

TP 43 240
FN 6 15
FP 8 12

Precision 84.31% 95.23%
Recall 87.76% 94.12%

F1-Score 86.50% 94.67%
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4.6. Estimation and Analysis of People Trapped

The overall number of people trapped was estimated to be four persons according
to the burial equation for building burial. Since no specific trapped personnel location
data are available for verification, casualty rates are used for verification. Following the
method of Yin [41], one person was calculated as dead and fourteen were injured using the
population distribution and the degree of building damage method above. The results are
consistent with the detailed actual death toll statistics of the Luding earthquake [40].

In this paper, although the building damage reached nearly 300 buildings, only four
people were buried. The overall search and rescue without weighting will delay the
rescue efficiency. This paper uses the refinement buried population model to estimate the
probability number of buried people in each building in the area in Figure 12. Rescue
priorities can be derived, such as the red building’s search and rescue priority being the
highest, the yellow and blue areas being second, and the green building personnel being
safer, which can improve the efficiency of the rescue.
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5. Discussion
5.1. Data Accessibility

The multi-source data acquisition for this article is easy. The required data is detailed
below. In the study, the use of remote sensing images with low cloud noise and close time
before earthquakes is something that should be considered. DSM data can be extracted
by remote sensing technology using high spatial resolution satellites and UAV. POI data
exist in software such as Baidu Map and AMap. Population data are generally available
from local government statistics. Post-earthquake images are selected from UAV with high
timeliness. Hence, the data involved in the proposed method are relatively easy to obtain.
The data can be applied to most of the geographical areas, unlike the other methods, which
require precise data from manual research.

5.2. Effectiveness of the Method

The most critical phase of the rescue operation concerns the determination of the
number of casualties and their exact distribution in the aftermath of the earthquake. This
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problem will help managers to deploy rescue personnel in a rational manner. The overall
number of casualties estimated with the model in this paper is basically consistent with the
actual number of casualties. At the same time, compared with large-scale people trapped
models, the rescue target estimated by the model is clearer, and the number of trapped
people in each building can be assessed, which is more in line with the need for accurate
rescue in modern emergency rescue operations.

5.3. Time Efficiency of the Method

All the experiments are implemented on an NVIDIA Geforce RTX 3060 12-GB GPU.
The approach in this paper is divided into two phases in Figure 13, where building extrac-
tion and damage detection do not include training time. The first stage is the pre-earthquake
stage, which takes 195 min. The second stage is the post-earthquake stage, which based on
the acquired images; the building damage detection and center point vectorization take
20 min, and the buried distribution of people takes 30 min.
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The overall time spent is about 245 min, which meets the requirement of 72 h of rescue.
The pre-earthquake phase takes a long time, but it can simulate the results in advance.
In the pre-earthquake, relevant information can be extracted in advance to improve the
efficiency of the personnel buried pressure model. The post-earthquake phase requires
remote sensing images of earthquakes that have already occurred and cannot be predicted
in advance. So, the length of the post-earthquake phase cannot be shortened.

6. Conclusions

This paper proposes a rapid assessment method for the distribution of trapped per-
sonnel for earthquake emergency rescue work. Compared with previous studies, the
contributions of this paper are as follows: (1) A refined assessment of a people trapped
model is proposed. The method considers multiple factors, such as the population distri-
bution, presence rate, and degree of damage, to estimate the number and distribution of
buried people in a single building, which ensures that the estimated number of people
trapped is relatively accurate. So, the proposed method can effectively guide the recom-
mendations and strategies for earthquake emergency rescue. (2) The proposed method
is suitable for implementing a dynamic assessment of personnel distribution over time
and expressing the differences in population distribution due to population mobility, and
thus, it can potentially provide optimization on the timescale for the assessment of the
distribution of personnel trapped by earthquakes.

In summary, the trapped personnel estimation model in this paper is a promising and
refined workflow. Through the analysis of the personnel distribution in different areas,
the densely populated earthquake evacuation area is planned in different time periods.
According to the results of the building damage detection, the seismic resistance and
aging degree of the damaged buildings in the area can be investigated on the spot, and
buildings with the same seismic resistance and aging degree that were not damaged in this
earthquake can be reconstructed to withstand the damage of future seismic events.

This article has some shortcomings; for example, the personnel presence rate is closely
related to season, weather, and temporary policies. Therefore, more factors need to be
considered in further research. In the next research plan, we will consider the influence of
weather on the room rate, including the influence of extreme weather such as rain, snow,
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and sand storms on the room rate. Considering the influence of seasons, for example, the
room rate of people going out at night in the winter increases, while the room rate of people
at night in the summer is low. This part of the work also needs to be refined in response to
the differences in the morphology of the building structure at the time of damage and the
similar differences in the burial rate. Meanwhile, smartphone data can be used to simulate
population distribution as well as detect anomalies after earthquakes [42,43]. With the
development of smartphones, this will become a trend.
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