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Abstract: The introduction of an intermediate discontinuity in frame structures is commonly named
inter-storey isolation. Inter-storey isolation is an effective technique for the seismic protection of new
or existing frame structures. The devices that are used to perform the discontinuity, mainly of the
structural stiffness, are placed at a higher storey level of the structure and not at the base level. In the
latter years, this technique has gained increasing interest because, especially for existing buildings,
it is cheaper and technically easier to implement than base isolation. In this paper, the attention
is focused on the effects on a frame structure of an intermediate elasto-plastic discontinuity that
can be described by a Bouc-Wen model. The frame structure with the intermediate discontinuity is
modelled with a 3-DOF reduced model. Its dynamical behaviour is investigated by considering both
harmonic and seismic external excitation. The results are summarized in gain maps aimed at finding
the parameters that optimize the seismic behaviour of the structure.

Keywords: intermediate discontinuity; hysteretic elasto-plastic devices; archetype system; gain
parameters and maps

1. Introduction

The seismic protection of structures is one of the biggest challenges in civil engineer-
ing. In recent years, the building technical codes increased the requirements in terms of
structural capacity that a structure needs to fulfil, both for new buildings and the seismic
retrofit of existing buildings. New buildings can meet the needed requirements by means
of a proper design. Instead, improving the seismic response of existing buildings may
require invasive interventions that may modify the serviceability of such buildings. There
is a wide literature available about the seismic retrofit of structures. Base isolation (BI) and
Tuned Mass Damper (TMD) are two widely known techniques. The first studies on base
isolation and tuned mass damper systems were presented in [1,2], respectively. Tsai, in [3],
and Taniguchi et al., in [4], showed that a TMD placed on the floor immediately above
the isolation layer in a base isolated structure can reduce the base displacement. A more
complex version of TMD, named Tuned Mass Damper Inerter (TMDI), was presented in [5]
and was obtained by coupling a TMD with an inerter. In [5], such a device was intended to
reduce the displacement demand of base-isolated structures, but in [6], instead, the same
device was used to reduce the vibrations in tall buildings.

Protection systems based on the TMD have been used with limited success in the
seismic protection of structures because of the difficulty in tuning the TMD to multiple
frequencies, as it is needed for seismic excitations. De Angelis et al. [7] showed that it
is possible to decrease a TMD tendency to detuning by designing a TMD with a high
ratio between the mass of the TMD and the mass of the structure to be protected. To
achieve such a high mass ratio, some authors purposed the combined use of TMD and
BI. This combination is commonly named inter-storey isolation: in inter-storey isolation,
base-isolated and tuned-mass-damper behaviours coexist.
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The inter-storey isolation has become widely used for the seismic protection of struc-
tures also because it is usually characterized by a low impact on the aesthetic of the building.
Even though there are many works about the use of inter-storey isolation, most of them are
related to case studies, and only a few of them are devoted to clarify the general aspects
of its mechanical behaviour. For example, Chey et al. added new storeys on the rooftop
of an existing 12-storey building [8] and connected the two parts of the structure with an
isolation layer, thus making the upper part of the structure work as a TMD to reduce the
vibration of the lower part of the structure. Wang et al. [9–11] presented analytical and
experimental analyses of the response of building structures with inter-storey isolation.
In [12–14], the roof of the building was used as a vibrating damper to protect the structure,
whereas in [15,16], entire sections of the studied structures were converted into vibrating
masses by means of a uniform disconnection along the height of the building. An analogous
technique for the reduction of the seismic displacements is the partial mass isolation (PMI)
technique presented in [17], where the performance of the PMI is compared to those of
conventional TMD and BI.

In order to highlight the general mechanisms behind inter-storey isolation, a suitable
option is to analyse its effects on an archetype model of a structure. In the literature,
archetype models are often used to highlight the main characteristics of multi-Degree-Of-
Freedom (DOF) models. For instance, in [1,2,18,19], the studied systems are represented by
archetype 2-DOF models. A similar approach, aimed at studying the general behaviour
of the inter-storey isolation with a 2-DOF archetype model of the structure, has been
presented in [20–22]. Specifically, in [20,21] and in this paper, the inter-storey isolation is
named intermediate discontinuity, since it represents a sudden change in the stiffness of the
structure. A 2-DOF model is suitable to describe systems where the isolation is placed at
higher or lower levels, but cannot properly describe systems where the isolation is placed
at middle-floors. In [23], a third degree of freedom has been added to the model to improve
the describing capacity of the inter-storey isolation. In that paper, the disconnection devices
are modelled by linear links with a non-classical Rayleigh damping model. However, the
choice of a linear model to describe the behaviour of the disconnection could prevent the
correct evaluation of the effectiveness of the introduction of the intermediate discontinuity.
Hence, a non-linear modelling of the discontinuity, with constitutive laws closer to the real
behaviour of the disconnection devices, could improve the ability of the model to capture
the behaviour of real structures.

In this paper, a system with intermediate discontinuity is studied by means of a 3-DOF
model, which represents a medium-rise frame structure (i.e., an archetype model), and a
Bouc–Wen hysteresis model representing the disconnection devices, which are hypotheti-
cally assumed to be lead-rubber-bearing isolators [24,25]. The main purpose of the paper is
to define the influence of the hysteretic characteristics of the discontinuity devices on the
seismic response of the structure. Since in the paper the numerical simulations refer only to
a six-storey frame structure, the results cannot be generalised, but are intended to provide
preliminary information about the hysteretic discontinuity. Although the results are not
generalizable, the method used to investigate the behaviour of the structure with inter-
mediate discontinuity provides information for most of the medium-rise frame structures
with hysteretic inter-storey isolation. Additionally, the paper does not provide technical
specifications about the practical realization of an intermediate discontinuity, but it has to
be framed as an analytical/numerical study, which precedes any practical implementation.

The first part of the paper is focused on the description of the mechanical behaviour
of the system. In particular, Section 2 presents the mechanical model and the equations
of motion. The second part is focused on the dynamical response. Specifically, Section 3
studies the response to harmonic excitation, whereas Section 4 presents the response to
seismic excitation. The results are summarized in gain maps used to find the optimal
parameters for the inter-storey isolation of the archetype model.
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2. The Mechanical Model
2.1. Archetype Model

In the following, two archetype systems are used to compare results with and with-
out inter-storey isolation. The Main System archetype (MS) represents the structure with
the introduction of an intermediate discontinuity (Figure 1a), whereas the Auxiliary Sys-
tem archetype (AS) represents the same structure without the intermediate discontinuity
(Figure 1b). In the case of the MS, the part of the structure below the discontinuity is called
substructure, whereas the part above the discontinuity is called superstructure.
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Figure 1. Structural scheme of the (a) frame structure with intermediate discontinuity; (b) original
frame structure (without intermediate discontinuity).

The MS and AS are 3-DOF and 2-DOF equivalent models, respectively (Figure 2). In
such models, m1 and k1 represent the mass and the stiffness of the substructure, whereas k2
and m2 refer to the superstructure. In the MS, the constitutive behaviour of the disconnec-
tion devices is modelled by means of the Bouc–Wen model. There are several variations of
such a model, for instance, Song and Der Kiureghian [26] proposed a generalized Bouc–Wen
model to describe asymmetric hysteresis, whereas Aloisio [27] extended the six-parameters
formulation to an eight-parameter formulation to include the cyclical degradation of the
material properties. In this paper, the classical Bouc–Wen formulation [28] is deemed fit to
accurately describe the constitutive behaviour of the disconnection devices.
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Figure 2. Archetype models: (a) MS; (b) AS (HD: Elasto-plastic behaviour of hysteretic devices).
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It is worth observing that no specific reference is made to any new or existing structures.
Moreover, it is assumed that the intermediate discontinuity keeps the structure to be
protected in the elastic field. To evaluate the effectiveness of the intermediate discontinuity,
the (linear elastic) displacements provided by the MS are compared with those of the AS.

For the MS, the equations of motion, obtained by a direct approach, are written as

c11u̇1(t) + c12u̇d − Fh(t) + k1u1(t) + m1ü1(t) = −m1ag(t), (1a)

c21u̇1 + c22u̇d(t) + c23u̇2(t) + Fh(t) + k2[ud(t)− u2(t)] + mdüd(t) = −mdag(t), (1b)

c32u̇d(t) + c33u̇2(t) + k2u2(t)− k2ud(t) + m2ü2(t) = −m2ag(t), (1c)

ż(t) = [u̇d(t)− u̇1(t)]{Ã− |z(t)|n{β1 + γ1sgn{z(t)[u̇d(t)− u̇1(t)]}}}u−1
y , (1d)

where the restoring force Fh(t) is defined as

Fh(t) = Ψkd(ud(t)− u1(t)) + kduy(1−Ψ)z(t), (2)

z(t) is a hysteretic variable that describes the post-yielding behaviour, whereas Ã, β1, n, and
γ1 are the Bouc–Wen parameters defined in [28]. The Bouc–Wen parameters are redundant;
therefore, both Charalampakis [29] and Ma et al. [30] suggested assigning specific values
to some of them. In details, they suggested using Ã = 1, so that kd = Fy/uy acquires the
meaning of pre-yielding (elastic) stiffness. Additionally, some researchers [29,31] suggested
using β1 + γ1 = 1, where β1 and γ1 are parameters that control the shape and dimension
of the hysteresis cycle. The choice to adopt these two constraints, Ã = 1 and β1 + γ1 = 1,
provides a physical meaning to Fy, uy, and Ψ. Specifically, Fy is the yielding force, uy is the
yielding displacement, and Ψ is the ratio between post-yielding and pre-yielding (elastic)
stiffness. Moreover, the values of the hysteretic dimensionless parameter z(t) remain inside
the range [−1, 1]. Therefore, in this study, the values adopted for the parameters are Ã = 1,
β1 = γ1 = 1/2, and n = 2.

The damping coefficients cij in Equations (1a)–(1c) can be grouped in matrix form as

C =

 c11 c12 0
c21 c22 c23
0 c32 c33

, (3)

and Matrix C is derived by means of the classical Rayleigh formulation where C = αRM + βRK.
In this equation, αR and βR are the Rayleigh coefficients, and it is assumed that the modal
damping of the first two modes is ξ = 0.05. The elastic stiffness matrix K and the mass
matrix M are obtained for Ψ = 1.

The equations of motion of the AS are described those of a shear-type 2-DOF model.
The mechanical behaviour of both MS and AS are considered elastic and linear because
the aim of the proposed protection strategy is to maintain the linear elastic behaviour of
the structure to be protected. The linear elastic behaviour of the AS is only considered
as a reference for the comparison because the AS would conceivably undergo plastic
deformations under severe earthquakes. The proposed analytical model does not account
for the P-Delta effects that may arise in the columns of the substructure due to the lateral
displacement of the superstructure because such displacement is considered negligible,
as in [9–11].

2.2. Dynamic Equivalence between Multiple-DOF Systems and Archetype Models

This subsection presents the equivalence procedure used to derive the mechanical
characteristics of the AS. Such a procedure was developed mainly for low- and medium-rise
frame structures and aims at obtaining the masses m1 and m2 and stiffnesses k1 and k2 of
the AS starting from the geometrical and mechanical characteristics of the multiple-DOF
(M-DOF) frame structure without intermediate discontinuity. If the response of the M-DOF
frame has a predominant vibration mode, then the AS can correctly represent the behaviour
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of such a M-DOF system. The equivalence procedure is described in the details in [21]. It is
assumed that m1, m2, k1, and k2 remain the same for the MS. The procedure is based on the
following two assumptions:

• The frequency ωm of the main mode of the M-DOF system without discontinuity and
of the first mode of the AS (Figure 2b) are the same;

• The modal displacements of the storey of the discontinuity and top storey (i.e., L-th
and N-th storeys in Figure 1a of the M-DOF system without discontinuity are equal to
the modal displacements u1 and u2 of the AS.

The masses m1 and m2 of the AS correspond to the total mass of the substructure and
superstructure, respectively. Assuming storeys of equal mass m entails

m1 = mL; m2 = m(N − L), (4)

where m is the mass of a storey, L is the level where the intermediate discontinuity is
introduced, and N is the number of storeys of the frame. The masses of the MS are m̃1, md,
and m2. In particular, the mass of the substructure reads

m̃1 = m(L− 1) + m0; md = m, (5)

where m0 = γm (γ = 0.5) is the mass of additional stiffening elements. Such stiffening
elements are those that should be added to the level just below the discontinuity to maintain
the same lateral stiffness available before the introduction of the discontinuity (Figure 1a).
The value γ = 0.5 is chosen because only horizontal structural elements are needed to
restore the stiffness of the disconnected storey, which, consequently, has a mass smaller
than that of an entire storey.

The equivalence procedure requires the identification of the main mode of the M-DOF
frame structure without discontinuity. It is assumed that the main mode of the structure has
the highest modal mass participation factor L. Let Φ be the vector that collects the modal
displacements along a reference vertical line and along the direction to which corresponds
the highest factor L. It reads

Φ = {φ1, φ2, . . . , φL, . . . , φN−1, φN}T (6)

The following relationships for equivalent stiffnesses k1 and k2 of the AS can be
obtained as in [21]:

k1 =
ω2

m(m1φL + m2φN)

φL
; k2 =

ω2
mm2φN

φN − φL
, (7)

where φL and φN are the components of the vector Φ that refer to the L and N storeys of
the M-DOF system.

It is worth remarking that the stiffness values of the superstructure and substructure
are assumed to remain unchanged after the discontinuity is introduced (i.e., k1 and k2
obtained by Equation (7) are the same for both AS and MS). The ability of both MS and AS
to describe a generic 3D frame structure, without and with intermediate discontinuity, and
the limitations of such archetype models were discussed in [23].

2.3. Characteristics of the Frame

The reference building is a regular six-storeys frame structure. The storey mass is
mp = 301.5 kg × 103, that correspond to a storey area of 300 m2. The viscous damping ratio
of the frame structure is ξ = 5% and the overall storey stiffness is kp = 476,779 KN/m.
The fundamental period of such a structure is T = 0.65 s. For a six-storey building, the
intermediate discontinuity can be placed at five different levels. The characteristics of the
archetype models depend on the discontinuity level L and are reported in Table 1.
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Table 1. Mechanical characteristics of MS and AS archetypes.

L m1 [kg × 103] m̃1 [kg × 103] m2 [kg × 103] k1 [kN/m] k2 [kN/m]

1 301.5 150.75 1507.50 602,403 182,552

2 603.0 425.25 1206.00 292,175 208,839

3 904.5 735.75 904.50 207,567 250,374

4 1206 1055.25 603.00 177,681 324,132

5 1507.5 1356.75 301.50 167,962 476,779

2.4. Gain Coefficients

The results of the MS are compared with those of the AS to verify if the introduction
of the intermediate discontinuity reduces the displacements and drifts of the structure. The
comparison between the displacements and drifts of the two models is made through three
coefficients that are named gain coefficients and are defined as

α1 =
max[u1(t)]
max[uA

1 (t)]
; α2 =

max[u2(t)− ud(t)]
max[uA

2 (t)− uA
1 (t)]

; α3 =
max[ud(t)− u1(t)]

u0
, (8)

where the displacements u1, u2, and ud refer to the MS (Figure 2a), uA
1 and uA

2 refer
to the AS (Figure 2b), and u0 is the threshold value of the acceptable displacements.
The proposed gain coefficients represent a relative evaluation of the effectiveness of the
hysteretic intermediate discontinuity. They evaluate the performances of the system with
the discontinuity with respect to a reference system, represented by the corresponding
linear elastic system without intermediate discontinuity.

The gain coefficient α1 refers to the substructure and is the ratio between the displace-
ments of the substructures of the MS and AS. Such a coefficient evaluates the performance
of the superstructure as TMD for the substructure. The gain coefficient α2 refers to the
superstructure and is the ratio between the drifts of the superstructure of the MS and AS.
In this case, α2 evaluates the behaviour of the intermediate discontinuity as base isolation
for the superstructure. Finally, α3 is the ratio between the displacement of the intermediate
discontinuity and the maximum threshold value u0 = 15 cm. Such value was chosen
in order to limit excessive displacements on the discontinuity layer that may jeopardize
the safety of the structure. Each gain coefficient evaluates a different capability of the
intermediate discontinuity. If a gain coefficient is less than unity, the introduction of the
discontinuity is beneficial for a specific part of the structure. Therefore, the improvement of
the dynamical behaviour of the frame means obtaining gain coefficients lower than unity
(i.e., a reduction of displacements and drifts). A simultaneous control on these coefficients
leads to a unitary approach to the dynamic enhancement of the structure following from
the introduction of the discontinuity.

Two additional gain coefficients are introduced with the purpose to evaluate how the
intermediate discontinuity affects the accelerations of the substructure and superstructure.
They read

αA
1 =

max[ü1(t)]
max[üA

1 (t)]
; αA

2 =
max[ü2(t)− üd(t)]
max[üA

2 (t)− üA
1 (t)]

, (9)

where ü1(t), ü2(t), and üd(t) are the accelerations of the MS. Similarly, üA
2 (t) and üA

1 (t) are
the accelerations of the AS.

2.5. Variable Parameters

The parametric analysis is performed by varying the following parameters:

• Post-yielding to pre-yielding stiffness ratio Ψ.
• Yield displacement ratio η =

uy
u0

.
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• Pre-yielding to storey stiffness ratio ρ = kd
kp

.

• Ratio between m2 (Equation (4)) and m̃1 (Equation (5)) µ = m2
m̃1

.
• Discontinuity level of the frame structure L.

The results presented in the following sections are obtained by numerically integrating
the equations of motion. For this purpose, an original code is developed in the Mathematica
software. The equations of motion are integrated in an implicit form and the adopted step
size is δt = 0.01 s.

3. Harmonic Analysis

The harmonic analyses are conducted on the frame whose characteristics are reported
in Table 1. Parametric analyses are carried out to identify how the parameters influence
the response of the system with the discontinuity. In the analyses, the external excitation is
defined as

ag(t) = A Sin(Ωt), (10)

with A amplitude and Ω circular frequency of the excitation. Since the system is non-linear,
A is considered as a variable parameter.

3.1. Frequency-Response Curves

A first analysis compares the frequency-response curves of the MS and AS. Such curves rep-
resent the dimensionless maximum displacement of the substructure, χ1 = Max(|u1(t)|/u0),
and the dimensionless drift of the superstructure, χ2 = Max(|u2(t)− ud(t)|/u0), as func-
tions of the frequency ratio β = Ω/ω1, where ω1 =

√
k1/m1. In the analyses where the

value of η is fixed, such value is assumed as η = 0.2.
Figure 3 compares the frequency-response curves of the MS obtained for Ψ = 1.0, and

the frequency-response curves of the AS. Assuming Ψ = 1.0 entails a linear behaviour of
the discontinuity, the comparison shows that the discontinuity introduces a second peak in
the frequency-response curves of the MS. Such a peak corresponds to a second resonant
frequency, whereas the AS is characterized by a single resonant frequency in the range of the
observed frequencies. The existence of a second resonant frequency is a consequence of the
presence of a TMD in the system, meaning that, due to the discontinuity, the superstructure
works as a TMD for the substructure. The frequency-response curve of χ2 shows a shift
of the main frequency of the MS to lower values and highlights a behaviour as a base
isolated structure. Thus, the superstructure acts as a TMD for the substructure and the
superstructure behaves as if it was base-isolated. In both cases, it can be asserted that the
distance between the two resonant frequencies of the MS is a qualitative measure of the
effectiveness of the discontinuity.
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Figure 3. Frequency-response curves: comparison between curves of AS and MS (L = 3 and
Ψ = 1.00).

A second analysis investigates the sensitivity of the system to the values of the param-
eters characterizing the hysteretic behaviour of the disconnection devices. Figure 4 shows
the frequency-response curves obtained for several values of the parameters characterizing
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the Bouc–Wen constitutive law. Specifically, Figure 4a shows the frequency-response curves
of the MS for L = 3, A = 0.6 g, ρ = 0.2, and several values of Ψ increasing from Ψ = 0.10
to Ψ = 1.00. The highest resonant frequency is not significantly sensitive to Ψ; on the
contrary, the smallest resonant frequency significantly depends on Ψ. The values of both
χ1 and χ2 in correspondence of the resonant peaks strongly depend on Ψ. As Ψ decreases,
the hysteresis cycles become larger, and the values of the dimensionless displacements in
correspondence of the peak decrease. Moreover, the distance between the peaks increases as
Ψ decreases. Figure 4b shows the frequency-response curves for L = 5, A = 0.6 g, ρ = 0.2,
and the same values of Ψ of the case presented in Figure 4a. When the discontinuity is
placed at higher levels, the values of χ1 and χ2 at the resonant peak that refers to the lower
frequency reduce as Ψ decreases. The value of µ obtained for L = 5 is smaller than the
value obtained for L = 3, and the distance between the two resonant peaks decreases,
thus reducing the frequency range where the discontinuity is effective. Figure 4c shows
the frequency-response curves obtained for different values of ρ increasing from ρ = 0.02
to ρ = 0.30, L = 3, A = 0.6 g, and Ψ = 0.25. As ρ increases, both the first and second
resonant frequencies shift toward higher values. Moreover, χ1 manifests higher values at
the resonant peaks for smaller values of ρ. The same increase occurs for the values at the left
peak of the χ2 curves. Instead, the value of χ2 at the higher resonant frequency decreases
until it almost vanishes for decreasing values of ρ, thus confirming that, for small values
of ρ, the discontinuity acts on the superstructure as a base isolation. The last sub-figure,
Figure 4d, shows the frequency-response curves referring to the MS that are obtained for
different values of A and assuming L = 3, Ψ = 0.25, and ρ = 0.2. For increasing values
of A the position of the peaks slightly shifts leftwards on the β-axis (i.e., the two resonant
frequencies are only slightly sensitive to the value of A).

3.2. Gain Maps

This section analyses how Ψ affects the dynamical behaviour of the system with inter-
mediate discontinuity. The effects of increasing values of Ψ are assessed by evaluating the
gain coefficient Equations (8) and (9). The results of the parametric analysis are summarised
in gain maps that represent the gain coefficients, α1 and α2, plotted in the parameter plane
η − ρ. Each map refers to a specific value of Ψ. The maps on the left column of Figure 5 are
obtained for Ψ = 0.25, whereas the maps on the right column refer to Ψ = 0.75. Moreover,
the maps of Figure 5a show the α1 coefficient, whereas the maps of Figure 5b show the
α2 coefficient. The maps are obtained for β = 0.75 and A = 0.1 g; they show a strong
dependence on ρ and, up to a threshold value, on η. At higher values of η (where the
value of η depends on the considered map), the gain coefficients become independent of η
(i.e., in both the α1 and α2 maps, the contour levels tend to become horizontal). It is useful
to remark that η directly depends on the yielding displacement; hence, high values of η
refer to high values of uy. A frame with intermediate discontinuity and small values of
η manifests a stronger non-linear behaviour of the disconnection devices than systems
with higher η. For very high value of η, the disconnection devices tend to manifest a
linear elastic behaviour since the high-yielding displacement uy cannot be reached during
the motion. The impossibility to reach uy during the motion is more evident at higher
values of the stiffness ratio Ψ, due to the higher post-elastic stiffness of the disconnection
devices. For the chosen values of β, A, and Ψ, both α1 and α2 are smaller than unity in
the whole parameter plane, which means that the intermediate discontinuity reduces the
displacement of the substructure and the drift of the superstructure with respect to those of
the original frame structure.

Under a harmonic excitation, after a transient time that depends on the damping of
the structure, the system undergoes stationary dynamics. To understand the behaviour
of the disconnection devices for increasing values of η, the stationary hysteretic cycles
are shown for points P1 and P3 in Figure 5c, and for points P2 and P4 in Figure 5d. The
hysteretic cycles show the value of the dimensionless force σh = Fh/kduy as a function of
the dimensionless displacement χd = ud(t)/uy. By comparing the cycles in the first column
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of Figure 5c,d, which refer to Ψ = 0.25, with the cycles in the second column, which are
obtained for Ψ = 0.75, it can be observed that a higher value of Ψ corresponds to smaller
hysteresis cycles. Similarly, an increase of η also leads to a reduction of the area of the
hysteretic cycles (compare the cycles of Figure 5c,d).
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Figure 4. Frequency-response curves: (a) L = 3, A = 0.6 g, ρ = 0.2, and different values of the
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A = 0.6 g, Ψ = 0.25, and different values of ρ; and (d) L = 3, Ψ = 0.25, ρ = 0.2, and different values
of A.
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Figure 5. Gain maps for fixed β = 0.75 and A = 0.1 g: (a) α1 maps for two different values of Ψ;
(b) α2 maps for two different values of Ψ; (c) hysteretic cycles in P1 ≡ (0.025, 0.15), Ψ = 0.25 and
P3 ≡ (0.025, 0.15), Ψ = 0.75; (d) hysteretic cycles in P2 ≡ (0.15, 0.15), Ψ = 0.25 and P4 ≡ (0.15, 0.15),
Ψ = 0.75.

Figure 6 shows the gain maps obtained for β = 1 and Ψ = 0.25. The maps in Figure 6a
and Figure 6b are obtained for A = 0.1 g and A = 0.6 g, respectively, assuming that the
discontinuity is located at the third level (L = 3). Figure 6c, instead, shows maps obtained
for A = 0.1 g and a discontinuity located at the fifth level (L = 5). The comparison of
Figure 6a and Figure 6b highlights the dependence of the gain maps on A. Specifically,
in the gain maps of Figure 6b, the contour levels do not tend to a horizontal asymptote
because the displacement of the disconnection devices exceeds the yield displacement uy
due to the high value of A, thus assuring wide hysteresis cycles.
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Figure 6. Gain maps for β = 1: (a) L = 3, A = 0.1 g, and Ψ = 0.25; (b) L = 3, A = 0.6 g, and Ψ = 0.25;
(c) L = 5, A = 0.1 g, and Ψ = 0.25.

The α1 gain maps of Figure 6a,b show that there are large regions of the parameter
where the gain coefficients are higher than unity (dark grey regions). In these regions, the
discontinuity is not able to reduce the displacement of the substructure. On the contrary,
α2 is smaller than unity in the whole parameter plane, thus assuring a reduction of the
superstructure drift for any combination of the parameters. Nevertheless, it is always
possible to choose a combination of the design parameters ρ and η inside regions where
both the gain coefficients α1 and α2 are smaller than unity.

The comparison among the left maps of Figure 5a,b and the maps of Figure 6a (all
obtained for Ψ = 0.25 and A = 0.1 g) shows that the effectiveness of the discontinuity
(i.e., the smallness of the gain coefficients) strongly depends on the frequency ratio β.

Finally, Figure 6c shows the gain maps for L = 5. In this case, the dark grey regions
where α1 is higher than unity reduce compared to the case with L = 3, and, generally,
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smaller values of both α1 and α2 are obtained, thus showing the higher effectiveness of the
intermediate discontinuity.

4. Seismic Analysis

This section shows the results of a seismic analysis. The first part of the section aims
at providing an initial understanding of the seismic behaviour of the MS. For this purpose,
the gain maps show the results of simulations performed using single seismic records as
excitation. The two different seismic records considered in this analysis are:

(a) El Centro, CA, Array Station 9, Imperial Valley Irrigation District, component 180;
(b) Parkfield, CO2-065 ground motion recorded during the California earthquake 1966.

Figure 7 shows the time-histories (left graphs) and the pseudo-response spectra (right
graphs) of the two seismic records. In the following, each seismic record is called with the
corresponding earthquake name (i.e., the names underlined in the list above).
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Figure 7. Recorded earthquakes: (a) El Centro seismic record; and (b) Parkfield seismic record.

Since gain maps referred to a single registration are not useful for a complete assess-
ment of the effectiveness of the intermediate discontinuity, the second part of the section
shows the results of an analysis carried out considering ne = 305 seismic records. The
complete list of seismic records used in the analysis can be found at http://ing.univaq.
it/diegidio/Earthq/Earthquakes_Table.pdf. Additionally, in this case, the results are pre-
sented in gain maps. Such gain maps show the mean values of the gain indexes obtained
with the different seismic records.

4.1. Gain Maps from a Single Seismic Record

Figures 8–10 show the gain maps obtained with the seismic records of El Centro and
Parkfield for L = 1, L = 3, and L = 5, respectively. Specifically Figures 8a–c, 9a–c and 10a–c
are obtained for Ψ = 0.25, whereas Figures 8b–d, 9b–d, and 10b–d for Ψ = 0.75. The
regions where the gain coefficients α1 and α2 are smaller than unity are coloured, those
where these gain coefficients are higher than unity are displayed in dark grey colour. Both
the α1 and α2 maps show that, as Ψ increases, the gain coefficients increase, thus reducing
the effectiveness of the intermediate discontinuity. The α3 maps show the feasibility of
the protection strategy. When α3 is higher than unity (dark grey zones of the α3 maps),
the displacements of the disconnection devices are higher than the permissible threshold
value. The size of the dark grey zones in the α3 maps increases when Ψ decreases, thus
even if lower values of Ψ assure a higher reduction of displacements and drifts, the
displacements of the discontinuity level may not be compatible with the capability of the
disconnection devices.

In Figures 8–10, the thick black lines on the maps represent the admissible limit of α3.
In each map, only in the region above such lines, the displacement of the discontinuity is
below the threshold value u0. While the α3 gain maps obtained from the seismic record of

http://ing.univaq.it/diegidio/Earthq/Earthquakes_Table.pdf
http://ing.univaq.it/diegidio/Earthq/Earthquakes_Table.pdf
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El Centro show only small dark grey regions, the α3 gain maps obtained from the Parkfield
seismic record show large regions where α3 > 1 maps. The size of these regions significantly
reduces as Ψ increases. Moreover, when the discontinuity level L increases, the size of the
dark grey regions tends to reduce.
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Figure 8. Gain maps of α1, α2, and α3 for L = 1: (a) El Centro seismic record and Ψ = 0.25 (b) El
Centro seismic record and Ψ = 0.75; (c) Parkfield Seismic record and Ψ = 0.25; and (d) Parkfield
Seismic record and Ψ = 0.75.
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Figure 9. Gain maps of α1, α2, and α3 for L = 3: (a) El Centro seismic record and Ψ = 0.25 (b) El
Centro seismic record and Ψ = 0.75; (c) Parkfield Seismic record and Ψ = 0.25; and (d) Parkfield
Seismic record and Ψ = 0.75.
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Figure 10. Gain maps of α1, α2, and α3 for L = 5: (a) El Centro seismic record and Ψ = 0.25 (b) El
Centro seismic record and Ψ = 0.75; (c) Parkfield Seismic record and Ψ = 0.25; and (d) Parkfield
Seismic record and Ψ = 0.75.

Figures 11 and 12 show the αA
1 and αA

2 gain maps under El Centro and Parkfield
seismic records, respectively. These maps evaluate the effects of the discontinuity on the
accelerations of the structure. The black lines on the maps show the range highlighted in
the α3 maps of Figures 8–10. Only in the regions above such lines are the displacements of
the disconnection devices below the admissible threshold. In Figures 11 and 12, the maps
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in the first two rows refer to αA
1 , whereas the maps in the third and fourth rows refer to αA

2 .
The maps in the first and third rows are obtained for Ψ = 0.25, the maps in the second and
fourth rows refer to Ψ = 0.75.
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Figure 11. Gain maps of αA
1 and αA

2 for L = 1, L = 3 and L = 5 considering the El Centro seismic
record as external excitation: (a) maps of αA

1 obtained for Ψ = 0.25; (b) maps of αA
1 obtained for

Ψ = 0.75; (c) maps of αA
2 obtained for Ψ = 0.25; and (d) maps of αA

2 obtained for Ψ = 0.75.
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Figure 12. Gain maps of αA
1 and αA

2 for L = 1, L = 3 and L = 5 considering the Parkfield seismic
record as external excitation: (a) maps of αA

1 obtained for Ψ = 0.25; (b) maps of αA
1 obtained for

Ψ = 0.75; (c) maps of αA
2 obtained for Ψ = 0.25; and (d) maps of αA

2 obtained for Ψ = 0.75.

The αA
1 maps show that as Ψ increases, αA

1 decreases. Similarly, αA
2 decreases as Ψ

increases. Therefore, a lower value of Ψ may increase the accelerations and, at the same
time, reduce displacements and drifts. However, both the gain coefficients based on the
displacements and drifts (Equation (8)) and those based on the accelerations (Equation (9))
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are smaller than unity in a large area of the parameters plane. It is worth observing that
αA

1 and αA
2 are lower than α1 and α2, thus the use of α1 and α2 provides a more severe

assessment of the effectiveness of the intermediate discontinuity.

4.2. Gain Maps Obtained from Multiple Seismic Records

The seismic analysis is carried out by using several seismic records obtained from [32].
The magnitude varies from 4 to 8 and the epicentral distance varies from 10 to 30 km. In
the analysis, the target parameters are the mean displacements ui that are defined as the
mean of the maximum displacements ui,j obtained from the integration of the equations of
motion with each seismic record; they read

ui =
1
ne

ne

∑
j=1

max[ui,j(t)] (11)

with (i = 1, d, 2). The displacements u1,j, ud,j, and u2,j are those of the substructure,
discontinuity level, and superstructure obtained from the jth seismic record. The total
number of seismic records used in the simulations is ne. The number of seismic records
used is sufficient to reach a coefficient of variation (CoV) of ui, CoVui ≤ 0.2. Therefore, the
predictability of the model to identify the average displacement is higher than 80%. The
CoVui is defined as

CoVui =
σ(ui)

µ(ui)
(12)

where σ(ui) and µ(ui) are the standard deviation and mean value of ui, respectively. To
understand the effectiveness of the disconnection, three coefficients (called mean-gain
coefficients in the following) similar to those in Equation (8) are introduced:

α1 =

ne
∑

j=1
max[u1,j(t)]

ne
∑

j=1
max[uA

1,j(t)]
; α2 =

ne
∑

j=1
max[u2,j(t)− ud,j(t)]

ne
∑

j=1
max[uA

2,j(t)− uA
1,j(t)]

; α3 =

ne
∑

j=1
max[ud,j(t)− u1,j(t)]

neu0
(13)

Figure 13 shows the gain maps of the mean displacements. Such maps represent the
mean-gain coefficients in the parameters plane PGA-ρ, where PGA is the peak ground
acceleration and ρ is the stiffness ratio previously defined. All the gain maps are obtained
for η = 0.2. Similarly to previous figures, the regions where αi < 1, (i = 1, 2) are named
gain regions and are coloured, whereas those where αi > 1 are identified by a dark
grey colour. The first, second, and third rows of the figure refer to different levels of the
discontinuity, L = 1, L = 3, and L = 5, respectively. All maps are obtained for Ψ = 0.25.

The maps show wide gain regions. As can be observed, L = 1 provides the best
performances in the reduction of the displacement of the substructure because the values of
α1 obtained for L = 1 are in general smaller than those obtained for other values of L. On
the contrary, L = 5 provides the largest reduction of the drift of the superstructure since, in
this case, α2 is smaller than those in the other cases. The maps of α3 show values higher
than unity only in the zone with high values of PGA and low values of ρ, specifically in the
region where PGA > 1.1 g and ρ < 0.1. In this region, α1 and α2 have small values, but
the displacement of the discontinuity level exceeds the threshold value uo (i.e., α3 is higher
than unity). Nevertheless, such a region is very small and a slight increase of ρ is sufficient
to move in a region of the maps where α3 ≤ 1 and at the same α1 ≤ 1 and α2 ≤ 1. Since all
the three coefficients are less than unity the disconnection can be considered a successful
protection strategy for the original frame structure. The map obtained for L = 3 shows an
intermediate behaviour between those obtained for L = 1 and L = 5, and the map of α3
does not show any dark grey regions.

To summarize, the α1 maps exhibit a decrease in the performance from L = 1 to
L = 5. This can be explained by assuming that the superstructure acts as a TMD for the
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substructure and consequently the performance decreases because the mass ratio between
the superstructure and substructure decreases [7,22]. Instead, α2 decreases from L = 1 to
L = 5. In this case, when L = 5, the superstructure is very stiff and the superstructure acts as
if it was base-isolated. On the contrary, when L = 1, the superstructure has lower stiffness
and the performance decreases since the period of the superstructure can approach that of
the discontinuity layer. Similar results were already presented in [33] for tower buildings.
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Figure 13. Mean gain maps for different values of L = 1, 3, 5 and Ψ = 0.25.



Appl. Sci. 2023, 13, 5373 20 of 22

Figure 14 shows the mean-gain maps obtained for L = 3. The maps in the first row
refer to Ψ = 0.1, whereas the maps in the second row are obtained for Ψ = 0.75. A direct
comparison with the maps in the second row of Figure 13 (L = 3) allows evaluating the
effect of Ψ on the performances of the intermediate discontinuity. The dark grey region
of the α1 map enlarges with respect to that of Figure 13 for increasing Ψ. Therefore, lower
values of Ψ allow a wider range of use. Moreover, when Ψ decreases, the performance of the
system increases since there is a higher reduction of the displacement of the substructure
(i.e., a decrease of α1). On the contrary, the coefficients α2 and α3 are not significantly
affected by Ψ. Finally, α3 is always smaller than unity when Ψ < 0.25, whereas for Ψ = 0.75
there is a small region where α3 ≥ 1.
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Figure 14. Mean gain maps for L = 3 and (a) Ψ = 0.10; (b) Ψ = 0.75.

5. Conclusions

This paper proposes a modelling approach for the study of the intermediate disconti-
nuity. The structure with the discontinuity layer has been modelled by a 3-DOF model and
the disconnection devices have been described by using the Bouc–Wen model. In order to
evaluate the improvement of the dynamical behaviour obtained by the introduction of the
discontinuity, two different systems have been analysed. The first system is the frame after
the introduction of the discontinuity, called the main system (MS) and the second system is
the reference frame, called the auxiliary system (AS).

The first part of the paper is focused on the dynamical behaviour of the MS that is
analysed by using harmonic excitation. The results of the analysis have been organized
in frequency-response curves and gain maps. It has been found that the value of the
post-yielding to pre-yielding stiffness ratio Ψ in the Bouc–Wen model significantly affects
the value of the first frequency of the MS. Moreover, by comparing the frequency-response
curves of the AS and MS for different values of Ψ, it has been found that lower values of Ψ
may extend the range of frequency where the intermediate discontinuity is effective. The
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harmonic maps highlighted that small values of Ψ may reduce the displacement of the
superstructure, but also increase the displacement of the substructure.

The second part of the paper is focused on the seismic response of the models. A
preliminary analysis has been carried out considering single seismic records. Five gain
coefficients have been defined to evaluate the effects of the introduction of the intermediate
discontinuity. Such coefficients have been defined as ratios between the displacements
(or the accelerations) of the MS and those of the AS. The results of the analysis have been
summarized in gain maps. Such maps show the gain coefficients in a specific parameters
plane. The results also show that an increase of Ψ reduces the displacement of the sub-
structure and increases that of the superstructure. Moreover, higher values of Ψ reduce
the displacement of the discontinuity layer, thus reducing the likelihood of such displace-
ment exceeding a threshold value. It has been found that another possibility to reduce
the displacement of the discontinuity layer is to change the level of the discontinuity L.
As L increases, the displacement of the discontinuity layer decreases due to the filtering
effect of the substructure. Additionally, the effects of the intermediate discontinuity on the
accelerations acting on the structure have been evaluated, and it has been found that when
Ψ decreases, the accelerations may increase.

Finally, a seismic analysis is carried out considering several seismic records within
definite ranges of magnitude and epicentral distance. The results have been organized
in gain maps that show the gain coefficients in different parameters planes. Such maps
may be a useful auxiliary tool in the understanding of the behaviour resulting from the
introduction of an intermediate discontinuity in a frame structure.
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