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Abstract: The accuracy of X-ray fluorescence spectrometry in quantitative element analysis depends
on the particular sample composition (so-called matrix effects). Counteracting these effects requires a
large number of calibration samples similar in composition to those under analysis. Application of the
model constructed for a particular type of samples is not possible for the analysis of samples having
a different matrix composition. A possible solution for this problem can be found in the construction
of universal calibration models. We propose the development of these universal models using
chemometric tools: influence coefficients—partial least squares regression (IC-PLS) and nonlinear
kernel regularized least squares regression. We hypothesize that the application of these methods
for constructing calibration models would allow embracing the samples of different types in the
framework of a single model. We explored this approach for the case of two substantially different
types of samples: ores and steels. The performance of these methods was compared with the
fundamental parameters (FP) method, which takes into account matrix effects using theoretical
equations and allows handling samples of different elemental composition. IC-PLS significantly
outperforms traditional FP in terms of accuracy for predicting the content of Al (root mean squared
error of prediction 0.96% vs. 3.87%) and Ti (0.05% vs. 0.09%) and yields comparable results for Si and
Mn quantification in ores and steels.

Keywords: EDX; chemometrics; IC-PLS; fundamental parameters; KRLS; multidimensional calibration

1. Introduction

Measuring the elemental composition of samples is an indispensable part of modern
science. The preference here is given to instrumental methods capable of simultaneous mul-
tielement analysis. One of the most popular methods for this purpose is X-ray fluorescence
spectrometry (XRF) due to its reasonable price, nondestructive analysis procedure, simple
sample preparation, and applicability to a broad variety of objects in different aggregate
states. There are two main varieties of XRF spectrometer: wavelength dispersive (WDXRF)
and energy dispersive (EDXRF). WDXRF offers high sensitivity and good resolution (se-
lectivity) but requires a long measuring procedure in multielement mode; therefore, it is
quite expensive and cannot be employed for in-field measurements. In spite of the fact that
accuracy and selectivity of EDXRF are not that high compared to WDXRF, EDXRF is a more
popular variety as it provides for simple, inexpensive, and fast measurements and can be
miniaturized for in-field applications. Due to these features, EDXRF has found numerous
applications in various fields of applied science: geochemistry [1], material science [2],
pharmacology [3], archeology [4], environmental studies [5], etc. [6]. While qualitative
analysis (elemental identification) with EDXRF is usually straightforward, the quantita-
tive determination of element content may often pose certain problems due to so-called
matrix effects. These mainly come from the absorption and scattering of X-ray radiation
(both primary and fluorescence) by the elements of the sample and lead to the skewing of
fluorescence line intensities and thus to the incorrect quantification of target elements. For
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instance, if Fe is determined in the presence of Mg, then the signal of the former will be
higher than it would be without this matrix element. In contrast, determination of Fe in the
presence of Nb or W leads to a decrease in the iron’s signal. Inaccurate quantification can
also come from the overlapping of fluorescence lines, e.g., when Mn lines overlap with Cr
and Fe [7].

Several methods have been developed to take into account these matrix effects. Tra-
ditional methods include the fundamental parameters (FP) and influence coefficients (IC)
approaches [7]. FP is based on the fundamental model of X-ray radiation interaction with
matter and allows one to quantify the elements in the sample without using standard
samples. Among the limitations of FP is the fact that it may yield inaccurate results when
the sample under study contains a significant quantity of light elements (typically Z < 11).
FP is typically considered as a semiquantitative method. IC is based on the construction
of a regression model relating the intensities of certain XRF lines (from both target and
matrix elements) to the content of the target element. IC can offer higher accuracy, but it
requires a sufficient quantity of standard samples with known elemental composition and
the construction of an individual regression equation for each target element.

In recent years, attempts have been made to apply chemometric techniques for solving
the matrix effects problem [8–10]. However, it was demonstrated that in most cases IC
outperforms traditional chemometric multivariate regression tools [11]. This is because
chemometric tools cannot take into account the specific nature of matrix effects in XRF.
This issue was successfully circumvented in [12], where IC was combined with partial least
squares regression (PLS). Such a combination allows for a more effective accounting of
matrix effects and eliminates the need for separate regression equations for each analyte.

Since the matrix effects depend on the particular elemental composition of the sample,
they will strongly depend on a particular sample type. Thus, successful calibration requires
standard samples with a composition similar to that of the object under analysis. In this
way, a separate independent calibration model is required for each type of sample even if
the analyzed element is the same. This issue significantly complicates the application of
XRF and increases its labor intensity. The development of a universal calibration model that
could embrace different types of samples would be very much demanded in XRF studies.

We hypothesize that IC-PLS can also be extended for dealing with samples of different
natures. Another possible candidate for handling this problem could be a regression method
that takes into consideration the vicinity of the analyzed sample to some other particular
standard sample in the calibration set. The vicinity is considered in the multivariate
space defined by the elemental composition of the samples or the corresponding XRF line
intensities. One of the regression methods employing this idea is the kernel-regularized
least squares (KRLS) method.

To verify this hypothesis, we have explored the possibility of constructing a universal
calibration model in XRF using IC-PLS and KRLS, where samples having substantially
different elemental matrices—steel and ore samples—were employed as a case study. FP
was considered as a reference method capable of solving the same task.

2. Materials and Methods
2.1. Sample Description

Two types of samples with significantly different matrices were studied: steels and ores.
Forty-six standard reference samples of different steels were employed for the analysis. The
samples were in the form of bricks 100 × 15 × 15 mm. They were obtained from Standard
Samples Institute (Ekaterinburg, Russia). The composition of the steel samples is given
in Table S1 (Supplementary Materials). According to the passports of certified reference
materials, the uncertainty in the quantification of each element does not exceed the half of
the last indicated significant digit. The samples were polished with abrasive paper (P60 and
then P100) and washed with isopropyl alcohol before measurement.

Among the 68 ore samples, 41 were standard reference materials of metal ores (iron, mag-
nesium, titanium, chromium, and others), 18 from Angarsk province iron deposits and 9 from
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Noril’sk-Talnakh copper-nickel deposits (Russia). The latest 27 specimens were characterized
with a certified analytical technique (inductively coupled plasma optical emission spectrom-
etry). The samples were provided by the Institute of the Earth’s Crust, SB RAS (Irkutsk,
Russia). The composition of the ore samples is given in Table S2 (Supplementary Materials).
According to the passports of certified reference materials, the uncertainty in the quantification
of each element does not exceed the half of the last indicated significant digit. The same
holds for the indicated reference values in the ore samples analyzed with inductively coupled
plasma optical emission spectrometry. As can be seen, the composition varies significantly in
different steels and ores. The ore samples were prepared according to the following procedure:
1 g of the sample powder (particle size < 75 µm) was pressed with 100 kN force to make round
pellets of 40 mm × 5 mm size.

Si, Al, Ti, and Mn were chosen as target elements for universal calibration, as they
were present in both ores and steels in appropriate concentrations presented in Table 1.
There were several other elements present in both types of samples; however, the number
of corresponding samples was not sufficient for reliable modeling.

Table 1. Concentration of elements of interest in steel and ore samples.

Element Concentration in Steel Samples, % Concentration in Ore Samples, %

Si 0.03–2.74 0.27–35.94
Al 0.17–2.65 0.17–11.38
Ti 0.20–3.05 0.01–23.62

Mn 0.14–8.68 0.01–2.15

2.2. EDXRF Measurements

EDXRF spectra were acquired with Shimadzu EDX-800 (Shimadzu Corp., Kyoto,
Japan) energy dispersive X-ray fluorescence spectrometer using an Rh anode X-ray tube.
The measurements were performed with two different X-ray tube voltages: 15 and 50 kV.
The lower voltage was employed to acquire the spectra of light elements (Na-Sc), and
the higher one was used to analyze the heavier elements. The spectra registered with
15 kV voltage (XRF energies 0–20.48 keV) will be referred to hereafter as light channel.
The spectra registered with 50 kV voltage (XRF energies 0–40.96 keV) will be referred to
hereafter as heavy channel. The spectra accumulation time was 100 s. The measurements
were performed in the air. The collimator spot size was 1 cm in diameter.

2.3. Data Processing
2.3.1. Fundamental Parameters Method

The fundamental parameters method [13] is based on the theoretical model of X-ray
radiation interaction with matter in order to determine element content from XRF spectral
intensities. The calculations employ such physical constants as attenuation coefficient,
spectrum obtained from the X-ray tube itself, fluorescence yield for the element, branching
ratio, and jump ratios. Thus, the application of FP does not require standard samples, only
the known physical constants. This method only works well if the sample does not contain
a considerable quantity of elements without pronounced X-ray fluorescence lines (typically,
this is valid for light elements with atomic numbers below 11 in case of EDX spectrometers).
Otherwise, the FP yields low accuracy of analysis. The FP calculations were performed in
the proprietary Shimadzu software package for Shimadzu EDX-800.

2.3.2. Exploratory Data Analysis

Principal component analysis (PCA) was employed for the data exploration. PCA is a
common dimensionality reduction technique widely applied in chemometrics to study the
similarity among the samples characterized by multiple variables [14].
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2.3.3. IC-PLS

Influence coefficients-partial least squares (IC-PLS) is based on a combination of
traditional IC method and PLS multivariate regression. The idea is to get rid of the
limitation associated with IC that the number of parameters taken into account should be
smaller than the number of available standard samples. For this purpose, a PLS algorithm is
employed to calculate the regression coefficients in the IC equation instead of the traditional
ordinary least squares procedure. At the first stage in IC-PLS, a matrix is constructed where
the columns contain XRF signal intensities of analyzed and interfering elements, their
products and ratios. Next, this matrix is employed for PLS modeling. The resulting model
can be further applied for the quantification of elements in the new samples. A detailed
explanation of the IC-PLS procedure can be found in [12]. In our study, the IC-PLS models
were calculated in R environment [15] using an mdatools package [16].

2.3.4. KRLS

KRLS is a nonlinear regression method that develops ideas of generalized linear
models. The main idea is to construct a function or a surface, which is then penalized
for complexity via selecting one of many possible regression problem solutions with the
help of kernels and the least squares problem. There are two explanations of KRLS: the
“similarity-based” method and the “superposition of Gaussians” method.

The “similarity-based” method assumes that the data considered is i. i. d. and consists
of yields yi and a D-dimensional vector of covariate values xi for i-th exemplar. Then a semi-
defined positive and symmetric function is taken as the kernel k. This takes two numbers
and produces a real value output yi. In this article, the Gaussian kernel is used:

k
(
xixj

)
= exp(

−‖xi − xj‖2

σ2 ) (1)

where ‖xi− xj‖ is the Euclidean distance between the covariate vectors xi and xj. The kernel
bandwidth σ2 is set to the number of dimensions in this work, though it can be varied [17].
The most important feature of this function is that it reaches its maximum of one only when
xi = xj and gets closer to zero when the similarity between two vectors decreases.

The target function y = f(x) can be approximated by the equation:

f (x) =
N

∑
i

cik(x, xi) (2)

where k(x, xi) is the measurement of the similarity and ci is the weight for each input
pattern. Therefore, the main idea is to replace the linear combinations of functions of xi
with the similarity between a test point x and a fixed input pattern xi. This should be a
more appropriate point of view, as similar inputs should give similar outputs.

The “superposition of Gaussians” method supposes that an approximation function
can be described with the help of Equation (2) where each cik(x, xi) is a different Gaussian
curve centered around xi and scaled by ci. These Gaussians are summed up to give a
resulting function, which is a more flexible approach than in linear methods as it allows
describing nonlinear and nonadditive functions. For further understanding of KRLS we
should rewrite (2) in a more convenient form:

y = Kc =


k(x1, x1) k(x1, x1) · · · k(x1, x1)

k(x1, x1)
. . .

...
k(x1, x1) k(x1, x1)


c1
c1

cN

(3)
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Matrix K will be invertible, as it is positive, semidefinite, and symmetric. This means
that there is a best solution to the linear system y = Kc which gives a function that provides
the best fit for each data point.

To prevent overfitting, two more assumptions are made. The first is that the error of
the function is counted as a squared loss so that the result could be easily interpreted as
an expectation function. The second is that the complexity of the function is regularized
by a parameter λ to perform a tradeoff between complexity and accuracy. This is needed
because smoother functions tend to result in a better fitting due to the possible noise in the
signal. Therefore, the Tikhonov regularization problem, which may help to find the best
function fitting, in this case can be written as:

argmin f∈H

N

∑
i
(yi − f (xi))

2 + λ‖ f ‖2
H (4)

where λ ∈ R+ and f is the sought function. ‖ f ‖2
H is a L2 norm in the reproducing kernel

Hilbert spaces of functions associated with a particular choice of kernel.
To solve this problem, f(x) is replaced by Kc, and ‖ f‖2

H which is equal to ∑i ∑j cicjk
(
xixj

)
is replaced by cTKc. This results in:

c∗ = argminc∈RD

n

∑
i
(y− Kc)T(y− Kc) + λcTKc (5)

Consequently, y* = Kc* gives the best-fitting function. It can also be shown that the
solution can be found as:

c∗ = (K + λI)−1y (6)

More details can be found in [18].

2.3.5. Quality Metrics for Models

In order to assess the quality of the models, Pearson r correlation coefficient and root
mean square error (RMSE) values were employed. The RMSE was computed as follows:

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(7)

where y is a certified value, ŷ is a predicted value, and n is the number of samples in the
calibration (for RMSE of Calibration or RMSEC) or the test set (for RMSE of Prediction
or RMSEP).

3. Results and Discussion
3.1. Exploratory Data Analysis

The acquired XRF spectra of the samples are presented in Figure 1. It can be seen
that the visual appearance of the ore and steel samples spectra varies significantly due to
the significant differences in chemical composition. In order to visualize all the samples
simultaneously in a concise manner, we have applied PCA to the spectral data. The
intensities obtained in light and heavy channels for each sample were merged prior to the
analysis. The resulting PCA score plot is given in Figure 2. Two distinct clusters formed
by the ore and steel samples correspondingly can be observed in this plot. This sample
separation confirms the substantial difference in the spectra and the chemical composition
and consequently in the expected matrix effects in the spectra.
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Figure 1. XRF spectra: (a)—light channel for steel samples, (b)—heavy channel for steel samples,
(c)—light channel for ore samples, (d)—heavy channel for ore samples. Insets in plots show zoom-in
into low-energy ranges of the spectra.

Figure 2. PCA score plot for ore and steel samples.
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Therefore, the calibration models built separately for ores and for steels will not be
capable of accurate prediction in a cross manner: the calibration model for steels will
not be able to handle ore samples properly, and vice versa. This is well illustrated by
Figure 3, where “measured vs predicted” plots for the corresponding IC-PLS models are
presented. Quantification of Al and Mn is considered as an example. Unacceptably poor
accuracy of the predictions can be seen in all four plots. The cross-validated models built
separately for the ores and for the steels for the quantification of Al and Mn are shown in
Figure S1 (Supplementary Materials). Similar results were obtained for Si and Ti.

Figure 3. “Measured vs predicted” plots for IC-PLS models: (a) calibration set of steel samples,
test set of ore samples for Al; (b) calibration set of ore samples, test set of steel samples for Al;
(c) calibration set of steel samples, test set of ore samples for Mn; (d) calibration set of ore samples,
test set of steel samples for Mn. The green lines represent an ideal function y = x.

In attempting to construct a universal calibration model embracing both ore and steel
samples, we have applied several quantitative modeling methods: FP, IC-PLS, and KRLS.

3.2. Splitting the Data into Calibration and Validation Sets

In order to ensure the comparability of the quantification models on the basis of
various approaches, the data were split into calibration and test sets. This process was
performed in three steps. First, the samples of steel/ore were sorted by the increase in
concentration of the element of interest. Second, the two smallest and the two biggest
concentrations of the element in steel/ore were taken to the calibration set (except for the
Ti in steel samples, where only the smallest and the biggest concentrations were excluded,
as there were only seven samples in total). Finally, every third sample from the sorted
data was taken to the test set, while all the other samples were taken to the calibration
set. The samples of steels and ores were merged together into a single calibration set and
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a single test set. This procedure allowed for comparatively uniform distribution of the
concentration levels of the target elements in the calibration and test sets of both ores and
steels. Thus, for each element different calibration and test sets containing both ore and
steel samples were created (Table S3, Supplementary Materials).

3.3. Multivariate Modeling for Universal Calibration

The acquired spectral data were employed for KRLS modeling to construct the calibra-
tion that could embrace the samples of both types. The spectral data matrix was cleaned
from zero values for all the samples, as the KRLS input data may not contain missing or
constant values [17]. The light (Na-Sc) and heavy (Ti-U) channel spectra were merged
into a single data matrix with 3617 variables (wavelengths). Next, due to the uneven
distribution of the target element content along the concentration ranges, only the sam-
ples with the concentration of the investigated elements below the threshold presented
in Table S4 (Supplementary Materials) were taken into account. Otherwise, the contents
that were significantly different from the rest of the samples will introduce a substantial
bias into the regression modeling. The data were mean-centered and scaled with standard
deviation prior to modeling.

The metrics of the obtained KRLS models for the quantification of Si, Al, Ti, and Mn in
the framework of the universal model for ores and steels are given in Table 1 and Figure 4.

Figure 4. The comparison of RMSEP for (a)—Si and Al, (b)—Ti and Mn.
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In the case of IC-PLS, the initial data matrix was composed of the X-ray fluorescence
intensities of the Kα and Kβ lines of all the elements presented in Table S1. The data from
both spectral channels were employed. Then the columns containing I2

i , Ii∗Ij, Ii/Ij and Ii
2/Ij

were added to the matrix.
The number of the latent variables (LV1 in Table 1) was chosen according to the mini-

mum of RMSE in full cross-validation (RMSECV). Next, variable selection was performed.
Further VIP (variables important on projection) [19] scores were considered as a metric to
eliminate insignificant variables. The threshold VIP score was chosen individually for each
model in the course of the following procedure: the threshold VIP score value was varied
from zero to the maximum value with the step of 5% from the maximum value; the optimal
value was chosen according to the minimum of RMSECV. Finally, a new model based on
the variables with a VIP score more than the threshold was built and the number of latent
variables (LV2 in Table 1) was once again chosen according to the minimum of RMSECV.
The results are shown in Table 2 and Figure 4. An example of predicted vs measured plot is
shown for Al in Figure 5.

Table 2. The results of the algorithms’ implementation for different elements.

Element Algorithm Parameters RMSEP r

Si
(0.03–36.00%)

FP 1.42 0.98

KRLS λ = 0.010 1.82 0.96

IC-PLS LV1 = 2, LV2 = 1 1.52 0.91

Al
(0.17–11.40%)

FP 3.88 0.92

KRLS Λ = 0.023 1.57 0.68

IC-PLS LV1 = 2, LV2 = 2 0.96 0.90

Ti
(0.01–1.00%)

FP 0.09 0.89

KRLS Λ = 0.002 0.10 0.65

IC-PLS LV1 = 2, LV2 = 1 0.05 0.94

Mn
(0.01–1.75%)

FP 0.11 0.92

KRLS Λ = 0.001 0.16 0.83

IC-PLS LV1 = 5, LV2 = 2 0.13 0.88

It can be seen that IC-PLS significantly outperforms traditional FP in terms of accuracy
for predicting the content of Al (0.96% vs. 3.87%) and Ti (0.05% vs. 0.09%) and yields
comparable results for Si and Mn. A possible explanation for this distribution of the results
among the elements can be based on the nature of X-ray fluorescence signals. In case of
Al, the energy of the fluorescence lines is low and the lines have low intensities compared
to other studied elements. Thus, FP (which uses a single Al Kα line for concentration
calculation) has to deal with noisy data. Both IC-PLS and KRLS take into account numerous
intensities: Kα and Kβ from two channels for IC-PLS, and all the whole spectra for KRLS.
In the case of Ti and Mn, FP performs better as it handles more intense lines in calculations.
In the case of Si, the Kα line is also noisy as for Al; however, the content of Si in the samples
is significantly higher and the signal-to-noise ratio is less critical here, thus FP yields an
accuracy similar to IC-PLS here. KRLS has shown the worst performance with the lowest
accuracy for the three elements and is only better than FP in the case of Al. Nevertheless,
KRLS is able to handle nonlinear matrix effects and in general yields comparable accuracy
with FP.
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Figure 5. Certified vs predicted Al content plots for (a)—FP, (b)—KRLS, (c)—IC-PLS. Blue dots
indicate calibration points, red dots—validation. The green lines represent an ideal function y = x.

4. Conclusions

We have proposed a possible approach to handle the problem of universal calibration
in XRF spectrometry. The samples with significantly different matrix elements cannot be
effectively handled in the framework of a single calibration model, thus increasing the cost
of XRF analysis due to the necessity of making individual calibrations for each sample
type. The proposed approach is based on the application of the recently introduced IC-PLS
method. We have demonstrated the potential of the IC-PLS approach for constructing
universal calibration models embracing different types of samples in XRF. Using the
example of ore and steel samples, we have shown that the quantification accuracy for
certain elements increased up to four times compared to the conventional fundamental
parameters method. The flexibility of the IC-PLS method in terms of possible inclusion of
various number of spectral intensities, their ratios, and products implies a good promise
for further development of universal calibration models in XRF.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app13095415/s1, Table S1: Steel samples composition; Table S2: Ore
samples composition; Table S3: Steel and ore test samples; Table S4: Threshold values for concentrations.
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