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Featured Application: Magnetic nanoparticles can be used in a wide range of applications with
the aid of an external magnetic field, such as the recycling of magnetic adsorbents, the targeted
delivery of drugs, and the targeted migration of lubricant particles. If the motion of magnetic
particles in fluids under the influence of magnetic fields can be accurately calculated, this will
help to increase the efficiency of particle utilization and broaden particles’ application areas. The
present calculation starts with a model of the magnetization of magnetic particles in a magnetic
field, and proposes a magnetization model for calculating magnetic forces based on the real mag-
netic property curves of magnetic particles. Some factors affecting the trajectory of this were
further analyzed. Our calculations may serve as an important guide for targeted medicine in the
biomedical field and the targeted lubrication of magnetically lubricated particles.

Abstract: Based on the magnetic response of magnetic particles, the targeting of particles to a
target area under the modulation of an external magnetic field has been used in many applications.
An accurate kinematic model is helpful to achieve accurate targeting of magnetic particles and to
investigate the factors influencing the motion of the particles. In the present paper, a segmental
magnetization model was proposed based on the real magnetization process of superparamagnetic
particles to calculate the magnetic force, and this was compared with a traditional magnetization
model. The effects of magnetic field strength and particle diameter on the trajectory of magnetic
particles in fluids under a magnetic field were further analyzed using a finite element analysis
software. The simulation results show that changing the particle size only affected the velocity of the
particles and did not affect the trajectory. When magnetic field strength changed, magnetic particles
showed different trajectories. Notably, when the magnetic field force in the Y direction was too large,
meaning the gravity could be neglected, the trajectory of the particles no longer changed when the
magnetic field strength was varied.

Keywords: magnetic particle; particle motion; magnetic field analysis; magnetization model

1. Introduction

Superparamagnetic particles with their unique magnetic properties (low coercivity,
fast magnetic response, etc.) are widely used in various applications such as biomedicine,
magnetic adsorbents, magnetic ore dressing, magnetic recording materials, etc. [1–4]. Mag-
netic particles are also widely used in mechanical systems. For example, Toghraie et al.
reported that magnetic fluids can be used for heating and cooling mechanical systems [5].
Borbáth and Kim et al. investigated the sealing effect of magnetic fluids in rotating machin-
ery [6,7]. Due to their excellent physical properties, some magnetic nanoparticles have also
been added to lubricants as nano-additives [8–10]. In particular, some magnetic particles
need to be frequently manipulated by an external magnetic field to achieve the desired
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effect. For example, in the field of biomedicine, the magnetic drug needs to be assisted by
an external magnetic field to reach known cancerous areas [11,12]. Our previous work has
also found that magnetically lubricated particles can exhibit superior performance with an
external magnetic field [13]. If the time and content of the magnetic particles reaching the
target area are known, then this will be very useful to maximize the effect of the particles
and also to improve the utilization of the particles. At this point, establishing an accurate
kinetic model of magnetic particles in liquid-phase fluids under magnetic field traction
was necessary.

The motion analysis of magnetic particles in fluids under the action of magnetic fields
can generally be divided into two kinds, one is to consider the individual particles as
the object of study. The forces acting on the particles are analyzed, respectively, mainly
including the fluid traction, magnetic field forces, and gravity as the key influencing
factors. The weak interactions between particles are usually ignored when the content is
very small in fluid, and the Newton’s second law formula is used to build the dynamic
equations of the particles [14–18]. Another approach is to consider a homogeneous mixed
phase containing magnetic nanoparticles, where the magnetic field force is considered as a
bulk force acting on the mixed phase, and the N-S equation and the convective diffusion
equation are solved to obtain the distribution of particle concentration in the mixed phase
over time [19–22]. Due to the magnetic saturation strength of magnetic particles, it is also
of interest to accurately calculate the magnetic force on magnetic particles at different
magnetic field strengths. In fact, the particle size distribution of magnetic nanoparticles
in the fluid is not constant because the nanoparticles tend to agglomerate. Therefore, it is
worth noting how changes in particle size and magnetic field strength affect the movement
of magnetic particles, taking into consideration the magnetic saturation phenomenon.

In this work, the true magnetization phase of a superparamagnetic particle in a
magnetic field was described by a segmentation function, providing a new magnetization
model for the calculation of magnetic forces in magnetic fields for different particles. Then,
the motion characteristics of magnetic particles with different particle sizes under the
different magnetic field strengths were analyzed, taking water as the study system. By
establishing the mechanical model, the factors affecting the trajectory of the particles were
analyzed, possibly providing significant guidance for realizing the precise targeting of
magnetic nanoparticles under an external magnetic field manipulation.

2. Materials and Methods
2.1. Geometric Models

In the present work, a cylindrical permanent magnet was chosen as the magnetic field
source. In order to analyze the magnetic field force alone, we simulated a static container
containing a fluid placed on the top of a permanent magnet, and the fluid velocity was
defined as 0 m/s. The geometric model is shown in Figure 1, and the detailed geometric
parameters are shown in Table 1. The air domain around the fluid domain should also be
accounted for when solving for the ambient magnetic field intensity distribution around
the magnetic source.

Table 1. Geometric model size parameters.

Symbols L1 H1 L2 H2 d

Values (mm) 10 20 10 3 1.25
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2.2. Magnetic Field Distribution

The constitutive relationship between magnetic induction and magnetic field strength
in all domains is described by Equation (1), and the distribution of magnetic induction can
be determined by combining Maxwell’s equations, as following Equation (2).

B = µ0µRAH + Br, (1)

∇·B = 0, (2)

where µ0 is the vacuum permeability, µRA is the relative permeability of air, B is the
magnetic induction strength, H is the magnetic field strength, Br is the remanence of the
permanent magnet, and the direction of magnetization of the permanent magnet is defined
as the Y direction. Here we have chosen three different values of remanence to generate
different magnetic field strengths.

2.3. Mechanical Analysis of Magnetic Particle Motion

The forces on magnetic particles in the fluid under the action of a magnetic field mainly
include magnetic field force, fluid traction force, and gravity. When the concentration of
particles is low enough in the fluid, the forces between the particles can be ignored for ease
of calculation. The mechanical analysis is based on Newton’s second law as follows:

mpa = ∑ F, (3)
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∑ F = Fd + G + FM, (4)

where mp is the mass of the particle, a is the acceleration of the particle, Fd is the fluid
traction, G is the gravitational force, and FM is the magnetic force. According to the Stokes
drag force equation,

Fd = −3πηD
(
vp − vf

)
, (5)

where η is the dynamic viscosity, D is the particle diameter, vp is the particle velocity, and vf
is the fluid velocity. In this paper, the movement of magnetic particles in a stationary fluid
under the action of a magnetic field is analyzed as an example, i.e., vf is 0. The calculation
of the magnetic field force FM can be the focus of the following discussion.

2.4. Magnetic Field Forces and Magnetization Models

In general, the magnetic force on a magnetic particle was calculated by the following
Equation (6) [23]

FM = Vpµ0M∇H, (6)

where Vp is the volume of the particle, M is the magnetic moment per unit volume of
the magnetic particle in the magnetic field, i.e., the magnetization strength, and H is the
magnetic field strength.

According to the Equation (6), the magnetic field force on a magnetic particle is not
only influenced by the external magnetic field strength H, but the magnetization M of the
magnetic particle itself also affects the magnitude of the magnetic field force. Regarding the
magnetization model of magnetic particles in a magnetic field, many researchers simply
described it using Equation (7) [14,24–26]. This equation considered that the magnetization
strength of a magnetic particle varies linearly with the external magnetic field strength, and
the slope χ is the magnetic susceptibility of the magnetic particle.

M = χH, (7)

In fact, the magnetization of the magnetic particles can reach saturation when the
external magnetic field is sufficiently strong, i.e., the magnetization strength will no longer
vary linearly with the magnetic field strength; at that time, Equation (7) is no longer ap-
plicable either. To take into account the effect of the magnetic saturation phenomenon,
we proposed a magnetization model based on the actual magnetic characteristic curves
of magnetic particles. Taking a common superparamagnetic Fe3O4 nanoparticle as an
example, its diameter is about 300 nm. The magnetic hysteresis loop was measured by a
magnetic property measurement system (VSM, 7404, LakeShore, Columbus, OH, USA), as
shown in Figure 2. The Fe3O4 nanoparticles exhibited typical superparamagnetism, and
the remanence was almost zero. The magnetization process of magnetic particles can be
described in two stages: the first stage was defined as the initial magnetization stage, and
the second stage was defined as the magnetization saturation stage. In the initial magneti-
zation stage, the magnetization intensity of the magnetic particle was approximately linear
with increasing external magnetic field strength. In the magnetization saturation stage, the
magnetization intensity of the magnetic particle no longer changed with increasing external
magnetic field strength. Here, two straight lines were plotted tangent to the magnetization
curves of the two stages, as shown in Figure 2, and the coordinates of the intersection
of the tangent lines were defined as (H0, M0). When |H| < H0, magnetization belonged
to the initial magnetization stage I; the relationship between the magnetization intensity
and the magnetic field strength could be described by Equation (7). For |H| > H0, the
magnetization process was considered to have reached the magnetic saturation stage II,
and the magnetic saturation intensity was M0. Considering the two magnetization stages,
the relationship between the M and H can be described by Equation (8). According to
the result shown in Figure 2, H0 = 58.26 kA/m, M0 = 450.64 kA/m, and the magnetic
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susceptibility χ was equal to 7.74. These values will be used for further discussion and
analysis in the following section.

M =

{
χH, |H| < H0
MsH
|H| , |H| ≥ H0

, (8)
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Figure 2. Magnetic hysteresis loop of magnetic particles obtained from a magnetic property measure-
ment system.

Then, the magnetic field force equation becomes

FM =

{
Vpµ0χ(H∇H), |H| < H0

Vpµ0
Ms
|H| (H∇H), |H| ≥ H0

, (9)

The magnetic volume force vector in a two-dimensional coordinate system can be
described by the following Equations (10) and (11)

fMx =

 µ0χ
(

Hx
∂Hx
∂x + Hy

∂Hx
∂y

)
, |H| < H0

µ0
Ms
|H|

(
Hx

∂Hx
∂x + Hy

∂Hx
∂y

)
, |H| ≥ H0

, (10)

fMy =

 µ0χ
(

Hx
∂Hy
∂x + Hy

∂Hy
∂y

)
, |H| < H0

µ0
Ms
|H|

(
Hx

∂Hy
∂x + Hy

∂Hy
∂y

)
, |H| ≥ H0

, (11)

The model was solved using the AC/DC and particle tracking modules of the COM-
SOL multi-physics field analysis software. The physical parameters required for the simu-
lation are shown in Table 2. The magnetic field forces along the X and Y directions were
defined as a variable that varied with the magnetic field strength and were calculated,
respectively. The kinetic analysis was carried out in each direction, with the magnetic
particles as the object of study, to obtain the trajectory of the particles.
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Table 2. The physical parameters required for the simulation.

Vacuum
Permeability

Relative
Permeability of

Air
Remanence Fluid Density Fluid Dynamic

Viscosity Particle Density

4π × 10−7 H/m 1 0.5 T, 1 T, 1.5 T 1000 kg/m3 8.94 × 10−4 Pa·s 5180 kg/m3

3. Simulation Results
3.1. Magnetic Field Strength and Magnetic Volume Force Distribution

Figure 3 shows the distribution of magnetic field strength in the fluid domain when the
permanent magnets have different remanences, 0, 0.5, 1, and 1.5 T, respectively. The critical
magnetic field strength calculated from the above is 58.26 kA/m, and the corresponding
isoline is shown in the red curve in Figure 3. The fluid domain could be then divided
into two regions by the isoline, i.e., the non-magnetic saturation region above the isoline
and the magnetic saturation region below the isoline. Obviously, the greater the rema-
nence, the greater the magnetic saturation zone, which also indicates that it is necessary to
consider the existence of a magnetic saturation phenomenon when the magnetic field is
strong enough.
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To compare the magnetic forces calculated using a different magnetization model,
Figure 4 shows the distribution of the magnetic volume force distribution in the fluid
domain. Here, I represents the conventional magnetization model, i.e., Equation (7), and II
represents the magnetization model proposed in this paper, i.e., Equation (8). The black
boundary line in the figure was the isoline of the magnetic field strength, with 58.26 kA/m.
It can be seen that there is a clear difference in the magnitude of the magnetic volume
force calculated using the two magnetization models in the region below the black critical
isoline. In order to quantify the difference, a vertical path was selected, as shown by
the black vertical line in Figure 5, and the magnetic volume forces calculated using the
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two magnetization models were compared along this path. The calculated results are shown
in Figure 5b,d,f, corresponding to Br = 0.5, 1, and 1.5 T, respectively. It was found that the
magnetic volume forces calculated by the two models were the same in the unsaturated
region, while the deviation occurred when magnetic field strength was higher than the
critical strength. Obviously, the higher the Br value, the earlier and larger the deviation
was, as shown in Figure 5b,d,f. When the magnetic field strength reached 175 kA/m, the
magnetic forces calculated by the two models were up to four times different in value. It
can be seen that when the magnetic field strength did not reach the magnetic saturation
value of the magnetic particles, the traditional model was still applicable. However, when
the magnetic field strength exceeded the critical strength H0, it was necessary to consider
the influence of the magnetic saturation of the magnetic particles in order to accurately
calculate the magnetic volume force.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 13 
 

critical strength. Obviously, the higher the Br value, the earlier and larger the deviation 
was, as shown in Figure 5b,d,f. When the magnetic field strength reached 175 kA/m, the 
magnetic forces calculated by the two models were up to four times different in value. It 
can be seen that when the magnetic field strength did not reach the magnetic saturation 
value of the magnetic particles, the traditional model was still applicable. However, when 
the magnetic field strength exceeded the critical strength H0, it was necessary to consider 
the influence of the magnetic saturation of the magnetic particles in order to accurately 
calculate the magnetic volume force. 

 
Figure 4. Magnetic volume force distribution in the fluid domain for different remanent magnetic 
strengths. Ⅰ represents the magnetic force calculated according to the conventional magnetization 
model, i.e., Equation (7); Ⅱ represents new magnetization model, i.e., Equation (8). 

Figure 4. Magnetic volume force distribution in the fluid domain for different remanent magnetic
strengths. I represents the magnetic force calculated according to the conventional magnetization
model, i.e., Equation (7); II represents new magnetization model, i.e., Equation (8).



Appl. Sci. 2023, 13, 5406 8 of 14
Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 13 
 

 
Figure 5. Quantitative comparison of the magnetic volume forces calculated by different magneti-
zation models under the action of different remanences. (a,b) Br = 0.5 T; (c,d) Br = 1 T; (e,f) Br = 1.5 
T. 

3.2. Trajectories of Magnetic Particles with Different Diameters 
The trajectories of magnetic particles with three kinds of diameter (0.5 µm, 1 µm, and 

2 µm) under the influence of a magnetic field were simulated. To investigate the trapping 
of particles with different locations in fluid by the magnetic field source, three releasing 
positions were defined in the fluid domain, with heights of 5 mm, 10 mm, and 15 mm 
from the bottom of the fluid domain, respectively. Ten particles with different diameters 

Figure 5. Quantitative comparison of the magnetic volume forces calculated by different mag-
netization models under the action of different remanences. (a,b) Br = 0.5 T; (c,d) Br = 1 T;
(e,f) Br = 1.5 T.



Appl. Sci. 2023, 13, 5406 9 of 14

3.2. Trajectories of Magnetic Particles with Different Diameters

The trajectories of magnetic particles with three kinds of diameter (0.5 µm, 1 µm, and
2 µm) under the influence of a magnetic field were simulated. To investigate the trapping
of particles with different locations in fluid by the magnetic field source, three releasing
positions were defined in the fluid domain, with heights of 5 mm, 10 mm, and 15 mm from
the bottom of the fluid domain, respectively. Ten particles with different diameters were
released simultaneously. Figure 6 shows the trajectory of magnetic particles with different
particle sizes under the magnetic field generated by the magnet with a remanence of
0.5 T over a period of 300 s. It was found that the particles with different particle diameters
followed the same path downwards, regardless of the releasing position, and the larger
particles moved further away within the same time. For a release height of 5 mm, the final
position of the particles was the same for all three particle sizes, which meant that all three
particle sizes reached the bottom of the fluid domain within 300 s.
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3.3. The Effect of the Remanence on the Trajectory of Particles

Figure 7 shows the trajectories of magnetic particles with diameter of 1 µm under the
action of the magnet with different remanences, taking a moving time of 300 s. It was found
that the trajectory of the particles did not change with the increasing remanence when
the releasing height was 5 mm. However, when the releasing heights were 10 mm and
15 mm, as shown in Figure 7b,c, the changes in remanence caused an obvious difference
in the trajectory of the particles. The higher the particle releasing position, the greater the
deviation in the trajectory of the particles caused by the change in remanence.
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As can be seen from the above simulation results, the particle diameter and remanence
of the magnet exhibited different effects on the movement of the particles, and differ-
ent releasing heights also seemed to change the trajectory of the particles. The relevant
mechanism will be further analyzed in the following discussion section.

4. Discussion

A force analysis of a single magnetic particle in a fluid was carried out to understand
the effect of particle diameter and remanence of a magnet on the trajectory of the magnetic
particles, as shown in Figure 8. It can be found that the motion of the particle along the X
direction is mainly determined by the magnetic field force FMx, while the motion along the
Y direction is determined by both gravity and the magnetic field force FMy. Since both the
magnetic field force and gravity are bulk forces, magnetic particles with different diameters
move along the same trajectory, and the speeds of different diameter particles are different
due to FM and G and are proportional to volume. The larger the particle size, the greater
the gravitational and magnetic forces, and the faster the motion.

However, the strength of the magnetic field in the fluid domain changed as the
remanence varied, which in turn changed the magnitude of FMx and FMy. As the gravity
in the Y direction was constant, the forces on the particles along the X and Y directions
no longer changed proportionally. This could be the main reason as to why the trajectory
of the particles changed when a different remanence was adopted, as shown in Figure 7.
However, it is worth noting that, as shown in Figure 7, when the releasing height was
5 mm, the trajectory of the particles was same for all remanences. Based on this phenomena,
we further focused on the ratio of the Y-directional force, the gravity G to FMy, as shown in
Figure 9. It was clear that the closer to the bottom of the fluid domain, the smaller the value
of G/FMy. It can be seen that the ratio of the G/FMy was only about 5% for three different
remanences at 5 mm from the bottom. Combining the trajectory of the particles shown
in Figure 7a, when the proportion of gravity in the Y-directional force on the particle was
so small, about 5%, that it could be ignored, the motion direction of particles was mainly
determined by the magnetic field force. Because FMx and FMy varied proportionally as the
remanences changed, this may be the reason as to why the trajectory of particles remained
the same when different remanences were applied at a releasing height of 5 mm.
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different remanences.

Considering the limited experimental conditions, it is difficult to observe the motion
of individual nanoparticles under a magnetic field. So, we designed a simple experiment to
observe the motion of magnetic particles in a liquid-phase fluid under a magnetic field. The
experimental details were as follows. A transparent cuvette containing aqueous solution
was placed on a cylindrical permanent magnet with a remanence of approximately 1.2 T.
The mixture containing the magnetic particles was then injected into the aqueous solution
using a pipette, and the trajectory of the magnetic particles was recorded in real time using
a high definition camera. The trajectory of the particles in the absence of a magnet was
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also observed as a comparison. The observed images are shown in Figure 10. Magnetic
particles disorderly fell under gravity in the absence of a magnetic field. In the presence
of a magnetic field, the magnetic particles showed a lateral shift toward the center of the
cuvette as they fell; this trend is similar to the simulated results in Figures 6 and 7.
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Figure 10. Observed images of the trajectory of a magnetic particle under the action of a
magnetic field.

5. Conclusions

In the present work, we proposed a new model to describe the magnetization process of
superparamagnetic particles in a magnetic field based on the real magnetic property curve
of magnetic particles for accurately calculating the magnetic force on the superparamagnetic
particle. With the aid of finite element analysis software, the trajectories of magnetic
particles of different particle sizes were visualized and analyzed, also considering the
influence of the magnet’s remanence. The simulation results show that under the action of
a magnetic field, changing the particle size only affects the velocity of the particle, but not
the trajectory of the particle; considering the action of gravity, changing the magnitude of
magnetic field strength will change the trajectory of the particle. However, when the ratio
of gravity to magnetic field force in the Y direction is less than 5%, the effect of gravity may
be ignored; additionally, changing the magnitude of magnetic field strength does not affect
the trajectory of the particles and only affects the moving speed of the particles. This work
provides a method to accurately analyze the trajectory of magnetic particles in fluids, and
provides a theoretical underpinning for the fields that require a precise control of magnetic
particle motion, such as drug-targeted medicine, mechanical target lubrication, etc.
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