PhaseModulated ContinuousWave Coherent Ranging Method and AntiInterference Evaluation
Abstract
:1. Introduction
2. PhMCW Mechanism
3. Ranging Experiments
4. AntiInterference Capability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
 Zhang, X.; Kwon, K.; Henriksson, J.; Luo, J.; Wu, M.C. A largescale microelectromechanicalsystemsbased silicon photonics LiDAR. Nature 2022, 603, 253–258. [Google Scholar] [CrossRef] [PubMed]
 Royo, S.; BallestaGarcia, M. An Overview of Lidar Imaging Systems for Autonomous Vehicles. Appl. Sci. 2019, 9, 4093. [Google Scholar] [CrossRef]
 Purdy, T. Bright squeezed light reduces backaction. Nat. Photonics 2019, 14, 1–2. [Google Scholar] [CrossRef]
 Sun, X.; Zhang, L.; Zhang, Q.; Zhang, W. Si Photonics for Practical LiDAR Solutions. Appl. Sci. 2019, 9, 4225. [Google Scholar] [CrossRef]
 Whyte, R.; Streeter, L.; Cree, M.J.; Dorrington, A.A. Application of lidar techniques to timeofflight range imaging. Appl. Opt. 2015, 54, 9654–9664. [Google Scholar] [CrossRef]
 Bosch, T. Laser ranging: A critical review of usual techniques for distance measurement. Opt. Eng. 2001, 40, 10–19. [Google Scholar] [CrossRef]
 Rogers, C.; Piggott, A.Y.; Thomson, D.J.; Wiser, R.F.; Opris, I.E.; Fortune, S.A.; Compston, A.J.; Gondarenko, A.; Meng, F.; Chen, X.; et al. A universal 3D imaging sensor on a silicon photonics platform. Nature 2021, 590, 256–261. [Google Scholar] [CrossRef]
 Shi, J.W.; Guo, J.I.; Kagami, M.; Suni, P.; Ziemann, O. Photonic technologies for autonomous cars: Feature introduction. Opt. Express 2019, 27, 7627–7628. [Google Scholar] [CrossRef]
 Zhang, L.; Li, Y.; Chen, B.; Wang, Y.; Li, H.; Hou, Y.; Tao, M.; Li, Y.; Zhi, Z.; Liu, X.; et al. Twodimensional multilayered SiNonSOI optical phased array with widescanning and longdistance ranging. Opt. Express 2022, 30, 5008–5018. [Google Scholar] [CrossRef]
 Lee, S.H.; Kwon, W.H.; Lim, Y.S.; Park, Y.H. Highly precise AMCW timeofflight scanning sensor based on parallelphase demodulation. Measurement 2022, 203, 111860. [Google Scholar] [CrossRef]
 Byun, H.; Lee, J.; Jang, B.; Lee, C.; Ha, K. A gainenhanced siliconphotonic optical phased array with integrated Oband amplifiers for 40m ranging and 3D scan. In Proceedings of the 2020 Conference on Lasers and ElectroOptics (CLEO), San Jose, CA, USA, 10–15 May 2020. [Google Scholar]
 Behroozpour, B.; Sandborn, P.A.M.; Wu, M.C.; Boser, B.E. Lidar System Architectures and Circuits. IEEE Commun. Mag. 2017, 55, 135–142. [Google Scholar] [CrossRef]
 Taneski, F.; Abbas, T.A.; Henderson, R.K. Laser Power Efficiency of Partial Histogram Direct TimeofFlight LiDAR Sensors. J. Light. Technol. 2022, 40, 5884–5893. [Google Scholar] [CrossRef]
 Lee, J.; Kim, Y.J.; Lee, K.; Lee, S.; Kim, S.W. Timeofflight measurement with femtosecond light pulses. Nat. Photonics 2010, 4, 716–720. [Google Scholar] [CrossRef]
 Horaud, R.; Hansard, M.; Evangelidis, G.; Ménier, C. An overview of depth cameras and range scanners based on timeofflight technologies. Mach. Vis. Appl. 2016, 27, 1005–1020. [Google Scholar] [CrossRef]
 Working with Lasers Updated to Include IEC. 2014. Available online: https://slideplayer.com/slide/12202834/ (accessed on 20 March 2023).
 Lum, D.J. Ultrafast timeofflight 3D LiDAR. Nat. Photonics 2020, 14, 2–4. [Google Scholar] [CrossRef]
 Poulton, C.V.; Byrd, M.J.; Russo, P.; Timurdogan, E.; Khandaker, M.; Vermeulen, D.; Watts, M.R. LongRange LiDAR and FreeSpace Data Communication With HighPerformance Optical Phased Arrays. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–8. [Google Scholar] [CrossRef]
 Poulton, C.V.; Yaacobi, A.; Cole, D.B.; Byrd, M.J.; Raval, M.; Vermeulen, D.; Watts, M.R. Coherent solidstate LIDAR with silicon photonic optical phased arrays. Opt. Lett. 2017, 42, 4091–4094. [Google Scholar] [CrossRef]
 Zhang, T.; Qu, X.; Zhang, F. Nonlinear error correction for FMCW ladar by the amplitude modulation method. Opt. Express 2018, 26, 11519–11528. [Google Scholar] [CrossRef]
 Kamata, M.; Hinakura, Y.; Baba, T. CarrierSuppressed Single Sideband Signal for FMCW LiDAR Using a Si PhotonicCrystal Optical Modulators. J. Light. Technol. 2020, 38, 2315–2321. [Google Scholar] [CrossRef]
 Shi, P.; Lu, L.; Liu, C.; Zhou, G.; Xu, W.; Chen, J.; Zhou, L. Optical FMCW Signal Generation Using a Silicon DualParallel MachZehnder Modulator. IEEE Photonics Technol. Lett. 2021, 33, 301–304. [Google Scholar] [CrossRef]
 Kittlaus, E.A.; Eliyahu, D.; Ganji, S.; Williams, S.; Matsko, A.B.; Cooper, K.B.; Forouhar, S. A lownoise photonic heterodyne synthesizer and its application to millimeterwave radar. Nat. Commun. 2021, 12, 4397. [Google Scholar] [CrossRef] [PubMed]
 Zhang, X.; Pouls, J.; Wu, M.C. Laser frequency sweep linearization by iterative learning predistortion for FMCW LiDAR. Opt. Express 2019, 27, 9965–9974. [Google Scholar] [CrossRef] [PubMed]
 Popko, G.B.; Gaylord, T.K.; Valenta, C.R. Interference measurements between singlebeam, mechanical scanning, timeofflight lidars. Opt. Eng. 2020, 59, 053106. [Google Scholar] [CrossRef]
 Hwang, I.P.; Lee, C.H. Mutual Interferences of a TrueRandom LiDAR With Other LiDAR Signals. IEEE Access. 2020, 8, 124123–124133. [Google Scholar] [CrossRef]
 Grollius, S.; Buchner, A.; Ligges, M.; Grabmaier, A. Probability of Unrecognized LiDAR Interference for TCSPC LiDAR. IEEE Sens. J. 2022, 22, 12976–12986. [Google Scholar] [CrossRef]
 Lee, B.C.; Choi, B.C.; Bang, H.S.; Koh, Y.N.; Han, K.Y. Study on Measurement Error Reduction Using the Internal Interference Light Reduction Structure of a TimeofFlight Sensor. IEEE Sens. J. 2022, 22, 12967–12975. [Google Scholar] [CrossRef]
 Dashpute, A.; Anand, C.; Sarkar, M. Depth Resolution Enhancement in TimeofFlight Cameras Using Polarization State of the Reflected Light. IEEE Trans. Instrum. Meas. 2019, 68, 160–168. [Google Scholar] [CrossRef]
 Jiménez, D.; Pizarro, D.; Mazo, M.; Palazuelos, S. Modeling and correction of multipath interference in time of flight cameras. Image Vis. Comput. 2014, 32, 1–13. [Google Scholar] [CrossRef]
 Popko, G.B.; Gaylord, T.K.; Valenta, C.R.; Turner, M.D.; Kamerman, G.W. Signal interactions between lidar scanners. In Laser Radar Technology and Applications XXIV; SPIE: Bellingham, WA, USA, 2019. [Google Scholar]
 Carballo, A.; Lambert, J.; MonrroyCano, A.; Wong, D.R.; Narksri, P.; Kitsukawa, Y.; Takeuchi, E.; Kato, S.; Takeda, K. LIBRE: The Multiple 3D LiDAR Dataset. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020. [Google Scholar]
 Thurn, K.; Ebelt, R.; Vossiek, M. Noise in Homodyne FMCW radar systems and its effects on ranging precision. In Proceedings of the 2013 IEEE MTTS International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013. [Google Scholar]
 Ljung, G.M.; Box, G.E. On a Measure of Lack of Fit in Time Series Models. Biometrika 1978, 65, 297–303. [Google Scholar] [CrossRef]
 Li, Y.; Chen, B.; Na, Q.; Xie, Q.; Tao, M.; Zhang, L.; Zhi, Z.; Li, Y.; Liu, X.; Luo, X.; et al. Widesteeringangle highresolution optical phased array. Photonics Res. 2021, 9, 2511–2518. [Google Scholar] [CrossRef]
 Poulton, C.V.; Byrd, M.J.; Russo, P.; Moss, B.; Shatrovoy, O.; Khandaker, M.; Watts, M.R. Coherent LiDAR With an 8,192Element Optical Phased Array and Driving Laser. IEEE J. Sel. Top. Quantum Electron. 2022, 28, 1–8. [Google Scholar] [CrossRef]
 Velodyne. Velodyne. Available online: https://velodynelidar.com/ (accessed on 20 March 2023).
 Robosense. Robosense. Available online: https://www.robosense.cn/ (accessed on 20 March 2023).
d (m)  2  3  4  5  6  7 

${\mathsf{\sigma}}_{\mathsf{W}/}$ (cm)  2.393  2.407  2.129  2.302  2.261  2.223 
${\mathsf{\sigma}}_{\mathsf{W}/\mathsf{O}}$ (cm)  2.463  2.336  2.199  2.160  2.348  2.215 
${\mathsf{\Delta}}_{\sigma}$ (cm)  −0.070  0.071  −0.070  0.142  −0.087  0.008 
d (m)  2  3  4  5  6  7 

${\mathsf{\sigma}}_{\mathsf{W}/}$ (cm)  2.006  2.088  2.039  2.089  2.043  2.116 
${\mathsf{\sigma}}_{\mathsf{W}/\mathsf{O}}$ (cm)  2.039  2.07  2.016  2.088  2.081  2.103 
${\mathsf{\Delta}}_{\sigma}$ (cm)  −0.033  0.018  0.023  0.001  −0.038  0.013 
Distance (m)  Precision (cm)  Ref  Feature  

autonomous vehicle requirement  50 m (blind zone detection) 100–150 m (pedestrian detection)  cm range  [32] 

FMCW  75  0.33  [7] 

100  5.09  [35]  
35  /  [36]  
Commercial ToF  120  5  [37] 

150  10  [38]  
PhMCW  100  8  This work 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. 
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Wang, Y.; Hu, Q.; Zhao, S.; Liang, L.; Chen, Y.; Lei, Y.; Qiu, C.; Jia, P.; Song, Y.; et al. PhaseModulated ContinuousWave Coherent Ranging Method and AntiInterference Evaluation. Appl. Sci. 2023, 13, 5356. https://doi.org/10.3390/app13095356
Zhang M, Wang Y, Hu Q, Zhao S, Liang L, Chen Y, Lei Y, Qiu C, Jia P, Song Y, et al. PhaseModulated ContinuousWave Coherent Ranging Method and AntiInterference Evaluation. Applied Sciences. 2023; 13(9):5356. https://doi.org/10.3390/app13095356
Chicago/Turabian StyleZhang, Mingshi, Yubing Wang, Qian Hu, Shuhua Zhao, Lei Liang, Yongyi Chen, Yuxin Lei, Cheng Qiu, Peng Jia, Yue Song, and et al. 2023. "PhaseModulated ContinuousWave Coherent Ranging Method and AntiInterference Evaluation" Applied Sciences 13, no. 9: 5356. https://doi.org/10.3390/app13095356