
Citation: Yang, H.; Ding, W.; Min, Q.;

Dai, Z.; Jiang, Q.; Gu, C. A Meta

Reinforcement Learning-Based Task

Offloading Strategy for IoT Devices

in an Edge Cloud Computing

Environment. Appl. Sci. 2023, 13,

5412. https://doi.org/10.3390/

app13095412

Academic Editor: Muhammad

Awais Javed

Received: 10 March 2023

Revised: 18 April 2023

Accepted: 20 April 2023

Published: 26 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Meta Reinforcement Learning-Based Task Offloading
Strategy for IoT Devices in an Edge Cloud
Computing Environment
He Yang 1, Weichao Ding 2,*, Qi Min 2, Zhiming Dai 2,3 , Qingchao Jiang 2,* and Chunhua Gu 2

1 SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
2 School of Information Science and Engineering, East China University of Science and Technology,

Shanghai 200237, China
3 School of Information Technology, Shanghai Jian Qiao University, Shanghai 201306, China
* Correspondence: weich@ecust.edu.cn (W.D.); qchjiang@ecust.edu.cn (Q.J.)

Abstract: Developing an effective task offloading strategy has been a focus of research to improve the
task processing speed of IoT devices in recent years. Some of the reinforcement learning-based policies
can improve the dependence of heuristic algorithms on models through continuous interactive
exploration of the edge environment; however, when the environment changes, such reinforcement
learning algorithms cannot adapt to the environment and need to spend time on retraining. This
paper proposes an adaptive task offloading strategy based on meta reinforcement learning with task
latency and device energy consumption as optimization targets to overcome this challenge. An edge
system model with a wireless charging module is developed to improve the ability of IoT devices
to provide service constantly. A Seq2Seq-based neural network is built as a task strategy network
to solve the problem of difficult network training due to different dimensions of task sequences.
A first-order approximation method is proposed to accelerate the calculation of the Seq2Seq network
meta-strategy training, which involves quadratic gradients. The experimental results show that,
compared with existing methods, the algorithm in this paper has better performance in different
tasks and network environments, can effectively reduce the task processing delay and device energy
consumption, and can quickly adapt to new environments.

Keywords: task offloading; mobile edge computing; meta reinforcement learning; IoT devices

1. Introduction

Innovative mobile applications in a large number of IoT devices (e.g., face recogni-
tion, smart transportation, and AR/VR) are becoming an important part of today’s life
as network communication technologies develop. According to the industry report by
Cisco [1], by the end of 2023, about 3.5 billion people will have access to Internet services,
which means that more than half of the world’s population will use one or more devices to
connect to IP networks, and the number of devices connected to the network will be three
times the global population, according to the European Telecommunications Standards
Institute [2]. The Internet of everything age has arrived, and, with the increasing number of
devices and the explosive growth of network traffic, the requirements for cloud computing
resources from innovative mobile applications in IoT devices have skyrocketed, making
it difficult to meet the basic needs of applications due to network latency caused by large
network traffic and computational demand generated by offloading tasks. Mobile edge
computing (MEC) [3] is a key technology that can help solve this problem. It does this by
using edge servers with a certain type of computing power to move cloud computing and
storage capacity to the edge, where it is not centralized [4].

Innovative IoT applications are frequently developed using modular programming
in the mobile edge cloud computing environment [5], which contains many task modules

Appl. Sci. 2023, 13, 5412. https://doi.org/10.3390/app13095412 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13095412
https://doi.org/10.3390/app13095412
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7886-3573
https://orcid.org/0000-0002-3402-9018
https://doi.org/10.3390/app13095412
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13095412?type=check_update&version=1

Appl. Sci. 2023, 13, 5412 2 of 23

internally that can be partially offloaded, and these task modules and their interdependen-
cies can be well abstracted as a directed acyclic graph (DAG) [6], where the nodes represent
tasks and the edges between the nodes represent task dependencies. This model has more
task offload flexibility and can fully apply the heterogeneous parallel environment of MEC
compared to the total offload model, but the resulting offload scheduling decisions are
more difficult, mainly in terms of the following:

(1) There are many subtasks, some of which can be processed concurrently, and there are
more strategies to choose from. This makes the size of the problem several orders of
magnitude bigger than the total offloading model, and it also makes the algorithm
requirements higher.

(2) The effect of the offloading strategy may be affected by various application types and
subtask dependency characteristics, and the number of subtasks is inconsistent and
not adaptive to all situations for conventional reinforcement learning algorithms.

Because mobile devices (MDs) have limited computational power and battery capacity,
providing long-term steady services for various smart situations is difficult. Although the
wireless power transfer (WPT) service can provide a stable power supply, the hybrid access
point (HAP) technology in it provides both data transfer and energy transfer functions
for MDs, and only one operation can be completed at a time; hence, a strategy to decide
which subtasks need to be offloaded should be devised. The edge server and MD may
collaborate to handle DAG tasks and improve service quality by offloading subtasks and
WPT service times.

Much research is now being conducted by deep reinforcement learning (DRL), in
which the DAG task offloading model is trained for a period of time and then utilized to
select the optimum offloading solution, which is better than greedy algorithms, heuristic
algorithms, and metaheuristics. However, this method requires a substantial quantity
of sample data and suffers from low sample usage, slow learning speed, and low DRL
adaptability. Different DAG tasks correspond to the DAG tasks considered in this paper,
and, as users change applications, the MEC environment will change, making the relevant
network settings incorrect. If the task offloading module is applied to multiple DAG
tasks, it is necessary to retrain the network for different types of DAG tasks, which is very
time-consuming and challenging to do in reality.

The meta reinforcement learning (MRL) framework may help accelerate the learning
of new tasks by using the previous experience of different tasks to achieve quick adaptation
to new tasks. MRL learns in two stages: an outer loop that learns a series of common
experiences from multiple tasks to get the meta-strategy parameters, which requires more
computational resources, and an inner loop that is based on meta-strategy parameters
that can be adapted to new tasks with a small amount of experience-specific learning [7].
Using MRL to solve the computational offloading problem has several advantages for our
MEC system. The meta-strategy learning in the system can be performed on the edge
server, while the inner-loop training is performed on the MD. This is because the inner-loop
training only requires a few simple steps and a small amount of sampled data; hence, it can
be performed on the MD with limited computing power and data, so that the resources of
the edge server and the MD can be utilized.

Considering the above, this paper conducts research around dynamic edge scenarios
and proposes MTD3CO, a meta reinforcement learning-based task offloading strategy that
takes into account DAG task types, subtask decisions, device power, WPT service time, task
completion time, and other factors to solve the problem that conventional reinforcement
learning algorithms are inefficient and cannot adapt to various types of mobile applications.
In this paper, we first describe the process of unloading scheduling decisions for different
types of DAG tasks as each different MDP, then modify the network of the TD3 algorithm
to design a strategy and action network suitable for task unloading problems with different
numbers of subtasks, and finally transform the DAG subtask decision process into a
sequential prediction process. Each RNN network included in the algorithm is trained on
the basis of the TD3 algorithm, with its training process primarily divided into inner-loop

Appl. Sci. 2023, 13, 5412 3 of 23

training and outer-loop training. Outer-loop training is primarily performed by the outer-
loop learner of the edge server, which is uniformly trained for all applications in the system
corresponding to the MDP environment and obtains the meta-strategy. The inner-loop
learner on the edge device then downloads the meta-strategy parameters, initializes its
own network, and performs a small number of training iterations to fine-tune the strategy
according to its own task characteristics, achieving the goal of adapting to different tasks
without requiring time-consuming retraining for general-purpose tasks. The following is a
summary of this paper’s primary contributions:

• An edge system model, including a wireless charging module, is designed for the
complicated edge computing environment for various types of mobile applications; on
the basis of this architecture, a delay model, energy consumption model, and power
model are built to quantify strategy performance.

• To address the problem of new tasks not being adapted quickly enough, a meta rein-
forcement learning-based task offloading decision (MTD3CO) is proposed. Among
them, a Seq2Seq-based deep network suitable for the task offloading process is cre-
ated to change the offloading decision into a sequential prediction process in order
to accomplish adaptation for applications with different numbers of subtasks. To
optimize the second-order gradient present in the meta-strategy solution, a first-order
approximate optimization algorithm is proposed to accelerate the solution.

• Some simulation experiments were built on the basis of practical applications for tasks
with different DAG topologies, including DAG topology, number of tasks, and trans-
mission speed between MD and edge servers. After simulation experiments and com-
paring them to some baseline methods (e.g., improved DRL algorithm, HEFT-based
heuristic algorithm, and greedy algorithm), it was shown that MTD3CO produced the
highest results after only a few training steps.

The remainder of this paper is organized as follows: Section 2 introduces related
academic research; Section 3 constructs the edge system model and models the task offload-
ing problem; Section 4 describes the MTD3CO algorithm’s design and implementation;
Section 5 presents simulated experiments and results; Section 6 concludes and reviews the
paper’s work.

2. Related Work
2.1. Task Offloading Model

Because task offloading operations for MEC primarily consist of local execution, overall
offloading, and partial offloading, the current study uses two task offloading models: the
overall offloading model and the partial offloading model [8]. The overall offloading
model and the partial offloading model both have advantages and disadvantages; the
overall offloading model is relatively simple, and the algorithm is simple to implement,
but resource utilization is low. However, the partial offloading model is more complex, and
the algorithm has higher requirements; however, if the strategy is reasonable, it can fully
utilize the resources.

The overall offload model assumes that the tasks to be offloaded cannot be partitioned,
and that each task is independent of the other. The offload strategy needs to make the
decision of local execution or offload execution for each task with a specific optimization
goal and meet the needs of more applications by utilizing the computing and storage
capacity of the edge server. Task offloading under the overall offloading model has been
extensively studied in academia. Lin et al. [9] studied an edge server placement at the
edge of a base station scenario, looked at the task execution cost problem between multiple
users and an edge server in this area, and set up a cost model to minimize the overall
task execution cost as the goal for overall task offloading decision. [10] added wireless
charging to the system and developed an edge model of a device with wireless charging
modules with task decisions consisting of charging times and offloading decisions, using
alternating direction multiplier decomposition techniques to reduce the strong coupling
between unloading decisions and charging times and to overall speed up the mobile

Appl. Sci. 2023, 13, 5412 4 of 23

device performing the task by jointly optimizing each choice. Fan et al. [11] studied the
problem of collaboration between multiple edge server systems, finding that, when the
server load is too high, the user experience suffers significantly, and that, by offloading
the ineffective decisions to other systems, the overall system’s effectiveness improves and
the user experience improves. Regarding the improvement of task processing speed in the
Internet of things, Table 1 lists the differences between the approach proposed in this paper
and existing methods.

Unlike the overall offload model, in the partial offload model, the application is able
to offload some of the modules in the task for processing while the other part remains
processed locally, and the two approaches can be performed in parallel [12]. The model
assumes that each module of the application can be processed independently as a subtask.
According to the backward and forward dependencies generated by the business logic,
these subtasks must be processed in a certain order, and the offload strategy makes offload
decisions for each subtask in a certain order, with the edge serv12er and the mobile device
processing the tasks simultaneously. The partial offload model is more flexible and can use
all of the heterogeneous parallel resources in MEC to get the most out of the performance of
mobile devices and edge servers. Liu et al. [13] studied the MEC scenario of multiple edge
servers collaborating on AR applications, first modeling the application as a directed acyclic
graph (DAG) as a function of the connections between each module of the AR application
task, and then investigating the performance of the particle swarm algorithm on real-time
AR task offloading, despite the offloading scheme achieving optimal performance. The
level of difficulty is high. As a result, the authors devised a heuristic algorithm to solve
the problem, which produces a solution that is similar to particle swarm optimization but
with less time complexity. Liang et al. [14] proposed a new blockchain-based secure task
offloading framework for MEC systems with corresponding improvements in execution
latency and energy consumption, as well as a deep reinforcement learning-based task
offloading decision algorithm to efficiently derive near-optimal task offloading decisions to
address the challenges of dimensionality and dynamic nature of the scenario.

Table 1. Comparison of differences in Internet of things task processing approaches.

Method Research Focus Research Method Main Contribution Differences from Other Papers

[10]

Rate maximization for wireless
powered mobile-edge computing
with binary computation offloading
maximizing computation rate for
wireless powered mobile-edge
computing with binary
computation offloading

Binary computation
offloading

Maximizing
computation rate

This paper uses meta
reinforcement learning to handle
more complex task offloading
decision-making problems

[11]
Computation offloading based on
cooperation among mobile edge
computing-enabled base stations

Base station
cooperation

Minimizing energy
consumption

This paper uses meta
reinforcement learning to
adaptively make task
offloading decisions

[13]
Code-partitioning offloading
schemes for augmented reality in
mobile edge computing

Code partitioning
offloading Minimizing latency

This paper uses meta
reinforcement learning to handle
different types of tasks
and environments

[14]

Secure task offloading in
blockchain-enabled mobile edge
computing with deep
reinforcement learning

Blockchain, deep
reinforcement
learning

Secure task
offloading

This paper uses meta
reinforcement learning to
dynamically adjust task
offloading strategies

This
paper

Task offloading strategy for IoT
devices in an edge cloud
computing environment

Meta reinforcement
learning

Improving task
processing speed

This paper adopts a meta
reinforcement learning approach
to adaptively make task offloading
decisions considering multiple
factors, such as energy
consumption, latency, and
task types

Appl. Sci. 2023, 13, 5412 5 of 23

2.2. Task Offloading Algorithm

In recent years, many studies have focused on the task offloading problem in mobile
edge computing. In order to efficiently utilize limited resources, Arkian et al. [15] inves-
tigated the problems of data user association, task assignment, and data center-oriented
virtual machine placement. The algorithm complexity is reduced, and the application
response time is shortened by converting these nonlinear problems into a mixed-integer
linear programming problem to solve, improving the user experience across a large number
of tasks. Ma et al. [16] studied the problem of spectrum access, computational offloading,
and radio resource allocation in a multiuser environment with multiple edge access points
and proposed a genetic algorithm-based task offloading strategy. It divides the problem
into two steps, offloading decisions and resource allocation, and then solves these two
steps separately using an optimized genetic algorithm. Alhelaly et al. [17] proposed an
efficient resource allocation and computation offloading model for a multiuser, multi-drone
supported mobile edge cloud computing system that is scalable to support the increase in
network traffic without degrading performance, considering computation offloading and
resource allocation issues. In addition, the network deploys multistage mobile edge com-
puting (MEC) technology to provide computing capabilities at the edge of the radio access
network (RAN). The model problems presented in the article are transformed into various
types of optimization problems, which are then solved using traditional optimization
algorithms such as integer programming, nonlinear programming, convex optimization,
and heuristic algorithms to obtain theoretical or approximate optimal solutions. The main
problem is that the MEC environment needs to be modeled, and the algorithms are too
complicated to be used directly in the real world, especially in situations where real-time
performance is important.

Reinforcement learning is also widely used in task offloading problems because
of its self-learning and adaptive features, as well as its better global search capability
and advantages in solving large-scale complex problems. Zhang et al. [18] studied task
scheduling strategies in MEC scenarios where the mobile device movement is unknown and
proposed using a reinforcement learning technique called Deep Q-Network (DQN) to learn
the optimal unloading strategy for mobile devices. The proposed DQN-based offloading
algorithm does not require the mobile device’s movement pattern or the environment
model, which eliminates the discretization error shown in previous work and allows
the proposed algorithm to summarize previous experience, which is especially useful
when dealing with a large number of states. Lu et al. [19] considered a graph offloading
model with DAG dependencies for subtasks and used long short-term memory networks,
post hoc experience playback, and candidate networks to improve the DQN algorithm
separately in order to optimize the task offloading strategy. Given the inability of existing
cloud computing paradigms to handle real-time and latency-sensitive ASA (automatic
speech analysis) tasks, Li et al. [20] exploited mobile edge computing and deep learning
(DL) to investigate the DL-enabled ASA task offloading problem in mobile edge cloud
computing networks to minimize the total time to process ASA tasks, thus providing an
agile service response, which enables edge servers to derive user tolerance limits through
linear regression models, further improving the quality of user experience.

The above study achieved adaptation to the environment through deep reinforce-
ment learning (DRL), which is able to summarize the optimal strategy through learning
experience without knowing the state of the environment. After a certain number of learn-
ing sessions, the deep network parameters reach convergence, at which point the task
offloading strategy achieves better results than greedy algorithms, heuristic algorithms,
and metaheuristics and does not increase the time required for decision making due to the
complexity of the model. However, this method relies on a large amount of sample data,
having the same problems as traditional DRL of low utilization of samples, slow learning
speed, and poor adaptability. In DAG task offloading, different applications correspond
to different DAG applications, and, when users use other applications, the corresponding
network parameters are invalidated because of the change in application characteristics. To

Appl. Sci. 2023, 13, 5412 6 of 23

use the task offloading module on different DAG tasks, the network must be retrained for
each type of DAG task. This takes a long time and is hard to do in real life.

The meta reinforcement learning (MRL) framework [21] is able to use the experience
of a series of different tasks to accelerate the learning of new tasks as a way to achieve rapid
adaptation to different tasks. Generally speaking, MRL is a two-stage learning process: the
first stage is outer-loop learning, which aims to learn the common experience of a series of
different tasks and requires more computational resources; the second stage is inner-loop
learning, which builds on the common experience learned in the outer loop and fine-tunes
the experience according to the task under its responsibility to make the strategy better fit
its task [22].

There are numerous advantages to using MRL to solve the computational offloading
problem in MEC systems. First, because mobile devices run different applications, their
offloading policies are not always the same, and MRL technology allows mobile devices to
use the learning experience of other devices to quickly adjust their own offloading policies,
unlike reinforcement learning, which requires retraining. Second, the system’s outer-loop
learning, which is performed on the more powerful edge server, and the system’s inner-
loop learning, which can be performed on mobile devices, are both performed on the more
powerful edge server. This makes full use of the edge server’s and mobile devices’ resources.
Inner-loop training can be performed on mobile devices with limited computation and
data since it just requires a few simple steps and a small quantity of sampled data. This
learning strategy makes full use of all the capabilities in the system and can speed up the
training. As a result, this element of the research has great practical significance.

2.3. Task Scheduling Strategy

The current MEC research mostly focuses on task offloading and resource allocation
optimization in different networking scenarios with different optimization targets. Some of
the most common scenarios and objectives are outlined below.

2.3.1. Multiple Mobile Devices, Single Edge Server

Academics study the subsystems in complex MEC settings independently in this
scenario, as well as in the case where a single edge server offers services to several mobile
devices. Because the edge server’s computation and storage capacity cannot support all
devices at the same time, task offloading should be based on the current resource situation,
and resource optimization is dependent on the state of the system after all devices have
offloaded their duties. As a result, many aspects inside the system influence and are coupled
with the offloading choice, and an effective offloading strategy needs to be established in
order for the system to operate efficiently.

2.3.2. Multiple Mobile Devices, Multiple Edge Servers

In this situation, mobile devices have multiple edge servers capable of providing
offload services, leading to a one-level increase in the problem dimension of the offload
strategy. The algorithm needs to account for the problem of multi-edge server collaboration;
the selection of edge servers is based on the quality of the communication channel and the
edge servers’ resources, and the offload decision of one task has an unpredictable impact
on subsequent tasks, which are important research areas.

2.3.3. Strategic Optimization Objectives

Li et al. [23] used the sum of latency cost and energy consumption of all mobile
devices as the algorithm’s optimization objective. This is because the offloading decision
of mobile devices has an impact on subsequent offloading; thus, reinforcement learning’s
long-term objective optimization can be a good fit for task offloading. The authors built
a reinforcement learning-based task offloading framework on this basis and applied two
reinforcement learning algorithms. Experiments showed that an offloading strategy with
long-term aims can reduce the device’s overall energy consumption and average latency.

Appl. Sci. 2023, 13, 5412 7 of 23

3. System Model
3.1. Problem Description

The face recognition program can express its submodules in DAG and has many
calculations. Using the task offloading on MEC as an example, task offloading may be
more easily understood. Modules such as stitching, detection, and feature merging work
together to perform a single face recognition task. These modules are in charge of their own
services, which run independently as application subtasks based on business processes.
Some subtasks are uploaded to the edge server for processing through the mobile device’s
decision module, and the results are then returned to the mobile device through the network,
while other subtasks run on the mobile device. Each edge server runs numerous virtual
machines to help process the tasks uploaded by each mobile device, and the computational
capability of the edge server is represented by fs (the number of CPU cores multiplied
by the clock speed of each core). In this paper, we assume that virtual machine resource
allocation is equal; thus, each virtual machine’s computing power can be represented as
fvm = fs

k . Many innovative applications, including face recognition applications, can
be executed collaboratively by a number of subtasks split by business processes. In this
paper, face recognition is applied to a DAG representation, denoted as G = (T, E), where
the vertex set T denotes the set of subtasks, while the edge set E records the execution
requirements of the business process for the subtasks. The edge set is made up of directed
edges

→
e =

(
ti, tj

)
, where

→
e denotes that task tj is a subtask of task ti, and that task ti is a

precursor task of task tj. According to the edge constraint, a subtask cannot begin execution
until all of its preceding tasks have been completed. Lastly, in the graph G = (T, E), the
tasks without subtasks are called exit tasks and represent the end of the application task.

As shown in Figure 1, each individual subtask can be offloaded to an edge server
or executed locally on a mobile device, both of which have different processing latencies.
If the task is executed locally, the task latency is defined as TMD

i = Ci
fMD

, where fMD

denotes the mobile device’s CPU frequency, and Ci denotes the number of computation
periods required for the task; if the task is executed on an edge server, the task latency is
divided into three parts: task upload, task execution, and result download. The latency
of these three elements is mostly determined by job execution metrics, as well as system
upload and download speeds. Using task ti as an example, some task execution metrics
include task data size datau

i , received result data size datad
i , immediate wireless uplink

channel transmission speed Ru, wireless downlink channel transmission speed Rd in edge
environments, and edge server CPU frequency fvm to process the task. These factors
have an impact on task latency. Therefore, when task ti is offloaded to an edge server for
execution, the task delay may be expressed as

TEDGE
i =

datau
i

Ru
+

Ci
fvm

+
datad

i
Rd

. (1)

Making appropriate offloading decisions for all subtasks so that they can minimize
the total task processing latency while ensuring stable service is the goal of the edge task
offloading strategy. To that aim, the latency, energy consumption, and device power in a
single-edge-server multidevice MEC scenario are modeled in Section 3.2 in this paper.

3.2. Problem Modeling

The order of execution of a subtask-generated plan for a mobile application represented
by G = (T, E) is A1:n = {a1, an . . . an}, where ai is made up of the offloading decision
di of subtask ti and the mobile device’s WPT service time TWPT

i . The offload decision of
subtasks and the WPT service of mobile devices are performed sequentially according to
the generated plan, and all precursor tasks in the plan are completed before the subtasks
due to the dependencies between tasks. Therefore, the completion time of task ti depends
on both the completion time of its precursor task and the resource availability time. In
order to model the time delay of local processing and offloading processing, the upload

Appl. Sci. 2023, 13, 5412 8 of 23

completion time, edge server processing time, result download time, and local processing
completion time of task ti are set as FTupload

i , FTcompute
i , FTdownload

i , and FTMD
i , respectively.

Moreover, if the WPT service shares a module with uplink and downlink, their available
time has an impact, and the available time of uplink and downlink resources is denoted
as ATupload

i and ATdownload
i . ATcompute

i and ATMD
i are used to describe the available time of

edge server and mobile device computing resources. The available time of these resources
is mostly determined by the end time of the preceding task that uses the resource, which
in this paper is set to 0 if the resource is not utilized. According to the aforementioned
definition, the task execution delay model, device energy consumption model, and device
power model are created correspondingly.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 23

Figure 1. Example of face recognition in MEC.

Making appropriate offloading decisions for all subtasks so that they can minimize
the total task processing latency while ensuring stable service is the goal of the edge task
offloading strategy. To that aim, the latency, energy consumption, and device power in a
single-edge-server multidevice MEC scenario are modeled in Section 3.2 in this paper.

3.2. Problem Modeling
The order of execution of a subtask-generated plan for a mobile application repre-

sented by 𝐺 = (𝑇, 𝐸) is 𝐴 : = {𝑎 , 𝑎 … 𝑎 }, where 𝑎 is made up of the offloading deci-
sion 𝑑 of subtask 𝑡 and the mobile device’s WPT service time 𝑇 . The offload deci-
sion of subtasks and the WPT service of mobile devices are performed sequentially ac-
cording to the generated plan, and all precursor tasks in the plan are completed before the
subtasks due to the dependencies between tasks. Therefore, the completion time of task 𝑡 depends on both the completion time of its precursor task and the resource availability
time. In order to model the time delay of local processing and offloading processing, the
upload completion time, edge server processing time, result download time, and local
processing completion time of task 𝑡 are set as 𝐹𝑇 , 𝐹𝑇 , 𝐹𝑇 , and 𝐹𝑇 , respectively. Moreover, if the WPT service shares a module with uplink and down-
link, their available time has an impact, and the available time of uplink and downlink
resources is denoted as 𝐴𝑇 and 𝐴𝑇 . 𝐴𝑇 and 𝐴𝑇 are used to de-
scribe the available time of edge server and mobile device computing resources. The avail-
able time of these resources is mostly determined by the end time of the preceding task
that uses the resource, which in this paper is set to 0 if the resource is not utilized. Accord-
ing to the aforementioned definition, the task execution delay model, device energy con-
sumption model, and device power model are created correspondingly.

3.2.1. Latency Model
If task 𝑡 is offloaded to the edge server for execution, then 𝑡 must not start execu-

tion until all its parent tasks are completed, the WPT service charging is performed, and
the different resources required are accessible. Assuming that the set of parent tasks of
task 𝑡 is parent(𝑡), the task upload completion time 𝐹𝑇 and uplink availability
time 𝐴𝑇 may be calculated from the following equations according to the preceding
requirements:

Figure 1. Example of face recognition in MEC.

3.2.1. Latency Model

If task ti is offloaded to the edge server for execution, then ti must not start execution
until all its parent tasks are completed, the WPT service charging is performed, and the
different resources required are accessible. Assuming that the set of parent tasks of task ti is
parent(ti), the task upload completion time FTupload

i and uplink availability time ATupload
i

may be calculated from the following equations according to the preceding requirements:

FTupload
i = max

{
ATupload

i , max
j∈parent(ti)

{
FTMD

j , FTdownload
j

}}
+Tupload

i + TWPT
i

ATupload
i = max

{
ATupload

i−1 , FTupload
i−1

}
Tupload

i =
datau

i
Ru

. (2)

The edge server computation completion time FTcompute
i for task ti relies on the time

when computing resources are available ATcompute
i , the parent task completion time, and

the actual computation time. Where the two requirements, parent task completion and
computation resource availability, must be met at the same time, the bigger of these
two values is picked. When the calculation is performed, the mobile device may start
downloading the results only when the downlink is available. Hence, the time to start
downloading is stated as the larger of the downlink availability time ATdownload

i and the

Appl. Sci. 2023, 13, 5412 9 of 23

computation completion time. In summary, the download completion time FTdownload
i may

be introduced by the following equation:

FTcompute
i = max

{
ATcompute

i , max

{
FTupload

i , max
j∈parent(ti)

FTcompute
j

}}
+Tcompute

i ,

FTdownload
i = max

{
ATdownload

i , FTcompute
i

}
+ Tdownload

i ,

ATcompute
i = max

{
ATcompute

i−1 , FTcompute
i−1

}
,

ATdownload
i = max

{
ATdownload

i−1 , FTdownload
i−1

}
,

Tcompute
i =

Ci
fvm

,

Tdownload
i =

datad
i

Rd

. (3)

If task ti is run locally, then the start time of task ti relies on the completion time of its
parent task, the WPT service time, and the computational resources of the mobile device.
FTMD

i may be obtained from the following equation:

FTMD
i = max

{
ATMD

i , max
j∈parent?(ti)

{
FTMD

j , FTdownload
j

}}
+ TMD

i + TWPT
i

ATMD
i = max

{
ATMD

i−1 , FTMD
i−1

}
.

. (4)

Finally, the total latency Tall
A1:n

of the DAG tasks completed according to the execution
plan A1:n may be described by the following equation:

Tall
A1:n

= max
[

max
tk∈K

(
FTMD

k , FTdownload
k

)]
, (5)

where K is the set of exit tasks of the DAG task G. The task is complete when the last
completed exit task finishes. Overall, the purpose of the execution plan is to ensure the
job completion rate and find the lowest execution delay and energy consumption while
maintaining the power of the mobile device.

3.2.2. Energy Consumption Model

The WPT service time and energy consumption in the offload strategy of each subtask
jointly affect device power, and this technique enables mobile devices with limited power
to maintain consistent energy for task execution and data transfer. It can be described by
the following equation:

CEi = δPtd−θ g · TWPT
i , (6)

where δ denotes the energy conversion efficiency and has a value between 0 and 1, Pt

denotes the charging power of the mobile device, d denotes the distance between the
wireless charging modules, θ represents the distance loss, and g represents the channel gain.
Suppose the battery capacity of the gadget is Bcap and the power after charging cannot
exceed the battery capacity of Bcap. Then, after the WPT service time TWPT

i has passed, the
power of the mobile device BCE

i can be figured out as follows:

BCE
i = min(Bremain

i−1 + CEi, Bcap), (7)

where Bremain
i−1 remaining is the remaining battery power of the mobile device after the

previous task ti−1 has been completed. In accordance with the energy consumption model,

Appl. Sci. 2023, 13, 5412 10 of 23

the remaining power of the device after the two policies of processing tasks, local execution
and offloading to the edge server, can be expressed as follows:

BMD
i = max

(
BCE

i − EMD
i , 0

)
, (8)

Bo f f load
i = max

(
BCE

i − Eo f f load
i , 0

)
. (9)

If there is insufficient power, the processing task is considered unsuccessful. When the
task offloading decision is denoted by di ∈ {0, 1}, the remaining processing power after
task ti is expressed as

Bremain
i = BMD

i ·di + Bo f f load
i ·(1− di). (10)

In the edge environment, the offloading method of DAG tasks is highly flexible, but
most of the tasks have very strict requirements for latency. Solving mixed-integer linear
programming problems using standard heuristic algorithms demands a huge amount of
processing resources, which is power-consuming, takes a long time to make decisions
for edge devices, and does not match the real-time requirements. Deep reinforcement
learning enhances the strategy by learning to support a large state space and action space,
which is beneficial to solving such complex problems and meets the real-time requirements.
However, deep reinforcement learning is sensitive to changes in the environment and
DAG types, and, when the environment changes, relearning the strategy takes great time
and computational resources, which hinders practical applications. Therefore, this paper
proposes a task offloading algorithm called MTD3CO, which is based on meta reinforcement
learning, to solve this problem. Table 2 shows the description of the main parameters in
the text.

Table 2. Summary of main notations.

Notation Description

ti The i-th task

fvm Computing power of virtual machines

datau
i , datad

i Data size of the task, data size of the received result

fMD CPU frequency of mobile devices

TMD
i , TEDGE

i Task latency for local execution and edge-side execution

FTupload
i

Upload completion time of task ti

FTcompute
i Edge server processing time

FTdownload
i Download completion time

ATcompute
i Calculate resource availability time

ATdownload
i Downlink availability time

K Exit task set for DAG task G

EMD
i , Eo f f load

i
Energy consumption generated by local execution, offloaded to the edge

Tupload
i , Tdownload

i
Task upload time, task download time

4. Design of Proposed Algorithm

In this section, we propose the edge task offloading method MTD3CO for MEC sys-
tems, which is based on meta reinforcement learning and uses the TD3 reinforcement
learning algorithm. It explains the system components and the training process of the algo-
rithm, then designs the MDP model under this architecture based on the model proposed
in Section 3, and finally explains the algorithm’s design, principles, and pseudocode.

Appl. Sci. 2023, 13, 5412 11 of 23

4.1. System Architecture

The MTD3CO algorithm makes full use of the MEC system capabilities by network
training the algorithm on both mobile devices and edge servers. It splits the training process
into two loops, with the inner-loop training for task-specific policies and the outer-loop
training for meta-policies, with the inner-loop training performed on the mobile device
and the outer-loop training performed on the edge server. Figure 2 shows a task offloading
system that includes a mobile device and an edge server.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 23

4. Design of Proposed Algorithm
In this section, we propose the edge task offloading method MTD3CO for MEC sys-

tems, which is based on meta reinforcement learning and uses the TD3 reinforcement
learning algorithm. It explains the system components and the training process of the al-
gorithm, then designs the MDP model under this architecture based on the model pro-
posed in Section 3, and finally explains the algorithm’s design, principles, and pseudo-
code.

4.1. System Architecture
The MTD3CO algorithm makes full use of the MEC system capabilities by network

training the algorithm on both mobile devices and edge servers. It splits the training pro-
cess into two loops, with the inner-loop training for task-specific policies and the outer-
loop training for meta-policies, with the inner-loop training performed on the mobile de-
vice and the outer-loop training performed on the edge server. Figure 2 shows a task of-
floading system that includes a mobile device and an edge server.

Figure 2. System architecture of MTD3CO task offloading.

Because mobile devices have a variety of different devices to perform application
tasks with different foci, the DAGs used to describe the applications will change. Firstly,
the inner-loop learner must download the meta-strategy from the outer-loop learner, ini-
tialize the strategy’s parameters to the inner-loop learner’s network, and then try some
offloading with the specific application for which the device is responsible. Secondly, on
the basis of these offloading experiences, the inner-loop learner’s network is trained to get
its specific offloading strategy. Lastly, the edge server receives the inner-loop learner strat-
egy for this device. This completes the inner-loop learning.

At the level of the edge server, it is responsible for collecting the inner-loop training
experience of all inner-loop learners and extracting their shared characteristics. Using the
collected data, the edge server trains the outer-loop learner network, gets the new meta-
strategy, and performs the next round of training. Once a more stable meta-strategy has
been obtained, outer-loop training can be stopped. The inner-loop learner can use the
learning experience contained in this meta-strategy to quickly learn the specific offloading
strategy for the task it is responsible for, and, because the meta-strategy contains experi-
ence shared by all inner-loop learners, only a few loops are required to achieve better

Figure 2. System architecture of MTD3CO task offloading.

Because mobile devices have a variety of different devices to perform application tasks
with different foci, the DAGs used to describe the applications will change. Firstly, the
inner-loop learner must download the meta-strategy from the outer-loop learner, initialize
the strategy’s parameters to the inner-loop learner’s network, and then try some offloading
with the specific application for which the device is responsible. Secondly, on the basis of
these offloading experiences, the inner-loop learner’s network is trained to get its specific
offloading strategy. Lastly, the edge server receives the inner-loop learner strategy for this
device. This completes the inner-loop learning.

At the level of the edge server, it is responsible for collecting the inner-loop training
experience of all inner-loop learners and extracting their shared characteristics. Using
the collected data, the edge server trains the outer-loop learner network, gets the new
meta-strategy, and performs the next round of training. Once a more stable meta-strategy
has been obtained, outer-loop training can be stopped. The inner-loop learner can use the
learning experience contained in this meta-strategy to quickly learn the specific offloading
strategy for the task it is responsible for, and, because the meta-strategy contains expe-
rience shared by all inner-loop learners, only a few loops are required to achieve better
results. With this fast iterative learning, the algorithm can adapt to different DAG tasks
and environments.

4.2. MDP Modeling

For the different types of tasks in this chapter, we model them as multiple MDPs; each
MDP corresponds to an individual task in meta-learning, and the aim of each task is to learn
an effective offloading strategy for each MDP. We define the task distribution as ρ(T), and
the MDP for each task Ti ∼ ρ(T) is denoted as Ti = (S, A, P, P0, R, γ). To accommodate

Appl. Sci. 2023, 13, 5412 12 of 23

different task types, we divide the learning process into two parts: the first, in which each
MDP learns its own specific strategy based on the meta-strategy; the second, in which all
MDPs’ specific policies are extracted into a common meta-strategy and updated for the
next learning loop. According to the system model, the status, action, and reward functions
of the MDPs are defined below.

(1) State Space

When offloading a subtask, the subtask’s execution latency is dependent on the CPU cycles
required by the task, the size of the data being uploaded and downloaded, the DAG topology,
the decision of the previous task, the transfer rate, the device power, and the MEC resources.
The state space of subtask ti is denoted as si =

(
G, A1:i−1, datau

i , Ci, datad
i , Tmax

i , Bremain
i−1

)
,

where G denotes the DAG topology of the task to which the subtask belongs.
A1:i−1 = {a1, an . . . ai−1} is the offload decision record of the task ti predecessor; datau

i , Ci,
and datad

i are the amount of data uploaded by task ti, the amount of computation of the
task, and the amount of data downloaded, respectively; Tmax

i is the maximum tolerated
delay of the task, and exceeding it is defined as task failure; Bremain

i−1 is the remaining power
on the device before executing task ti. To convert the set of subtasks represented by G
into a sequence of subtasks and preserve the priority relationship, we add indices to the
tasks using rank(ti), and then sort the tasks according to the indices. We define rank(ti)
as follows:

rank(ti) =

 TEDGE
i if ti ∈ K

TEDGE
i + max

tj∈child(ti)

(
rank

(
tj
))

if ti /∈ K , (11)

where TEDGE
i is the time interval between the start of offloading of task ti and the result

obtained from the edge server, and child(ti) is the set of direct subtasks of task ti. According
to rank(ti), G is converted to a direct parent task index vector and a direct child task index
vector of task ti, and the size of this vector is set to the maximum value contained in all
applications or filled with 0 if it is less than the maximum value.

(2) Action Space

The offload strategy for each task includes the offload decision and WPT service time,
ai =

(
di, TWPT

i
)
, where di denotes the offload decision (di = {0, 1}, where 0 means

local execution and 1 means offload execution), and TWPT
i represents the duration of WPT

service before each task execution. Here, it is specified that TWPT
i = t. To simulate discrete

actions, t is taken as a multiple of 0.01. WPT service duration and offload decisions affect
task latency and device energy consumption together.

(3) Reward Function

The optimal task scheduling decision should have the lowest task processing latency
and the lowest energy consumption for mobile devices. If a task fails to execute due to
inadequate power or execution timeouts, it is called a “task failure”, which is defined as
Ti(f ail). The power consumed by each task ti execution may be expressed as the difference
of total energy consumption ∆Ei = Etotal

A1:i
− Etotal

A1:i−1
, and task latency can be expressed as

∆Ti = Eall
A1:i
− Eall

A1:i−1
. Task failure can be defined as

Ti(f ail) = 1, ∆Ei > Bremain
i−1 , ∆Ti > Tmax

i , (12)

where Bremain
i−1 denotes the remaining power after the MD has completed task ti−1, and Tmax

i
denotes the task’s maximum processing time. To minimize the total energy consumption
Eall

A1:n
and the total delay Tall

A1:n
of the task processing, and to improve the task processing

success rate, the algorithm designs the reward function as the task ti negative increments of
delay and energy consumption and punishments for task failure, which can be expressed as

ri = −((ϕ∆Ei + (1− ϕ)∆Ti) · (1− Ti(f ail)) + ω · Ti(f ail)), (13)

Appl. Sci. 2023, 13, 5412 13 of 23

where ω is the punishment factor for task failure, and ϕ is able to control the weights of the
two optimization objectives according to demand.

4.3. Algorithm Design
4.3.1. Seq2Seq

The strategy for offloading task ti is defined as π(ai|si) on the basis of the MDP setting
in Section 3.2.2. This means that, when task ti arrives at the decision module, the decision
module makes the task offloading decision ai according to the current state si. Assuming
that a particular DAG task G can be represented by n subtasks, the strategy for these n
subtasks can be expressed as π(A1:n|G). Because each task’s offloading decision is linked
to the task before it, the chain rule can be used to represent π(A1:n|G) in terms of π(ai|si).

π(A1:n|G) =
n

∏
i = 1

π(ai|si). (14)

The decisions taken by each of a task’s n subtasks affect how that task will be executed,
and the number of subtasks differs from task to task. This difference can cause training
difficulties for traditional neural networks. The Seq2Seq deep network is able to support the
input of a different number of decisions, and it accepts and processes this chained strategy
with recurrent neurons, whose structure is shown in Figures 3 and 4, which contains an
encoder and a decoder. Both parts are implemented by recurrent neural networks, where
the encoder compresses the subtask sequences into uniform context vectors, and then the
decoder decodes these vectors to output the policy.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 23

𝜇 = softmax 𝑠𝑐𝑜𝑟𝑒 ℎ , 𝑑 , (18)

where 𝑠𝑐𝑜𝑟𝑒 ℎ , 𝑑 is a function to determine the degree of matching between ℎ and 𝑑 , and this function is defined as a trainable feedforward neural network in the litera-
ture. Lastly, the TD3 algorithm is improved by transforming the decoder output 𝑑 =𝑑 , 𝑑 , … , 𝑑 into a policy and value network using two fully connected layers to make
it applicable to the model of task offloading policy.

Figure 3. Task unloading network based on seq2seq.

4.3.2. MTD3CO (Meta TD3 Computation Offloading) Implementation
In order to make the DAG task offloading adaptable to different tasks and, thus,

achieve generalization, this chapter combines meta-learning and the TD3 algorithm [24]
to improve the algorithm’s adaptability to the environment. After the initial training is
complete, the algorithm can set up the outer-loop learner of the mobile device with a meta-
strategy. The strategy can then be fine-tuned with a small number of specific tasks, and
then the outer-loop learner strategy can be changed to fit the specific tasks of the mobile
device.

For the actor–critic method, there is an unavoidable problem of overestimation due
to cumulative errors. First, the TD3 algorithm uses the idea of double Q-learning by using
two independent value functions, and using the smaller value between them in the update
to reduce the deviation caused by overestimation. Second, when performing TD updates,
the errors made at each step add up and make the estimation variance too high; thus, the
TD3 algorithm uses the target network and delayed updates to solve this problem.

Lastly, the TD3 algorithm enhances the exploratory nature by adding noise to the
target actions, which smoothens the values in the region near the value network actions
and reduces the generation of errors. On the basis of the above improvements, assuming
that the policy network in the TD3 algorithm is 𝜋 (𝑠), and the two value networks are 𝑄 (𝑠, 𝑎) and 𝑄 (𝑠, 𝑎) with parameters 𝜙 , 𝜃 , and 𝜃 , respectively, then the actions
and expected rewards of the task unloading policy at each training can be expressed as

Figure 3. Task unloading network based on seq2seq.

To keep the performance from going down because the context vector is too long,
an attention mechanism is used. This makes the decoder focus on the parts that are closer
to it when it is making the output. In the process of decoding and output, the context
vector element is given greater weight the closer it is to the source. If the encoder’s input is
the subtask state sequence [s1, s2, . . . , sn], the decoder’s output is the corresponding policy
[a1, a2, . . . , an], the encoder function is fencoder, and the decoder function is fdecoder; then, the
encoder of the i-th task hidden output may be represented as

Appl. Sci. 2023, 13, 5412 14 of 23

ei = fencoder(si, hi−1). (15)

The context vector can be expressed as c = [e1, e2, . . . , en], and then the message is
decoded by the decoder according to the last action aj−1 in the context vector and the last
decoder output dj−1; its decoding formula can be expressed as

dj = fdecoder
(
cj, dj−1, aj−1

)
, (16)

where cj is the weighted sum of partial context vectors by applying the attention mechanism,
which is calculated as follows:

cj =
n

∑
i = 1

µjihi, (17)

where µji is a probability distribution, which is calculated as follows:

µji = softmax
(
score

(
hi, dj−1

))
, (18)

where score
(
hi, dj−1

)
is a function to determine the degree of matching between hi and

dj−1, and this function is defined as a trainable feedforward neural network in the lit-
erature. Lastly, the TD3 algorithm is improved by transforming the decoder output
d = [d1, d2, . . . , dn] into a policy and value network using two fully connected layers
to make it applicable to the model of task offloading policy.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 23

the greedy algorithm. These methods were chosen because they are common algorithms
when solving task offloading and are similar to our study.

To train the MTD3CO strategy, the DAG task generator was used to generate 20 train-
ing datasets with different DAG parameters and 100 DAG tasks with the same width and
density in each set, each with 20 subtasks and density and width values of {0.5, 0.6, 0.7, 0.8}. Each dataset represented a mobile device application preference, and
finding an effective offloading strategy for each dataset was used as a learning task in the
MTD3CO algorithm. Lastly, a training dataset was used to train the MTD3CO algorithm.
In Algorithm 1, the number of sampling tasks n was set to 10, i.e., 10 training datasets were
selected from 20 training datasets. Each dataset sampled N trajectories for gradient update
with gradient number k = 6. Every two times the value network was updated, the target
network and the strategy network were updated once.

Figure 4 shows the average reward during the training process. When the number of
training times reached 200, it can be seen that the average reward increased substantially.
This means that the strategy started to work and moved in a better direction. Finally, the
average reward stabilized around −6 and converged. When the meta-strategy converges,
the meta-strategy network at this point summarizes the commonality of different mobile
application offloads so that effective task offloads can be performed for different applica-
tions. However, since all applications are considered at this time, the strategy is not the
optimal strategy for a specific application at this time. For a specific application, only a
small number of inner-loop learning iterations are needed to get the best strategy. Below,
we make a few different changes to the environment that can be used to compare how
well the meta-strategy adapts to the new environment.

Figure 4. Training process of MTD3CO.

When the meta-strategy training was completed, in order to verify the adaptability
of the MTD3CO algorithm to new tasks and new environments, some test datasets differ-
ent from the training dataset were randomly generated for testing. For a task that needs
to be scheduled, the data points that users are most concerned about are latency and mo-
bile device energy consumption performance. Thus, the experiments mainly compare the
performance of the algorithm on these two metrics under the new task; three relevant
experiments are described below.

5.2.1. Task Scenario Description
In the first experiment, to test the performance of the algorithm when the dependency

situation between application subtasks changes, a test dataset with a different density than

Figure 4. Training process of MTD3CO.

4.3.2. MTD3CO (Meta TD3 Computation Offloading) Implementation

In order to make the DAG task offloading adaptable to different tasks and, thus,
achieve generalization, this chapter combines meta-learning and the TD3 algorithm [24]
to improve the algorithm’s adaptability to the environment. After the initial training is
complete, the algorithm can set up the outer-loop learner of the mobile device with a
meta-strategy. The strategy can then be fine-tuned with a small number of specific tasks,
and then the outer-loop learner strategy can be changed to fit the specific tasks of the
mobile device.

For the actor–critic method, there is an unavoidable problem of overestimation due to
cumulative errors. First, the TD3 algorithm uses the idea of double Q-learning by using
two independent value functions, and using the smaller value between them in the update
to reduce the deviation caused by overestimation. Second, when performing TD updates,
the errors made at each step add up and make the estimation variance too high; thus, the
TD3 algorithm uses the target network and delayed updates to solve this problem.

Appl. Sci. 2023, 13, 5412 15 of 23

Lastly, the TD3 algorithm enhances the exploratory nature by adding noise to the
target actions, which smoothens the values in the region near the value network actions
and reduces the generation of errors. On the basis of the above improvements, assuming
that the policy network in the TD3 algorithm is πφ(s), and the two value networks are
Qθ1(s, a) and Qθ2(s, a) with parameters φ, θ1, and θ2, respectively, then the actions and
expected rewards of the task unloading policy at each training can be expressed as

∼
a = πφ′(s′) + clip

(
N
(

0,
∼
σ
)

,−c, c
)

y← r + γ min
i = 1,2

Qθ′i

(
s′,
∼
a
) , (19)

where φ′, θ′1, and θ′2 denote the parameters of the target policy network and the two target

value networks, respectively, and clip
(
N
(

0,
∼
σ
)

,−c, c
)

is the clipped noise function that
makes the action fluctuate in a small range. γ ∈ [0, 1] denotes the discount factor of
learning. According to the expected reward, two value networks can use the same expected
reward y and the respective rewards of the current value network Qθ1(s, a) and Qθ2(s, a) to
determine the TD error and update the current value network parameters, respectively, by
minimizing the error as the objective, whose objective function formula can be defined as

JTD3
critic(θi) = N−1 ∑

(
y−Qθi (s, a)

)2, i = {1, 2}. (20)

For the update of the strategy network, the objective is to find the strategy parameter
with the largest expected return, which can be updated in the actor–critic method using the
deterministic strategy gradient algorithm, which uses gradient ascent to find the parameter
with the largest return φ. Therefore, for the actor network in this section, the objective
function can be expressed as

JTD3
actor(φ) = N−1∑Qθ1(s, a)

∣∣∣
a
πφ(s). (21)

According to the model established in Section 3.2.2, we model the offloading tasks
corresponding to different types of applications as multiple MDPs, each of which is re-
sponsible for generating an offloading policy for the same class of tasks. Formally, the
task distribution is defined as ρ(T), and each task follows the task distribution Ti ∼ ρ(T).
MTD3CO and gradient-based meta reinforcement learning share a similar structure and
also have two parts: inner-loop learning and outer-loop learning.

The inner-loop learning combines the Seq2Seq network with the TD3 algorithm, en-
abling its actor–critic network to adapt to training in environments with different numbers
of subtasks. Compared with the VPG algorithm in the literature [25], it has better explo-
ration ability and training stability. For each learning task Ti, according to the objective
function above we define its value network objective function as JTD3

critic(θ
Ti
i) with the objec-

tive of maximizing the expected gain, as shown in Algorithm 1, using the objective function
gradient to update θ1 and θ2. Each task is updated a certain number of times to obtain
the set of value network parameters; similarly, for the strategy network, we define the
objective function as JTD3

actor
(
φTi
)
, with the objective of minimizing the TD error by updating

the parameters φTi with the gradient.
In outer-loop learning, following the theory of model-agnostic meta-learning proposed

in the literature [5], the computation of the outer-loop learning objective function can be
obtained; hence, for the meta critic network of outer-loop learning, its definition can be
expressed as follows:

JMTD3CO
critic (θ1,2) = ETi∼ρ(T)

[
JTD3
critic

(
U
(

θ
Ti
1,2, Ti

))]
, (22)

where JTD3
critic is the objective function of the inner-loop learning critic network for task Ti, and

U(θ, Ti) is the parameter after the task-set number of inner-loop learning gradient updates,

Appl. Sci. 2023, 13, 5412 16 of 23

which is defined as U
(

θ
Ti
1,2, Ti

)
= θ

Ti
1,2 + α∑k

t = 1∇θ
Ti
1,2

JTD3
critic

(
θ

Ti
1,2

)t
, where k is the number

of gradient updates for inner-loop learning and outer-loop learning with the objective of
minimizing the objective function with gradient updates of the critic meta-parameters, but
this objective function involves gradients of gradients that bring huge computational cost
under a complex network such as Seq2Seq. To solve this problem, we use the first-order
approximation method in [26]; the gradient of JMTD3CO

critic (θ1,2) can be expressed as

∇θ1,2 JMTD3CO
critic

(θ1,2) = gradMTD3CO
critic = 1

n ·
1
k

n

∑
i = 1

k

∑
t = 1

∇
θ

Ti
1,2

JTD3
critic

(
θ

Ti
1,2

)
t
, (23)

where n denotes the number of all tasks, k denotes the number of inner-loop training
gradients, and similarly, for the meta-actor network with outer-loop learning, its objective
function and approximate gradient can be obtained as

JMTD3CO
actor (φ) = ETi∼ρ(T)

[
JTD3
actor

(
F
(
φTi , Ti

))]
, (24)

F
(
φTi , Ti

)
= φTi + α∑k

t = 1
∇φTi JTD3

actor
(
φTi
)t, (25)

∇φ JMTD3CO
actor (φ) = gradMTD3CO

actor = 1
n ·

1
k

n

∑
i = 1

k

∑
t = 1

∇φTi JTD3
actor

(
φTi
)

t. (26)

According to the objective function, we describe the overall training procedure in
Algorithm 1.

Algorithm 1. Meta TD3 computation offloading

Input: Task distribution ρ(T) Output: DAGs

1. The parameters of the random initialization policy network πφ and the two value networks
Qθ1 and Qθ2 are φ, θ1, and θ2

2. Initialize the parameters of the target network φ′ ← φ , θ′1 ← θ1 , θ′2 ← θ2
3. for iteration k = {1, 2, . . . , K} do
4. According to the task distribution ρ(T), random sample of n tasks {T 1, T2, T3, . . . , Tn}
5. for task Ti; i = {1, 2, . . . , n} do

6. Initialize φi ← φ , θi
1 ← θ1 , θi

2 ← θ2 and φi ′ ← φ , θi
1
′ ← θ1 , θi

2
′ ← θ2

7. Initialize experience pool Di
8. Follow a ∼ πφi + ε, ε ∼ N (0, σ), Sampling the task Ti and storing the trajectory in Di

9. for iterations i = {1, 2, . . . , k} do
10. Sampling N trajectories from the experience pool Di
11. According to the objective function JTD3

critic, Update parameters using mini-batch gradient θi
1, θi

2
12. if i mod d then
13. According to the objective function JTD3

actor, Update parameters using mini-batch gradient φi

14. Update target network parameters

15. φi ′ ← τφi + (1− τ)φi ′

16. θi
1
′ ← τθi

1 + (1− τ)θi
1
′

17. θi
2
′ ← τθi

2
′
+ (1− τ)θi

2′
18. end if
19. Calculate gradMTD3CO

actor , gradMTD3CO
critic

20. end for
21. Update meta-parameters φ = φ + β∇φ JMTD3CO

actor (φ)

22. Update meta-parameters θ1,2 = θ1,2 + β∇θ1,2
JMTD3CO

critic
(θ1,2)

23. end for
24. end for

Appl. Sci. 2023, 13, 5412 17 of 23

The parameters of the meta-strategy and value network in the algorithm are _1 and _2,
respectively, and the algorithm is a training process for the meta-parameters, which is
mainly divided into inner-loop learning and outer-loop learning, where the learning task
is first sampled once, followed by performing inner-loop training for each sampling task.
When all inner-loop training is completed, we update the meta-parameters using the
formula in lines 21 and 22 of Algorithm 1, and then proceed to the next inner- and outer-
loop training.

4.4. Analysis of Algorithm Time Complexity

For the proposed MTD3CO offloading strategy, the main calculation lies in the inner
cycle and the outer cycle. In the inner loop, the computational complexity is determined by
the size of the state space and action space and the network. The computational complexity
of the outer loop is O(nK), where n is the number of tasks, and K is the number of iterations.

5. Experimental Evaluation

In order to evaluate the proposed model and algorithm in this chapter, this section
designs a simulated experimental environment, introduces the hyperparameters of the
algorithm, and designs a set of experiments to evaluate the effect of the algorithm. In the
simulation experiments, we designed an edge system simulator of the proposed model and
generated some different applications represented by DAG in this simulation system to
train and test the proposed algorithm.

5.1. Experimental Setup
5.1.1. Parameter Settings

The MTD3CO algorithm was implemented by TensorFlow, where the encoder–decoder
network consisted of two layers of long short-term memory (LSTM) networks with 256 hidden
units each, and a fully connected layer as the strategy network πφ in the algorithm, in-
cluding two value networks Qθ1 and Qθ2 . Both the inner-loop training and the outer-loop

training learning rates were set to 5× 10−4 The algorithm’s noise parameter
∼
σ was set to

0.2, and the clipping parameter c was set to 0.5; thus, the noise was normally distributed
in the range of (−0.5, 0.5). In inner-loop training, the gradient update number k was set
to 6, the parameter d for delayed update of the target network was set to 2, and the target
network’s learning rate τ was set to 0.005. See Table 3 for related parameter settings.

Table 3. Parameters used in the MTD3CO algorithm.

Parameter Value

Network architecture Encoder–decoder network with 2 layers of LSTM networks (each with 256
hidden units) and a fully connected layer

Strategy network πφ

Value networks Qθ1 and Qθ2

Inner-loop and outer-loop training learning rates 5× 10−4

Noise parameter 0.2

Clipping parameter 0.5

Range of noise (−0.5,0.5)

Gradient update number in inner-loop training 6

Parameter d for delayed update of target network 2

Target network learning rate 0.005

Appl. Sci. 2023, 13, 5412 18 of 23

5.1.2. Types of Tasks

Many real-world applications can be represented by DAGs having different topologies
and different numbers of subtasks. When the features of topologies and the number of
subtasks are comparable, they might represent similar applications, and the offloading
techniques have many similarities. In this chapter, a DAG task generator is implemented in
accordance with the literature [25] to generate different DAG datasets in order to simulate
a variety of application tasks.

Four primary parameters control the DAG’s topology and characteristics: the number
of subtasks N, the DAG width, the DAG density, and the task computation communication
share. DAG width indicates the number of concurrent subtasks; when the number of
subtasks is the same, the greater the width, the greater the number of subtasks that can
be executed concurrently. DAG density shows how much subtasks depend on each other.
Higher values mean that there are more backward and forward links between subtasks.
The ratio of computational communication is used to control the task’s characteristics. The
delay of task offloading is mainly composed of network communication and computational
consumption time, where the larger the computational communication ratio, the larger the
proportion of computational consumption time.

For the MEC environment, the upload and download speeds were set to Ru and
Rd = 8 Mbps respectively, which would have some loss as the distance between the device
and the signal source increased; the edge server fvm was set to 10 GHz; the clock speed
of the mobile device was set to 1.5 GHz; the upload power and download power were
Pupload = 0.5 W and Pdownload = 0.6 W; the charging power of WPT service was Pt = 3 W;
the battery capacity of the mobile device was 10 Wh.

5.1.3. Experimental Environment Settings

To evaluate the effectiveness of the MTD3CO algorithm proposed in this chapter,
this section simulated a comparison experiment of task offloading strategies when the
application and MEC environments changed. Three scenarios were created to evaluate
the energy usage and latency of all algorithms. To make the problem simpler, the data
size and required calculation for each subtask were assumed to be within a certain range.
For example, assume that each subtask’s data size is between 5 kB and 50 kB, and that the
CPU cycles required for each subtask are between 107 and 108 cycles. The computational
communication ratio of the tasks is set to a random value between 0.5 and 0.8 since
most mobile applications are computationally intensive. The time it takes to finish the
computational part of a task depends on how high the computational communication
ratio is.

In this paper, a task offloading model for MEC was developed by considering the
computational performance, signal range, and geographical location of the edge server.
The simulation environment used was deployed under the Ubuntu18 system, and, to
implement the meta reinforcement learning model, the mainstream Tensorflow machine
learning framework was used, using datasets from [23]. Throughout the experiments, we
divided the dataset simulated by the DAG task generator into training and test datasets,
with each set of DAG parameters differing in width, density, and number of subtasks. Each
dataset had 100 DAG tasks with the same parameters but different topologies, simulating
an application’s subtask relationships. The ultimate goal was to find the optimal offloading
strategy for all offloading learning applications. The MTD3CO algorithm performed inner-
and outer-loop training on multiple training datasets using Algorithm 1, and the DAG
tasks in each dataset were trained to learn the strategy by the same inner-loop to obtain
the optimal offloading strategy for this application. The outer-loop training summarized
the commonality of the inner-loop training to obtain the meta-strategy, which was used as
the algorithm’s initial strategy in the next inner-loop training to continue training specific
policies for a specific DAG dataset, and the outer-loop training was continued until the
meta-strategy converged. Lastly, the converged meta-strategy was used to set the initial

Appl. Sci. 2023, 13, 5412 19 of 23

network parameters for a test dataset that was used to see how effectively the offloading
strategy worked.

5.2. Comparison Study and Discussion

We compared our approach MTD3CO with existing methods: (1) the improved deep
reinforcement learning algorithm in [27], (2) the HEFT-based heuristic algorithm, and
(3) the greedy algorithm. These methods were chosen because they are common algorithms
when solving task offloading and are similar to our study.

To train the MTD3CO strategy, the DAG task generator was used to generate 20 train-
ing datasets with different DAG parameters and 100 DAG tasks with the same width and
density in each set, each with 20 subtasks and density and width values of {0.5, 0.6, 0.7, 0.8}.
Each dataset represented a mobile device application preference, and finding an effective
offloading strategy for each dataset was used as a learning task in the MTD3CO algorithm.
Lastly, a training dataset was used to train the MTD3CO algorithm. In Algorithm 1, the
number of sampling tasks n was set to 10, i.e., 10 training datasets were selected from
20 training datasets. Each dataset sampled N trajectories for gradient update with gradient
number k = 6. Every two times the value network was updated, the target network and the
strategy network were updated once.

Figure 4 shows the average reward during the training process. When the number of
training times reached 200, it can be seen that the average reward increased substantially.
This means that the strategy started to work and moved in a better direction. Finally, the
average reward stabilized around −6 and converged. When the meta-strategy converges,
the meta-strategy network at this point summarizes the commonality of different mobile
application offloads so that effective task offloads can be performed for different applica-
tions. However, since all applications are considered at this time, the strategy is not the
optimal strategy for a specific application at this time. For a specific application, only a
small number of inner-loop learning iterations are needed to get the best strategy. Below,
we make a few different changes to the environment that can be used to compare how well
the meta-strategy adapts to the new environment.

When the meta-strategy training was completed, in order to verify the adaptability of
the MTD3CO algorithm to new tasks and new environments, some test datasets different
from the training dataset were randomly generated for testing. For a task that needs to
be scheduled, the data points that users are most concerned about are latency and mobile
device energy consumption performance. Thus, the experiments mainly compare the
performance of the algorithm on these two metrics under the new task; three relevant
experiments are described below.

5.2.1. Task Scenario Description

In the first experiment, to test the performance of the algorithm when the dependency
situation between application subtasks changes, a test dataset with a different density than
the training dataset was generated using the DAG task generator to simulate the offloading
performance when a mobile device encounters this novel application. Subsequently, the
performance of MTD3CO and the baseline algorithm was compared for a small number
of tasks offloaded on the test dataset. The parameters of this test dataset were as follows:
number of subtasks N = 20, density = 0.4, and width = 0.8, where the density of DAG
tasks did not appear in the training dataset, while both the number and the width of
subtasks appeared. The energy consumption and latency for a small number of iterations
are shown in Figure 5. HEFT could perform task offloading with a better strategy at the
beginning because it predicts the partial offloading method and selects a better strategy, but
it could not improve its strategy by increasing the number of iterations; hence, it remained
at this performance, which was not the best. In this application, MTD3CO outperformed all
algorithms in terms of energy consumption and time delay after five iterations, indicating
that it achieved meta-strategy adaptation for this application. In general, because it only
considers one factor, the greedy algorithm had the highest latency and relatively high

Appl. Sci. 2023, 13, 5412 20 of 23

energy consumption. The MTD3CO algorithm proposed in this paper outperformed the
HEFT method in terms of latency and energy consumption after only a small amount
of training, but the DRL method was still inferior to HEFT in both cases, and its energy
consumption performance was less stable because the DRL method does not consider
energy consumption. This shows that the MTD3CO method is more flexible and adaptive
to new tasks and applications. Regarding the constant values for the greedy and HEFT
schemes, they are not dependent on the number of iterations, and their results are expected
to remain constant. In other words, the energy consumption and latency values for greedy
and HEFT are not supposed to change with the number of iterations.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 23

the training dataset was generated using the DAG task generator to simulate the offload-
ing performance when a mobile device encounters this novel application. Subsequently,
the performance of MTD3CO and the baseline algorithm was compared for a small num-
ber of tasks offloaded on the test dataset. The parameters of this test dataset were as fol-
lows: number of subtasks 𝑁 = 20, density = 0.4, and width = 0.8, where the density of
DAG tasks did not appear in the training dataset, while both the number and the width
of subtasks appeared. The energy consumption and latency for a small number of itera-
tions are shown in Figure 5. HEFT could perform task offloading with a better strategy at
the beginning because it predicts the partial offloading method and selects a better strat-
egy, but it could not improve its strategy by increasing the number of iterations; hence, it
remained at this performance, which was not the best. In this application, MTD3CO out-
performed all algorithms in terms of energy consumption and time delay after five itera-
tions, indicating that it achieved meta-strategy adaptation for this application. In general,
because it only considers one factor, the greedy algorithm had the highest latency and
relatively high energy consumption. The MTD3CO algorithm proposed in this paper out-
performed the HEFT method in terms of latency and energy consumption after only a
small amount of training, but the DRL method was still inferior to HEFT in both cases,
and its energy consumption performance was less stable because the DRL method does
not consider energy consumption. This shows that the MTD3CO method is more flexible
and adaptive to new tasks and applications. Regarding the constant values for the greedy
and HEFT schemes, they are not dependent on the number of iterations, and their results
are expected to remain constant. In other words, the energy consumption and latency val-
ues for greedy and HEFT are not supposed to change with the number of iterations.

Figure 5. Scenario 1 comparison of delay and energy consumption after a few iterations.

The second experiment aimed to test the performance of the algorithm when the sub-
task concurrency varies. The DAG width of the test dataset was different from the training
dataset, and the width in this scenario was 0.9, simulating the extreme case of application
offloading with high subtask concurrency. As shown in Figure 6, at this point, HEFT did
not perform as well as DRL and MTD3CO in terms of latency, and this fixed heuristic
strategy tended to fall into suboptimal solutions when different applications were encoun-
tered. In terms of energy consumption performance, the DRL algorithm did not improve
because it does not consider the energy consumption of the device and only takes the
latency as the optimization objective. When faced with new applications, both MTD3CO
and DRL algorithms outperformed HEFT after a small number of updates, because both
algorithms are methods for updating the strategy, which adjusts the strategy in real time
using reinforcement learning’s ability to adapt to the environment. They are more adapt-
able than algorithms with fixed policies like HEFT, and it can be seen that MTD3CO could
adapt to new tasks faster than the conventional DRL algorithm because of its use of inter-
nal and external loop learning and its ability to use prior learning experience to guide the
learning of new tasks.

Figure 5. Scenario 1 comparison of delay and energy consumption after a few iterations.

The second experiment aimed to test the performance of the algorithm when the
subtask concurrency varies. The DAG width of the test dataset was different from the
training dataset, and the width in this scenario was 0.9, simulating the extreme case of
application offloading with high subtask concurrency. As shown in Figure 6, at this point,
HEFT did not perform as well as DRL and MTD3CO in terms of latency, and this fixed
heuristic strategy tended to fall into suboptimal solutions when different applications
were encountered. In terms of energy consumption performance, the DRL algorithm
did not improve because it does not consider the energy consumption of the device and
only takes the latency as the optimization objective. When faced with new applications,
both MTD3CO and DRL algorithms outperformed HEFT after a small number of updates,
because both algorithms are methods for updating the strategy, which adjusts the strategy
in real time using reinforcement learning’s ability to adapt to the environment. They are
more adaptable than algorithms with fixed policies like HEFT, and it can be seen that
MTD3CO could adapt to new tasks faster than the conventional DRL algorithm because of
its use of internal and external loop learning and its ability to use prior learning experience
to guide the learning of new tasks.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 23

Figure 6. Scenario 2 comparison of delay and energy consumption after a few iterations.

5.2.2. Task Type Description
When the number of subtasks changes, the scale of the problem changes, and the

algorithm becomes more demanding. In order to compare the performance of each algo-
rithm when the scale of the problem increases, a scenario with the number of subtasks 𝑁
= 30, a density of 0.6, and a width of 0.6 was generated for experimentation. This applica-
tion of width and density appeared in the training dataset, but the number of tasks in-
creased, and, although the characteristics were the same, the problem was more complex.
As shown in Figure 7, in terms of latency, the average latency of the DRL algorithm was
only improved by 20 s after 20 iterations, indicating that the algorithm was still exploring
the environment, with more strategies for poorer performance, not yet finding a better
strategy, whereas MTD3CO surpassed DRL after two iterations, indicating that it success-
fully used meta-strategies to guide the learning and could adapt well to the increased
complexity of the problem.

Figure 7. Comparison of delay and energy consumption when the number of subtasks changes.

6. Concluding Remarks and Future Directions
The task offloading problem of IoT devices in complex edge environments for vari-

ous applications was investigated in this paper, assuming backward and forward connec-
tions between tasks and using DAG to represent subtask offloading. We proposed
MTD3CO, a task offloading strategy based on meta reinforcement learning, in order to
improve the algorithm’s adaptability to the environment and new applications. First, we
studied the system model for mobile applications with different DAG types and mobile
devices with different DAG types. The data and energy transfer system models were built,
as well as the system’s latency model, energy consumption model, and MDP model. The
concept of meta reinforcement learning was used to model the task offloading process in
MEC as multiple MDPs based on the tasks, transform the unloading decision into a se-
quential prediction process based on the characteristics of subtask execution, design a

Figure 6. Scenario 2 comparison of delay and energy consumption after a few iterations.

Appl. Sci. 2023, 13, 5412 21 of 23

5.2.2. Task Type Description

When the number of subtasks changes, the scale of the problem changes, and the algo-
rithm becomes more demanding. In order to compare the performance of each algorithm
when the scale of the problem increases, a scenario with the number of subtasks N = 30,
a density of 0.6, and a width of 0.6 was generated for experimentation. This application
of width and density appeared in the training dataset, but the number of tasks increased,
and, although the characteristics were the same, the problem was more complex. As
shown in Figure 7, in terms of latency, the average latency of the DRL algorithm was only
improved by 20 s after 20 iterations, indicating that the algorithm was still exploring the
environment, with more strategies for poorer performance, not yet finding a better strategy,
whereas MTD3CO surpassed DRL after two iterations, indicating that it successfully used
meta-strategies to guide the learning and could adapt well to the increased complexity of
the problem.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 23

Figure 6. Scenario 2 comparison of delay and energy consumption after a few iterations.

5.2.2. Task Type Description
When the number of subtasks changes, the scale of the problem changes, and the

algorithm becomes more demanding. In order to compare the performance of each algo-
rithm when the scale of the problem increases, a scenario with the number of subtasks 𝑁
= 30, a density of 0.6, and a width of 0.6 was generated for experimentation. This applica-
tion of width and density appeared in the training dataset, but the number of tasks in-
creased, and, although the characteristics were the same, the problem was more complex.
As shown in Figure 7, in terms of latency, the average latency of the DRL algorithm was
only improved by 20 s after 20 iterations, indicating that the algorithm was still exploring
the environment, with more strategies for poorer performance, not yet finding a better
strategy, whereas MTD3CO surpassed DRL after two iterations, indicating that it success-
fully used meta-strategies to guide the learning and could adapt well to the increased
complexity of the problem.

Figure 7. Comparison of delay and energy consumption when the number of subtasks changes.

6. Concluding Remarks and Future Directions
The task offloading problem of IoT devices in complex edge environments for vari-

ous applications was investigated in this paper, assuming backward and forward connec-
tions between tasks and using DAG to represent subtask offloading. We proposed
MTD3CO, a task offloading strategy based on meta reinforcement learning, in order to
improve the algorithm’s adaptability to the environment and new applications. First, we
studied the system model for mobile applications with different DAG types and mobile
devices with different DAG types. The data and energy transfer system models were built,
as well as the system’s latency model, energy consumption model, and MDP model. The
concept of meta reinforcement learning was used to model the task offloading process in
MEC as multiple MDPs based on the tasks, transform the unloading decision into a se-
quential prediction process based on the characteristics of subtask execution, design a

Figure 7. Comparison of delay and energy consumption when the number of subtasks changes.

6. Concluding Remarks and Future Directions

The task offloading problem of IoT devices in complex edge environments for various
applications was investigated in this paper, assuming backward and forward connections
between tasks and using DAG to represent subtask offloading. We proposed MTD3CO,
a task offloading strategy based on meta reinforcement learning, in order to improve the
algorithm’s adaptability to the environment and new applications. First, we studied the
system model for mobile applications with different DAG types and mobile devices with
different DAG types. The data and energy transfer system models were built, as well as
the system’s latency model, energy consumption model, and MDP model. The concept
of meta reinforcement learning was used to model the task offloading process in MEC
as multiple MDPs based on the tasks, transform the unloading decision into a sequential
prediction process based on the characteristics of subtask execution, design a seq2seq-based
parameter sharing network to fit the optimal unloading decision, use this sharing network
to improve the TD3 algorithm, and propose a meta reinforcement learning algorithm.
Inner-loop training and outer-loop training are the two primary types of algorithm training.
The outer-loop training network creates meta-parameters that are used to initialize the
parameters for the inner-loop training network. The inner-loop training network then
fine-tunes the parameters to quickly adapt to new applications based on their specific
applications. Lastly, comparison experiments were used to assess the algorithm’s capability
to adjust quickly in a variety of MEC environments and applications. The results show
that the algorithm proposed in this paper could quickly adjust the strategy to adapt to the
environment. Because the model in this paper ignores some signal effects and losses in
the real world and uses a simplified problem model, future research will focus on how
to design a more realistic problem model. Furthermore, the deep reinforcement learning
algorithm employed is not cutting-edge; there are already some new algorithms under
research, and how to apply more cutting-edge reinforcement learning algorithms will be a
future focus of research. Lastly, achieving a unified system adaptation for heterogeneous
IoT devices is a difficult future research area.

Appl. Sci. 2023, 13, 5412 22 of 23

Author Contributions: W.D. and C.G. conceptualized the original idea and completed the theoretical
analysis; Q.J. designed the technique road and supervised the research; H.Y. and Z.D. completed
the numerical simulations and improved the system model and algorithm of the article and drafted
the manuscript; Q.M. designed and performed the experiments. All authors provided useful discus-
sions and reviewed the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was sponsored by the Shanghai Sailing Program (No. 20YF1410900), the
Shanghai Natural Science Foundation (23ZR1414900), the National Natural Science Foundation
(No. 61472139), the Shanghai Automobile Industry Science and Technology Development Foundation
(No. 1915), and the Shanghai Science and Technology Innovation Action Plan (No. 20dz1201400).
Any opinions, findings, and conclusions are those of the authors, and do not necessarily reflect the
views of the above agencies.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created.

Acknowledgments: The authors sincerely thank the School of Information Science and Engineering,
East China University of Science and Technology for providing the research environment. The authors
would like to thank all anonymous reviewers for their invaluable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cisco. Cisco Annual Internet Report(2018–2023) White Paper; Cisco: San Jose, CA, USA, 2020.
2. Kekki, S.; Featherstone, W.; Fang, Y.; Kuure, P.; Li, A.; Ranjan, A.; Purkayastha, D.; Feng, J.; Frydman, D.; Verin, G.; et al. MEC in

5G Networks. ETSI White Pap. 2018, 28, 1–28.
3. Ullah, M.A.; Alvi, A.N.; Javed, M.A.; Khan, M.B.; Hasanat, M.H.A.; Saudagar, A.K.J.; Alkhathami, M. An Efficient MAC Protocol

for Blockchain-Enabled Patient Monitoring in a Vehicular Network. Appl. Sci. 2022, 12, 10957. [CrossRef]
4. Zhang, H.; Guo, J.; Yang, L.; Li, X.; Ji, H. Computation offloading considering fronthaul and backhaul in small-cell networks

integrated with MEC. In Proceedings of the IEEE INFOCOM 2017-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), Atlanta, GA, USA, 1–4 May 2017.

5. Alvi, A.N.; Javed, M.A.; Hasanat, M.H.A.; Khan, M.B.; Saudagar, A.K.J.; Alkhathami, M.; Farooq, U. Intelligent Task Offloading in
Fog Computing Based Vehicular Networks. Appl. Sci. 2022, 12, 4521. [CrossRef]

6. Liang, J.; Li, K.; Liu, C.; Li, K. Joint offloading and scheduling decisions for DAG applications in mobile edge computing.
Neurocomputing 2021, 424, 160–171. [CrossRef]

7. Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the
International Conference on Machine Learning. PMLR, Sydney, Australia, 6–11 August 2017; pp. 1126–1135.

8. Liu, M.; Yu, F.R.; Teng, Y.; Leung, V.C.; Song, M. Distributed resource allocation in blockchain-based video streaming systems
with mobile edge computing. IEEE Trans. Wirel. Commun. 2018, 18, 695–708. [CrossRef]

9. Lin, J.; Chai, R.; Chen, M.; Chen, Q. Task execution cost minimization-based joint computation offloading and resource allocation
for cellular D2D systems. In Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC), Bologna, Italy, 9–12 September 2018; pp. 1–5.

10. Bi, S.; Zhang, Y.J. Computation rate maximization for wireless powered mobile-edge computing with binary computation
offloading. IEEE Trans. Wirel. Commun. 2018, 17, 4177–4190. [CrossRef]

11. Fan, W.; Liu, Y.; Tang, B.; Wu, F.; Wang, Z. Computation offloading based on cooperations of mobile edge computing-enabled
base stations. IEEE Access 2017, 6, 22622–22633. [CrossRef]

12. Tareen, F.N.; Alvi, A.N.; Malik, A.A.; Javed, M.A.; Khan, M.B.; Saudagar, A.K.J.; Alkhathami, M.; Abul Hasanat, M.H. Efficient
Load Balancing for Blockchain-Based Healthcare System in Smart Cities. Appl. Sci. 2023, 13, 2411. [CrossRef]

13. Liu, J.; Zhang, Q. Code-partitioning offloading schemes in mobile edge computing for augmented reality. IEEE Access 2019, 7,
11222–11236. [CrossRef]

14. Samy, A.; Elgendy, I.A.; Yu, H.; Zhang, W.; Zhang, H. Secure Task Offloading in Blockchain-Enabled Mobile Edge Computing
with Deep Reinforcement Learning IEEE Trans. Netw. Serv. Manag. 2022, 19, 4872–4887. [CrossRef]

15. Arkian, H.R.; Diyanat, A.; Pourkhalili, A. MIST: Fog-based data analytics scheme with cost-efficient resource provisioning for IoT
crowdsensing applications. J. Netw. Comput. Appl. 2017, 82, 152–165. [CrossRef]

16. Ma, Y.; Wang, H.; Xiong, J.; Diao, J.; Ma, D. Joint allocation on communication and computing resources for fog radio access
networks. IEEE Access 2020, 8, 108310–108323. [CrossRef]

17. Alhelaly, S.; Muthanna, A.; Elgendy, I.A. Optimizing Task Offloading Energy in Multi-User Multi-UAV-Enabled Mobile Edge-
Cloud Computing Systems. Appl. Sci. 2022, 12, 6566. [CrossRef]

https://doi.org/10.3390/app122110957
https://doi.org/10.3390/app12094521
https://doi.org/10.1016/j.neucom.2019.11.081
https://doi.org/10.1109/TWC.2018.2885266
https://doi.org/10.1109/TWC.2018.2821664
https://doi.org/10.1109/ACCESS.2017.2787737
https://doi.org/10.3390/app13042411
https://doi.org/10.1109/ACCESS.2019.2891113
https://doi.org/10.1109/TNSM.2022.3190493
https://doi.org/10.1016/j.jnca.2017.01.012
https://doi.org/10.1109/ACCESS.2020.3000832
https://doi.org/10.3390/app12136566

Appl. Sci. 2023, 13, 5412 23 of 23

18. Zhang, C.; Liu, Z.; Gu, B.; Yamori, K.; Tanaka, Y. A deep reinforcement learning based approach for cost-and energy-aware
multi-flow mobile data offloading. IEICE Trans. Commun. 2018, 101, 1625–1634. [CrossRef]

19. Lu, H.; Gu, C.; Luo, F.; Ding, W.; Liu, X. Optimization of lightweight task offloading strategy for mobile edge computing based on
deep reinforcement learning. Future Gener. Comput. Syst. 2020, 102, 847–861. [CrossRef]

20. Li, X.; Xu, Z.; Fang, F.; Fan, Q.; Wang, X.; Leung, V.C.M. Task Offloading for Deep Learning Empowered Automatic Speech
Analysis in Mobile Edge-Cloud Computing Networks. IEEE Trans. Cloud Comput. [CrossRef]

21. Botvinick, M.; Ritter, S.; Wang, J.X.; Kurth-Nelson, Z.; Blundell, C.; Hassabis, D. Reinforcement learning, fast and slow. Trends
Cogn. Sci. 2019, 23, 408–422. [CrossRef] [PubMed]

22. Qu, G.; Wu, H.; Li, R.; Jiao, P. Dmro: A deep meta reinforcement learning-based task offloading framework for edge-cloud
computing. IEEE Trans. Netw. Serv. Manag. 2021, 18, 3448–3459. [CrossRef]

23. Li, J.; Gao, H.; Lv, T.; Lu, Y. Deep reinforcement learning based computation offloading and resource allocation for MEC. In
Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018;
pp. 1–6.

24. Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the
International Conference on Machine Learning. PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 1587–1596.

25. Arabnejad, H.; Barbosa, J.G. List scheduling algorithm for heterogeneous systems by an optimistic cost table. IEEE Trans. Parallel
Distrib. Syst. 2013, 25, 682–694. [CrossRef]

26. Nichol, A.; Achiam, J.; Schulman, J. On first-order meta-learning algorithms. arXiv 2018, arXiv:1803.02999.
27. Wang, J.; Hu, J.; Min, G.; Zhan, W.; Ni, Q.; Georgalas, N. Computation offloading in multi-access edge computing using a deep

sequential model based on reinforcement learning. IEEE Commun. Mag. 2019, 57, 64–69. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1587/transcom.2017CQP0014
https://doi.org/10.1016/j.future.2019.07.019
https://doi.org/10.1109/TCC.2022.3177649
https://doi.org/10.1016/j.tics.2019.02.006
https://www.ncbi.nlm.nih.gov/pubmed/31003893
https://doi.org/10.1109/TNSM.2021.3087258
https://doi.org/10.1109/TPDS.2013.57
https://doi.org/10.1109/MCOM.2019.1800971

	Introduction
	Related Work
	Task Offloading Model
	Task Offloading Algorithm
	Task Scheduling Strategy
	Multiple Mobile Devices, Single Edge Server
	Multiple Mobile Devices, Multiple Edge Servers
	Strategic Optimization Objectives

	System Model
	Problem Description
	Problem Modeling
	Latency Model
	Energy Consumption Model

	Design of Proposed Algorithm
	System Architecture
	MDP Modeling
	Algorithm Design
	Seq2Seq
	MTD3CO (Meta TD3 Computation Offloading) Implementation

	Analysis of Algorithm Time Complexity

	Experimental Evaluation
	Experimental Setup
	Parameter Settings
	Types of Tasks
	Experimental Environment Settings

	Comparison Study and Discussion
	Task Scenario Description
	Task Type Description

	Concluding Remarks and Future Directions
	References

