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Abstract: In this paper, we propose a radio environment map (REM) update methodology based
on clustering and machine learning for indoor coverage. We use real measurements collected by
the TurtleBot3 mobile robot using the received signal strength indicator (RSSI) as a measure of link
quality between transmitter and receiver. We propose a practical framework for timely updates to the
REM for dynamic wireless communication environments where we need to deal with variations in
physical element distributions, environmental factors, movements of people and devices, and so on.
In the proposed approach, we first rely on a historical dataset from the area of interest, which is used
to determine the number of clusters via the K-means algorithm. Next, we divide the samples from the
historical dataset into clusters, and we train one random forest (RF) model with the corresponding
historical data from each cluster. Then, when new data measurements are collected, these new
samples are assigned to one cluster for a timely update of the RF model. Simulation results validate
the superior performance of the proposed scheme, compared with several well-known ML algorithms
and a baseline scheme without clustering.

Keywords: radio environment map (REM); random forest (RF); machine learning; clustering

1. Introduction

Recently, the dramatic increase in the number of wireless devices and the required
data rates to satisfy QoS for users’ applications have made it essential to guarantee high-
quality communication links. In this regard, the multipath fading effect is one of the
main considerations for wireless signals in indoor scenarios. The presence of obstacles
such as walls, roofs, furniture, and so on leads to attenuation of the received signal and
variations in the received power on the user side while impacting the coverage area of the
wireless transmitter.

To solve this issue, a radio environment map (REM) is proposed to detect shadow
areas with a poor quality signal. Construction of the REM is based on real measurements
from the area of interest in order to characterize the behavior of the wireless environment
by representing it as a temperature map [1]. The detection of shadow areas contributes
to successful network planning and leads to an increase in the quality of communication
for users. A REM can also provide useful information about the positions of wireless
devices, interference levels, and other related information that can be used to improve the
performance of the services by using resource allocation schemes [2]. In [3], the authors
proposed construction of a REM based on machine learning (ML) methods, which showed
better performance compared with conventional statistical models. A REM framework
for IoT networks was presented in [1], where the authors considered ML algorithms to
construct the REM. Their results proved the superior performance of ML learning models
compared with conventional interpolation methods such as Kriging and nearest neighbor.
However, the aforementioned work did not consider a methodology to update the REM in
a timely manner.
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One important aspect of REM management is the need for a timely update mechanism
responding to wireless environment changes due to variations in physical element distri-
butions, environmental factors, movements of people and devices, and so on. Updating
radio maps can help network planners adjust the network configuration to compensate
for these changes. Moreover, in indoor localization systems, updating radio maps can
significantly improve the accuracy of localization, which is crucial for applications such as
asset tracking and indoor navigation. On the other hand, clustering is considered a mean-
ingful, energy-efficient technique because it contributes to reducing power consumption
by organizing user nodes into groups denominated as clusters [4]. Clustering can be used
in radio maps to group similar signal strength measurements into clusters based on their
proximity to each other in physical space. This allows for a more efficient representation
of the radio map since similar signal strength measurements can be processed together
to create a more accurate estimate of signal strength in a particular area. Our objective
is to update the REM in real time by using a combination of the K-means algorithm and
a machine learning model. Specifically, the K-means algorithm constructs clusters and,
for each cluster, we develop a ML model that is trained using actual data measurements
specific to that cluster. As new data are collected, they are assigned to their respective
cluster to update the corresponding ML model.

1.1. Related Work

For indoor localization systems, mobile crowd sensing has become a popular method
for updating radio maps [5–12]. In [5–7], the authors propose an approach where mobile
users generate reports at their current locations to update the radio maps. The radio
map is based on a database, and the predicted location for a query point is obtained by
using the nearest neighbors. The method to update the radio map is based on simply
appending the new fingerprints into the database and removing those that are older than a
certain period. In [8], the authors use an integrity check algorithm to determine whether to
update the radio map used for indoor localization. In this method, several new fingerprints
are accumulated before updating the received signal strength indicator (RSSI) value at a
particular location. The update is performed by using the average value of the accumulated
points to update the database.

In [9,10], the authors propose a method for adapting radio maps used for indoor
localization to changes in the environment. The proposed method utilizes data gathered
from typical wireless users’ devices that were stationary at certain locations. RSSI values
received from several reference locations are used to update the mapping of the RSSI value
to a particular location. In [11], the decision of whether to update the radio map for each
reference point is made by a periodic adaptive estimate algorithm. The authors repre-
sent the radio map using a matrix expression, and the update process involves updating
the fingerprints in the radio map with the average of valid RSSI measurements collected
from users. However, the success of the previous approaches heavily depends on the
location and behavior of mobile users to gather new measurements, and their proposed
algorithms require collecting new data for each location to update the predictive relation-
ship between the RSS value and corresponding positions. In [12], the authors propose an
updating method for signal maps based on Bayesian compressive sensing (BCS). Several
crowdsourced samples are first mapped to the nearest reference point, and the BCS-based
approach computes the signal change for each reference point based on the correlation
between the new samples and reference points. In the aforementioned works, the radio
map construction is based on collecting data and organizing it into a database, and the
methodology to update the radio is focused on indoor localization approaches, where
new measurements in each of the reference locations are required to correctly update the
radio map. Unlike the previously mentioned methods, our proposed method only requires
newly collected data in specific sectors to update a large area of interest. Additionally, the
prediction of RSSI values is performed using powerful ML algorithms.
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The authors in [13] propose a scheme for REM updates based on hypothesis testing,
which is used to decide whether to update the REM each time. In [14], the authors propose
a REM update mechanism based on Siamese neural networks to determine the level of
similarity between an already-constructed REM and a new REM. However, previous work
only considered a simple average of collected measurements to construct the REM. In [15],
the authors propose a REM update scheme based on clustering and Gaussian process
regression (GPR). They manually collected RSSI data with a smartphone in particular areas
of the experiment room, and they use the collected dataset to predict the RSSI at specific
reference points by using GPR with clustering. However, the objective of the GPR-based
scheme is the RSSI prediction of only reference points to later be used for indoor localization,
where a complete prediction of the whole area of interest is not obtained. Moreover, the
authors only consider scenarios by varying the number of training samples and do not
analyze the errors under changes in the wireless conditions such as in the presence of new
obstacles or under the relocation of the AP. This is contrary to our proposed method, which
is able to obtain the RSSI prediction of any point of the area of interest and represent it as a
temperature map. Moreover, we extensively evaluate the proposed scheme by considering
several comparative ML methods and several different scenarios, including the presence of
obstacles and relocation of the AP.

1.2. Main Contributions

In this paper, we propose a REM update methodology based on clustering and ML
algorithms. In particular, we consider the K-means algorithm to create K clusters in the
area of interest, and the random forest (RF) algorithm is applied to predict the quality of
the wireless signal for each cluster. The proposed REM update can be applied in different
scenarios, such as technology industries, where several sensor nodes interact to carry
out different tasks, such as maintenance or scheduled programming. Many times, it is
difficult to collect measurements in the whole area to evaluate coverage prediction and
build the REM because sensor nodes need to move frequently. Similarly, in hospitals, users
storing measurements on every floor for coverage prediction may disturb other users,
and measurement collecting tasks cannot be done as many people walk around the area.
Therefore, the application of REM updating via clustering can reduce time-consuming tasks
and optimize network resources. The main contributions of this paper are summarized
as follows:

• We propose an efficient methodology to update a REM based on clustering and RF
in a timely manner. In the proposed scheme, the K-means algorithm is applied to
divide the area of interest in K clusters, where one RF model is deployed per cluster.
The REM is constructed to cover every point within the area of interest, where the
prediction of the RSSI values for each location is obtained by the corresponding RF
model in each cluster.

• The RSSI measurements were collected by a mobile robot, which can reduce the
risk of human error because the robot can be programmed to move in a controlled
manner. This can help ensure that RSSI measurements are taken at consistent intervals
and under consistent conditions, while improving the accuracy and reliability of the
measurements. Moreover, mobile robots can operate autonomously, which can save
time and resources compared to manual data collection methods.

• In the REM construction, to avoid abrupt changes in the border areas between the
clusters, we propose a methodology that utilizes the weighted average of the RF model
predictions from the two nearest centroids to determine the RSSI value of the points
within the border areas. Moreover, when new measurements are available, only the
RF models for clusters that have enough measurement samples are updated.

• We extensively evaluate the proposed scheme for different scenarios, including the
presence of obstacles and relocating the AP, and we consider several comparative
ML methods, including the case without clusters. Moreover, the computational
complexity of the proposed scheme is analyzed along with the comparative schemes.
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The simulation results demonstrated the superior performance of the proposed scheme
compared to the baseline methods in effectively adapting to changes in the wireless
environment. Moreover, the proposed approach requires only newly collected data in
specific sectors to update a large area of interest.

The rest of this paper is organized as follows. Section 2 describes the measurement
methodology. Section 3 presents the proposed REM updating framework. In Section 4,
we present comparative models and an evaluation of simulation results. Finally, Section 5
concludes the paper.

2. Measurement Methodology

The scenario considered for indoor REM analysis was Room 302 in the Engineering
Building at the University of Ulsan. The equipment used for the analysis included the
TurtleBot3 [16] mobile robot, which is equipped with sensors, navigation systems, and
decision-making algorithms that enable it to operate and complete tasks without human
intervention. In particular, TurtleBot3 is composed of several parts, including an embedded
controller, a light detection and ranging (LiDAR) sensor (laser distance sensor LDS-02), an
inertial measurement unit (IMU) sensor, an encoder, a single board computer (SBC), and the
robot operating system (ROS). A Raspberry Pi powers the SBC, which configures algorithms
in a Linux environment and relies on ROS to enable communication between different
processes. Meanwhile, the embedded controller, which utilizes OpenCR, is responsible for
controlling the movement of the mobile robot through various sensors. The LiDAR sensor
utilizes laser beams to calculate the distance to objects in its surroundings. By scanning the
laser beams in a 360-degree horizontal field of view, LiDAR can generate a 2D point cloud
map of the robot’s surroundings. This map can be utilized for obstacle detection, mapping,
and localization. Moreover, TurtleBot3 utilizes the odometry technique that employs sensor
data from the encoders and the IMU to estimate the position and orientation of the robot in
relation to its starting position. The odometry data are then combined with the LiDAR data
to provide a more accurate and robust localization system, where the coordinates of the
location points are presented in a 2D Cartesian coordinate system [17].

RSSI was utilized to estimate the link quality between the transmitter and receiver.
RSSI is a measurement of the power present in a received radio signal, and it is commonly
used in wireless communication systems like Wi-Fi, Bluetooth, and cellular networks to
determine the signal strength received from a transmitter. The RSSI value is typically
expressed in dBm (decibel-milliwatts) and reflects the power of the signal received by the
receiver’s antenna. A higher RSSI value indicates a stronger signal, while a lower RSSI
value indicates a weaker signal. In our experiments, we used the built-in Wi-Fi module
of the Raspberry Pi to collect RSSI data, along with the SSID, signal frequency, and link
quality. The RSSI and location data were assembled in Ubuntu 22.04LTS through a shell
script and synchronized based on timestamps.

The access point (AP) for the experiments was the IPTime N704M at 2.4 GHz. Figure 1
is a floor plan of the room used for the experiments, indicating the location of the AP. The
floor plan presented in Figure 1 was obtained with the Hovermap HF1 [18], which is a
mobile LiDAR 3D scanner, to map GPS-denied environments. Hovermap uses innovative
simultaneous localization and mapping (SLAM) algorithms along with LiDAR data to
produce 3D point clouds of the scanned area.
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Figure 1. Floor plan of the room used for the experimental evaluations.

3. Proposed Approach for REM Updates
3.1. Overview

Figure 2 illustrates an overview of the proposed approach to REM updates based on
clustering and the RF algorithm. First, assume the initial dataset is DH = {z1, ..., zn, ..., zN},
where N is the total number of collected historical measurements and zn = {xn, yn, Rn},
in which xn is the location in the x-axis, yn is the location in the y-axis, and Rn is the RSSI
value at position (xn, yn). The initial module of the proposed approach conducts clustering.
In particular, we consider the K-means algorithm where N samples are separated into K
groups. A detailed description of the K-means algorithm can be found in Section II of [19].
The K-means algorithm is applied to initial dataset DH to obtain K cluster centers, which
are used to assign each n-th sample to one of the K clusters based on the nearest centroid.

The second module, based on the RF algorithm, is where we train one RF model per
cluster. Once each n-th measurement of dataset DH has been assigned to a cluster, we have
Dk =

{
z1k , ..., zmk , ..., zMk

}
at the k-th cluster with k = 1, ..., K and zmk =

{
xmk , ymk , Rmk

}
.

Then, K RF models are trained based on the corresponding dataset Dk. A detailed descrip-
tion of the RF algorithm is presented in Section 3.2.

Once we have the K-trained RF models, we construct a grid, G = {f1, ..., fh, ..., fH},
where H is the total number of samples in the grid, and fh =

{
xh , yh

}
. The grid is created

to cover the whole area of interest and corresponds to the positions to be estimated by the
RF algorithm. Next, each fh is assigned to one cluster, and the corresponding RSSI value in
that cluster is predicted by the RF model. Then, we construct the REM by using the location
coordinates and by mapping the RSSI values to a specific color in a color map. A detailed
description of REM construction is presented in Section 3.3.
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Figure 2. Proposed approach for REM update.

Next, we consider the REM update, denoted as t1 in Figure 2, based on newly collected
measurements. Once we have trained the RF models based on the historical dataset, we
apply the procedure to update the REM because the wireless environment constantly
changes over time. For instance, in a smart warehouse, the positions of the products
constantly change during the day. In general, the proposed scheme for the REM updates is
based on training the RF models with newly collected data only in clusters with enough
samples. We denote the newly collected dataset as Dt1 =

{
z1t1 , ..., znt1 , ..., zNt1

}
, where Nt1

is the number of newly collected measurements at the time t1, and znt1 = {xnt1 , ynt1 , Rnt1}.
First, we assign each nt1-th sample to one of the K clusters, which creates K possible
datasets, each of them denoted Dkt1 =

{
z1, ..., zmk,t1 , ..., zMk,t1

}
. Since the newly collected

measurements are not guaranteed to cover the whole area of interest, some datasets may
contain no (or a very small number of) samples, which can lead to degradation when
training the new RF model. Therefore, at the k-th cluster, to replace the k-th RF model with
a new RF model trained with dataset Dkt1 , we establish a condition calling for a minimum
number of samples needed in the dataset to train a new k-th RF model:

∣∣Dkt1

∣∣ ≥ Nmin,
where Nmin is the minimum number of samples. If

∣∣Dkt1

∣∣ ≥ Nmin is satisfied, the k-th RF
model is trained based on the corresponding new dataset, Dkt1 , replacing the old RF model
in the k-th cluster. On the other hand, if dataset Dkt1 does not contain the minimum number
of samples, Nmin, the previous k-th RF model is used to predict the points in the k-th cluster.
Finally, we update the REM by using the current K RF models to predict the RSSI values of
grid G.

3.2. Random Forest

An RF regressor is a type of ensemble learning method composed of W decision
tree regressors, where the predicted RF value corresponds to the average value of the
predictions for each independent decision tree regressor. Figure 3 shows the structure of a
decision tree composed of a root node as the starting point, split nodes where a split rule is
applied, and leaf nodes.
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Figure 3. Example of a decision tree regressor.

We denote the training dataset of the RF algorithm as DRF = {z1, ..., zm, ..., zM},
where M is the total number of training samples, and zm = {xm, ym, Rm}. The features
correspond to position (xm, ym), and Rm is the target RSSI value at position (xm, ym). First,
the RF algorithm creates W datasets, {DRF,w}, from the original dataset, DRF, with the
bootstrap aggregation technique. Then, each w-th decision tree regressor is trained with
corresponding dataset DRF,w.

In each decision tree regressor, dataset DRF,w is used to select a split rule in each split
node until reaching a leaf node. Let us define Db

RF,w as the subset of training samples at
the b-th split node of the w-th decision tree regressor. Then, the best-split rule to be used
at the b-th split node is determined with dataset Db

RF,w. A candidate split rule is defined
as follows:

sb,w
f ,α (zi) =

{ 1, if fzi > α
0, otherwise,

(1)

where fzi is the value of feature f ∈ {xi, yi} in sample zi, with zi ∈ Db
RF,w during the

training procedure and α representing a threshold. In the training process, at the b-th split
node, a small pool of random features is selected, and a set of possible thresholds for each
feature is evaluated to select the best-split rule based on the lowest mean squared error
(MSE). Split rule (1) divides the samples in dataset Db

RF,w into two groups: DRb
RF,w contains

the training samples satisfying the b-th split rule, and DLb
RF,w contains the rest. The MSE of

each candidate split rule is evaluated as follows [3,20]:

MSE
(

sb,w
f ,α

)
=

1∣∣∣DRb
RF,w

∣∣∣∑i∈DRb
RF,w

(
Ri − R̂DR

b

)2
+

1∣∣∣DLb
RF,w

∣∣∣∑i∈DLb
RF,w

(
Ri − R̂DL

b

)2
, (2)

where
∣∣∣DRb

RF,w

∣∣∣ represents the number of samples in dataset DRb
RF,w,

∣∣∣DLb
RF,w

∣∣∣ represents

the number of samples in dataset DLb
RF,w, Ri is the true target value of the i-th sample,

while R̂DR
b and R̂DL

b are the predicted values based on the average RSSI of the training
samples in datasets DRb

RF,w and DLb
RF,w, respectively, when the candidate split test, sb,w

f ,α ,
is applied. Then, the candidate split test with the lowest MSE is selected as the best-split
rule for the b-th split node. The aforementioned procedure is repeated in the next split
node until reaching a leaf node, which is determined by the minimum number of training
samples required to split a node, mmin. Finally, the RSSI value associated with the leaf node
corresponds to the average of the RSSI values of the training samples in that leaf node.

Once the RF model is successfully trained, the test sample goes to each w-th decision
tree regressor and evaluates the split rule at each split node to continue to the next split
node. The process finishes when reaching the leaf node, where the associated value of
that leaf node determines the predicted RSSI value for the sample in the w-th decision tree
regressor. The final prediction of the RF model is the average of the RSSI values predicted
by all the W decision tree regressors.
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3.3. REM Construction

Given K cluster centers, the K-trained RF models, and grid G, we construct the REM
for the area of interest. First, each fh sample from grid G is assigned to one cluster among
the K clusters available. Next, the border samples in the area of the intersection of the
clusters are determined to avoid a hard change in the REM between clusters. Then, P
neighbor samples are obtained for each sample in the border area based on Euclidean
distance. Next, we group all the P neighbor samples of the border areas, and we remove
duplicate points to create grid Gborder. Finally, we remove the samples of Gborder from
original grid G to obtain grid Gin. Therefore, we have divided G into grids of the border
areas, Gborder, and a grid with the internal points in each cluster, Gin.

To obtain the RSSI value for the points of grid Gin, we assign each sample from Gin to
one of the K clusters, and we use the corresponding RF model to predict the RSSI value. In
the samples in grid Gborder, we determine the two nearest cluster centers for each sample,
and the predicted RSSI value is the weighted average of the corresponding two RF models.
In detail, let us consider sample fh,border from grid Gborder. First, we evaluate the distance
from fh,border to all K cluster centers, selecting two clusters with the nearest Euclidean
distance, denoted as dfh,boder ,Ca and dfh,boder ,Cb

, where dfh,boder ,Ca < dfh,boder ,Cb
and where Ca

represents one of the K available clusters. Then, we use the RF model of cluster Ca to
predict the first RSSI value of fh,border, denoted as Rh,border,Ca , and the RF model of cluster
Cb predicts the second RSSI value of fh,border, denoted as Rh,border,Cb

. Finally, the RSSI value
for fh,border is determined with the following weighted average:

Rh,border =

(
dfh,boder ,Cb
dfh,boder ,Ca

)5
Rh,border,Ca +

(
dfh,boder ,Ca
dfh,boder ,Cb

)5
Rh,border,Cb(

dfh,boder ,Cb
dfh,boder ,Ca

)5
+

(
dfh,boder ,Ca
dfh,boder ,Cb

)5 . (3)

Once all RSSI values are obtained for all samples in grids Gin and Gborder, we use
Matplotlib in Python to create the REM based on the color map. Moreover, we superpose
the SLAM map of the room by carefully adjusting the opacity of the REM with the alpha
parameter from Matplotlib.

4. Evaluation
4.1. Historical Dataset and Comparative Models

Initial dataset DH is composed of measurements collected inside Room 302, illustrated
in Figure 1, with a total of N = 1160 samples covering the whole room. We considered
three different error metrics to evaluate the performance of the proposed scheme: mean
absolute percentage error (MAPE), root mean square error (RMSE), and R2 score. As
comparative schemes, we considered the support vector regression (SVR) algorithm [21],
multilayer perceptron (MLP) [22], and the AdaBoost regressor [23]. Moreover, we obtained
error results by considering different numbers of clusters. The RF model and the AdaBoost
regressor were trained with 200 decision tree regressors; the comparative SVR algorithm
considered the amount of regularization, C = 1000, and the radial basis function (RBF)
kernel; and MLP had three hidden layers with 100 hidden units per layer from using a
rectified linear unit (ReLU) activation function. The computer used for the simulations had
an AMD Ryzen 9 5900X 12-Core processor and 48 GB of RAM.

Table 1 presents the aforementioned error metrics of the proposed scheme and several
comparative approaches by using 5-fold cross-validation with historical dataset DH , where
the presented results are averaged over several independent simulations. We can see that
the RF-based scheme achieved the fewest errors among the comparative methods, and
the AdaBoost algorithm was the second-best scheme. In addition, the impact from the
number of clusters in the RF algorithm was very small since the same error rate can be
obtained by using one cluster or four clusters. Note that Table 1 analyzes the error results
on dataset DH , where measurements for the whole area of interest are available. However,
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in Section 4.2, we analyze the performance from different numbers of clusters in a realistic
case when only partial data from the area of interest are available.

Table 1. Error evaluation of the dataset DH .

MAPE

Model for Prediction 4 Clusters 3 Clusters 2 Clusters 1 Cluster

RF 1.511% 1.513% 1.507% 1.515%
SVR 3.565% 3.718% 3.828% 4.504%
MLP 4.325% 4.174% 4.254% 4.835%
AdaBoost 3.001% 3.178% 3.603% 4.064%

RMSE

Model for Prediction 4 Clusters 3 Clusters 2 Clusters 1 Cluster

RF 1.295 1.290 1.290 1.285
SVR 2.418 2.486 2.537 2.793
MLP 2.648 2.556 2.602 2.977
AdaBoost 1.810 1.912 2.150 2.409

R2 Score

Model for Prediction 4 Clusters 3 Clusters 2 Clusters 1 Cluster

RF 0.948 0.949 0.949 0.949
SVR 0.819 0.809 0.801 0.760
MLP 0.783 0.799 0.791 0.727
AdaBoost 0.899 0.887 0.857 0.821

Figure 4 illustrates the REMs obtained for the historical dataset by using 4 clusters
with the RF model, SVR, and AdaBoost. We can see that the REMs obtained with the RF
algorithm and AdaBoost have similar patterns since both algorithms use the decision tree
regressor as the base estimator. However, the REM obtained with RF is considered the most
realistic because it has the lowest error, as we can observe in Table 1.

(a) (b) (c)

Figure 4. REM for the initial measurements by considering four clusters. (a) RF; (b) SVR; (c) AdaBoost.

4.2. REM Update Evaluation

In this subsection, we present the performance of the proposed scheme for REM
updates. In particular, we considered a practical scenario where obstacles are added
around the AP, which degrades coverage of the area of interest. Figure 5 shows the REM
obtained by using RF in the ideal case where we can collect data measurements of the
whole room after adding the obstacles. The data collected for this ideal case were used
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as testing data to analyze the error in the proposed scheme compared with the baseline
method. By comparing Figures 4a and 5, we can see that adding obstacles around the AP
degraded the coverage, particularly in the quality of the received signal in the bottom area
of the room, compared with no obstacles.

Figure 5. Target REM after changing the physical environment of the room by using RF.

Next, we analyzed a scenario where newly collected data were obtained only from a
partial area of the room, which is a realistic assumption since it is not always possible to
measure the whole area of interest each time. We considered three sets of newly collected
data (at times t1, t2, and t3). It was assumed that during t1, t2, and t3, coverage by the Wi-Fi
signal was stable in the whole room. Figure 6 shows the newly collected measurements at
the three different times.

(a) (b) (c)

Figure 6. The three areas considered for newly collected measurements. (a) Data collected at time t1;
(b) Data collected at time t2; (c) Data collected at time t3.

Figure 7 illustrates the proposed REM update mechanism for the three sets of newly
collected data that followed the scheme in Figure 2. In detail, data collected at time t1 were
used to train the RF model only for the corresponding clusters, while the remaining clusters
used the previous RF model. We observe in Figure 7a that only the right area of the room
was updated to the new scenario, which can be confirmed from Figure 5. On the other
hand, the left part of the room was still predicted as having the historical measurements.
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The reason is that, at time t1, there were no data available to update the left part of the
REM. Next, at time t2, we could update the bottom area of the room while the upper left
area was still not updated due to the lack of measurements in that area. Finally, at time t3,
we updated the upper left area, leading to a complete update of the whole room, compared
with Figure 5.

(a) (b) (c)

Figure 7. The proposed REM update mechanism considering four clusters. (a) The REM at time t1;
(b) The REM at time t2; (c) The REM at time t3.

Figure 8 shows a baseline REM update mechanism without clustering for the 3 newly
collected datasets. In this baseline scheme, the newly collected data were used to train an
RF model for the whole room without using clustering. First, at time t1, the newly collected
measurements were not enough to show the position of the AP; i.e., the upper left area was
poorly predicted, leading to a high error. Next, at time t2, the collected measurements at the
center of the room provided some small insight into coverage of the room, but the obtained
REM is not ideal when we compare it with Figure 5. Finally, at time t3, the measurements
collected in the area close to the AP make the RF model trained with those data overestimate
the coverage of the room, leading to high error and an absence of shadow areas.

(a) (b) (c)

Figure 8. The baseline REM update mechanism without clustering. (a) The REM at time t1; (b) The
REM at time t2; (c) The REM at time t3.

Table 2 shows error evaluations for the 3 times when data were newly collected. In
the four clusters, we can see that the error lessened as time passed because new clusters
could be updated as new measurement data were collected. As presented in Figure 7, at
time t3, we could update the whole room, leading to a significant reduction in the error



Appl. Sci. 2023, 13, 5362 12 of 17

metrics. In the case of the baseline method without clustering, the error was not reduced as
time passed, and the errors obtained at each time significantly depended on the area where
the new data were collected. For instance, we observe that the baseline method without
clustering obtained the lowest error at time t2 for most of the compared methods because
the data were collected in the middle of the room, which can provide a small insight into
the coverage of the area of interest. The above-mentioned observation is consistent with the
results shown in Figure 8 where, among the 3 time cases, the REM at time t2 is the closest
representation to the target REM illustrated in Figure 5.

Table 2. Error evaluations from newly collected measurements.

MAPE 4 Clusters Without Clustering

Model for Prediction t1 t2 t3 t1 t2 t3

RF 6.10% 5.03% 1.92% 10.52% 6.60% 12.40%
SVR 7.90% 6.01% 4.90% 15.89% 8.74% 15.54%
MLP 12.98% 5.76% 4.55% 27.27% 18.56% 7.97%
AdaBoost 6.40% 5.49% 3.82% 13.37% 6.78% 9.03%

RMSE 4 Clusters Without Clustering

Model for Prediction t1 t2 t3 t1 t2 t3

RF 3.731 3.401 2.069 6.100 4.019 8.167
SVR 4.952 3.823 3.439 8.996 5.174 9.514
MLP 9.959 3.538 3.018 15.811 11.235 5.193
AdaBoost 3.952 3.422 2.527 7.513 3.960 6.064

R2 Score 4 Clusters Without Clustering

Model for prediction t1 t2 t3 t1 t2 t3

RF 0.646 0.735 0.842 0.055 0.630 −1.463
SVR 0.563 0.598 0.440 −1.056 0.387 −2.342
MLP −1.520 0.714 0.664 −5.351 -1.888 0.004
AdaBoost 0.603 0.732 0.764 −0.434 0.641 −0.358

Table 3 presents the computational time for the training and prediction phases of
the historical dataset and the newly collected data using the proposed approach and the
baseline methods. The computational time of the K-means algorithm to select the best
centroids based on the historical dataset DH (consisting of 1160 samples) is 0.097 s, and
the computational time to predict the nearest cluster for the total number of samples is
0.013 s. The number of samples in the newly collected datasets at times t1, t2, and t3 are
1800, 1800, and 2400, respectively. In Table 3, we observe that the computational time of
the historical dataset is higher than the time when updating the model at time t1 because
the historical dataset is used to train all the ML models for each cluster, while the data at
time t1 are only used to update the ML model of the corresponding cluster. Moreover, we
see that the computational time in the training phase increased as the number of samples
increased because, in general, more samples mean more computations and larger memory
requirements, leading to longer processing times. The higher computational time of the
RF with four clusters compared to the RF without clustering is due to the need to split
the samples into their respective clusters and the requirement of training four different
instances of RF.

In the grid prediction phase, the computational time corresponds to the time to split
the samples of the grid into their respective clusters and the time to predict the total number
of points in the grid with their respective ML algorithm. For instance, in the case of RF
with 4 clusters and a 100 × 100 grid, a total of 10,000 samples were assigned to their
respective clusters, and the corresponding RF model predicted the RSSI value for each
sample, resulting in a total time of 0.112 s. Moreover, we see that the proposed RF algorithm
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achieved the second lowest computational time among the compared ML methods with
clustering. Note that MLP has the lowest computational time for the grid prediction with
clustering but also has the highest error in the prediction as presented in Table 2.

Table 3. Computational time for the training and prediction phases.

Training Time (s)

Model for Prediction Historical Data DH Data at t1 Data at t2 Data at t3

RF 4 clusters 0.539 0.366 0.375 0.418
RF without clusters 0.213 0.215 0.234 0.341
SVR 4 clusters 0.111 0.205 0.231 0.374
MLP 4 clusters 1.14 0.669 1.48 1.13
AdaBoost 4 clusters 0.502 0.234 0.369 0.301

Grid Prediction Time (s)

Model for Prediction 100 × 100 grid 300 × 300 grid

RF 4 clusters 0.112 0.285
RF without clusters 0.04 0.251
SVR 4 clusters 0.195 1.25
MLP 4 clusters 0.038 0.218
AdaBoost 4 clusters 0.134 0.625

Next, we consider a second scenario by moving the location of the AP. In particular,
the AP is relocated to the other corner of the room, which significantly changes the coverage
condition in the area of interest. Figure 9 illustrates the REM that was obtained with RF
under ideal conditions when data measurements for the entire room were collected after
the relocation of the AP. The colormap limits for the current axes have been adjusted for
better data visualization. By comparing Figures 4a and 9, we can observe the significant
changes in the wireless conditions of the area of interest and the importance of timely
REM updates.

Figure 9. Target REM after the relocation of the AP by using RF.

Similar to the previously considered scenario, new data were acquired at different
times as illustrated in Figure 10. Then, the proposed update methodology was performed
based on the three datasets collected at times t1, t2 and t3. Figure 11 shows the results of
the proposed update methodology for the three sets of newly collected data. In Figure 11a,
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we can see that only the left area of the room was updated to the actual wireless coverage
condition because the newly collected data at time t1 do not have information about the
remaining areas of the room. Next, by using the newly collected data at time t2, the upper
area of the room was updated, while the bottom right area remained unaltered because of
insufficient measurements. Finally, the entire room was updated with the newly collected
data at time t3, as evidenced by comparing it to Figure 9.

(a) (b) (c)

Figure 10. The three areas considered for newly collected measurements after the relocation of the
AP. (a) Data collected at time t1; (b) Data collected at time t2; (c) Data collected at time t3.

(a) (b) (c)

Figure 11. REMs obtained with the proposed update mechanism after the relocation of the AP. (a) The
REM at time t1; (b) The REM at time t2; (c) The REM at time t3.

Table 4 presents the error evaluation for the newly collected data after the relocation
of the AP at three different times by using the RF algorithm. Similar to the results obtained
in Table 2, the error in the prediction decreased as time passed because new clusters could
be updated as new measurement data were collected. For instance, the low error observed
at time t3 is in concordance with the REM presented in Figure 11c, which is very similar
to the ideal REM of Figure 9. In the case of the baseline scheme without clustering, the
error remains consistent over time, and the errors at each time are greatly influenced by the
location of the newly collected data.
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Table 4. Error evaluations from newly collected measurements after the relocation of the AP.

4 Clusters Without Clustering

Error metric t1 t2 t3 t1 t2 t3

MAPE 7.11% 4.24% 2.19% 8.61% 7.45% 5.96%
RMSE 5.806 4.018 2.346 6.317 6.422 4.749
R2 score 0.044 0.255 0.826 −0.132 −0.902 0.288

Recently, reconfigurable intelligent surfaces (RIS) have been explored as a potential
solution to enable a smart radio environment that can be dynamically configured using
software. RIS is a type of metasurface that can be used to manipulate radio waves in
order to control wireless communication [24]. An RIS is essentially a two-dimensional
array of small, controllable elements that can adjust the phase and amplitude of incident
electromagnetic waves to create a desired wavefront. Using RIS can enable the creation
of smart environments that can adapt to changing electromagnetic conditions in real time.
Field-programmable gate array can be used to control the operation of the RIS, or it can
be manually controlled, as proposed in [25], by using touch controls. Therefore, analyzing
the information in the REM can enable the optimization of the placement and reflection
properties of an RIS to maximize the performance of wireless communication systems.
Moreover, the REM can facilitate the dynamic adjustment of the reflection coefficients of RIS
elements to adapt to changes in the wireless environment. For example, a REM can be used
to identify areas with poor wireless coverage, such as areas with high levels of interference
or signal attenuation. Then, an RIS can be strategically deployed in these areas to improve
wireless coverage by reflecting and redirecting signals in the desired direction. Moreover,
by using the information contained in a REM, we can optimize the design of the reflecting
elements in the RIS to avoid interference with other wireless signals in the environment.

5. Conclusions

In this paper, we proposed a REM update methodology based on clustering and the
RF algorithm. The proposed approach divides the area of interest into several clusters by
using the K-means algorithm, and it trains one RF model per cluster based on real data
measurements assigned to the corresponding clusters. A mobile robot was used to collect
the RSSI measurements, which can reduce the risk of human error while improving the
accuracy and reliability of the measurements. Next, only the RF models for clusters with
enough measurement samples were updated when newly collected measurements became
available. As time passed, the proposed scheme could update the whole REM by sector
while reducing the error each time. Simulation results proved the superior performance of
the proposed scheme compared to several well-known ML models, as well as the conven-
tional case without clustering, in various scenarios, including the presence of obstacles and
AP relocation. Subsequently, the proposed framework will be very useful for REM man-
agement in wireless scenarios where the physical element distribution constantly changes.
For future research directions, an exciting topic is the utilization of information from the
REM to optimize the allocation of resources in wireless networks, including spectrum,
power, and antennas. This can improve overall system performance by leveraging the
knowledge of the wireless propagation environment provided by the REM. For instance,
the development of schemes to optimize the placement and the reflection properties of
an RIS based on the information contained in a REM can help achieve desired wireless
communication performance.
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