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Abstract: Worries about the increasing number of Sybils in online social networks (OSNs) are
amplified by a range of security issues; thus, Sybil detection has become an urgent real-world problem.
Lightweight and limited data-friendly, LBP (Loopy Belief Propagation)-based Sybil-detection methods
on the social graph are extensively adopted. However, existing LBP-based methods that do not
utilize node attributes often assume a global or predefined homophily strength of edges in the
social graph, while different user’s discrimination and preferences may vary, resulting in local
homogeneity differences. Another issue is that the existing message-passing paradigm uses the
same edge potential when propagating belief to both sides of a directed edge, which does not
agree with the trust interaction in one-way social relationships. To bridge these gaps, we present
SybilHP, a Sybil-detection method optimized for directed social networks with adaptive homophily
prediction. Specifically, we incorporate an iteratively updated edge homophily estimation into the
belief propagation to better adapt to the personal preferences of real-world social network users.
Moreover, we endow message passing on edges with directionality by a direction-sensitive potential
function design. As a result, SybilHP can better capture the local homophily and direction pattern
in real-world social networks. Experiments show that SybilHP works with high detection accuracy
on synthesized and real-world social graphs. Compared with various state-of-the-art graph-based
methods on a large-scale Twitter dataset, SybilHP substantially outperforms existing methods.

Keywords: social network; sybil detection; semi-supervised learning; belief propagation

1. Introduction

While celebrities and influencers have a huge influence on OSNs, not all of their
followers are authentic human beings on the other side of the screen. It was reported that
9–15% of active Twitter users were bots [1,2]. By creating and controlling such bots, or Sybil
accounts, malicious adversaries in social networks carry out spamming, phishing scams,
referral traffic, and manipulating online public opinion, thereby causing a series of security
problems and a crisis of trust.

In order to counter such abuse in social networks, an increasing number of Sybil-detection
methods have been proposed. According to the data used, feature-based and graph-based
methods are extensively mainstreamed. Feature-based methods train supervised classifiers
for detection using diverse information of Sybil and normal users, such as local connections,
profiles, IP addresses, and all kinds of behaviors and content features [3–8].

While graph-based methods only make use of the global structure of the social graph,
and detection relies on exploiting interrelations among entities (e.g., “friendship” on
Facebook or “follow” on Twitter) [9–25], GNN-based methods use both node features and
structural characteristics of the OSN data to train graph neural networks (GNNs) for user
classification [26–29]. This paper focuses on graph-based detection methods.

Theoretically, an underlying assumption for graph-based Sybil-detection methods is
that the benign community and the Sybil community are sparsely connected; therefore, the
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connections between nodes follow homophily, i.e., adjacent nodes tend to share the same
label. Under this assumption, graph-based methods essentially use the block model [30] to
represent a network as a set of blocks and discriminate whether an unknown node belongs
to a Sybil community or a benign community. Label propagation algorithms [31,32] are a
common class of methods to achieve block segmentation.

Starting from some labeled nodes, label propagation algorithms iteratively propagate
the users’ influence, trust, or reputation along the social connections between them, un-
til sufficient information for label prediction is obtained. By means of propagation, most
graph-based methods can be grouped into random walk (RW)-based [9–15,22] and Loopy
Belief Propagation (LBP)-based [16,17,20] methods. However, excluding space and time
efficiency, LBP-based methods outperform RW-based methods as they can leverage both
labeled benign and Sybil data, and its nonlinear nature endows robustness against label
noise [17]. However, existing LBP-based methods suffer from the following problems:

(1) They either assume a global homophily strength for all edges (e.g., GANG [20]) or
predefined edge weights as homophily strength (e.g., SybilSCAR-D uses degree-normalized
homophily strength [17]), while such an assumption ignores the local homophily difference
of edges and, thus, fails to characterize the behavior pattern of nodes. A clear example is
that users may have different capabilities to discern another benign user to follow; hence,
their following edges should bear different homophily strengths.

(2) They are mostly designed for undirected (symmetric) social graph models, while
many real-world platforms, such as Twitter, establish networks by a “follow”, “retweet”, or
“thumbs up”, which are asymmetric relationships. Applying these methods directly cannot
make full use of edge information. The study in [20] adapts LBP-based methods for directed
graphs; however, during two-way message-passing between a directed pair, its edge-potential
function acts in the same way, which does not agree with the asymmetric trust relationship.

Our work: In order to overcome the limitations above, we propose a novel Sybil-
detection method named SybilHP, a Sybil-detection method optimized for directed social
networks with adaptive homophily prediction.

Overall, we use the LBP framework to estimate the posterior probability distribution
of nodes for classification or ranking from a labeled subset of the social graph. SybilHP
adapts to directed graphs by controlling belief propagation on directed edges with a
novel edge-potential-function design, which integrates both the local preference of nodes
and the directionality of edges. Specifically, our design involves an adaptive homophily
strength estimator for the node’s preference that is iteratively updated along with the
belief propagation. Moreover, we incorporate a direction-sensitive mechanism into our
edge-potential function to better capture the asymmetric interplay between follower and
followee. We extensively analyze and evaluate the performance of SybilHP under different
conditions, including different parameter settings, attack sparsity, and label noise.

The experiments on synthetic social networks show that the proposed SybilHP has
relatively competitive accuracy and robustness. Then, we further evaluate SybilHP and
compare it with multiple state-of-the-art methods on a large Twitter dataset. The results
demonstrate that the SybilHP performs substantially better than existing methods concern-
ing classification and ranking tasks.

2. Related Work

Both random-walk-based methods and LBP-based methods start from some labeled
nodes to predict the unknown labels by semi-supervised learning. The basic idea of random-
walk-based methods is that random walks starting from benign nodes tend to reach other
benign nodes quickly, while it is difficult for Sybil to reach a benign node in a short
walk. From this intuition, SybilGuard [10] and SybilLimit [11] have spawned many works,
including SmartWalk [33], SybilIfer [12], SybilRank [9], SybilWalk [19], and Integro [15].
However, note that the training set for these methods should either consist of benign users
or Sybil users but not both.



Appl. Sci. 2023, 13, 5341 3 of 17

On another front, leveraging both labeled Sybil and benign nodes, LBP-based meth-
ods model the joint distribution over each node’s label with Markov random fields and
then use the LBP algorithm to iteratively estimate posterior probability distributions for
unknown labels. Stemming from the seminal SybilBelief [16], SybilSCAR [17] integrates
LBP-based and RW-based methods into a unified framework and further simplifies the
local update rule for posterior estimation, which largely enhances the detection efficiency
of LBP-based methods. SybilFuse [18] incorporates local graph attributes to better estimate
the node priors by pre-trained classifiers and then uses LBP to compute the posteriors.
Satoshi et al. [24] first showed that existing graph-based Sybil-detection methods can be
interpreted in a unified framework of low-pass filtering, and then they proposed SybilHeat.

However, for directed edges, the methods mentioned above either prune the one-way
edges and retain those bidirectional ones, or they directly treat all edges as undirected, causing
under-use of the original edge information. Worse still, “sparse connection” or “homophily
assumption” requires a significant structural gap between Sybil and benign communities.
However, such a structural gap in the directed social graph can be particularly obscure
because the one-way linkage is much easier to achieve, and Sybils can link to benign users as
many as they want. GANG [20] adapted LBP for a directed graph by incorporating the one-
way edge scenario into the edge-potential design and further derived a scalable and convergent
matrix form. However, the use of a global edge weight still limits its modeling fidelity.

Based on social graph data, recent works have tended to incorporate various side
information. For example, SybilHunter [23] provides a hybrid graph-based Sybil-detection
approach by aggregating user social behavior patterns. Hosseini et al. [26] first applied
graph convolutional networks to social robot detection. The use of GCN makes it possible
to perform end-to-end learning using both node attribute information and node structure
information. TrustGCN [27] used a “friend request” graph and, by combining social-graph-
based defenses and graph neural networks, improved the robustness of adversarial attacks.

BotRGCN [28] and SATAR [29] applied graph convolutional networks on a Twitter
follower–followee graph with multi-modal user semantics, properties, and neighborhood
information. Improved CGAN [34] manages to extend imbalanced data sets before applying
training classifiers to improve the detection accuracy of social bots. RoSGAS [35] is a
novel reinforced and self-supervised GNN architecture search framework that adaptively
pinpoints the most suitable multi-hop neighborhood and the number of layers in the GNN
architecture for social bot detection. However, as the neural network-based models become
more complex, the cost of training and deploying the models increases, which limits their
scalability and portability.

3. Problem Formulation
3.1. Graph-Based Sybil Detection

Graph-based Sybil detection uses social graph data for detection. We model the social
graph as G(V, E), where we take each user as a node u ∈ V, and the directed relationship
between users u and v as a directed edge (u, v). For example, “following” and “retweeting”
on Twitter or sending friend requests on Facebook can be viewed as forming a directed
relationship from one user to another. We call a one-way directed edge unidirectional and
a two-way edge bidirectional. Note that we follow the convention of [20] that incoming
neighbors, outgoing neighbors, and bidirectional neighbors are separately treated.

Each node in G should be either labeled Sybil or benign, while we only have a part of
the whole picture, i.e., a labeled training set T consisting of the labeled Sybil Ls and labeled
benign nodes Lb. The goal of the graph-based Sybil detection is to predict those remaining
unlabeled nodes with the training set T.

3.2. Sybil Attack and Homophily

Generally, benign and Sybil communities are relatively dense subgraphs of G, and we
refer to them as the Sybil region and benign region. Figure 1 shows a Sybil attack on a
benign region in a social network, where b1 and b2 are compromised nodes attacked by s1
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and s2. Hopefully, if benign and Sybil regions are sparsely connected, or in other words,
if the density of edges between benign and Sybil regions is relatively smaller than the edges
among themselves, then such relative sparsity can be partly quantified by the tendency
of two linked nodes sharing the same label, i.e., homophily. Graph-based Sybil detection
exploits homophily to infer the property of unlabeled nodes. However, it is worth noting
that an effective Sybil attack can significantly weaken such homophily.

Benign
region

Benign node

Sybil node

Sybil
region

b2

b1

s2

s1

Attack edge

Compromised edge

Benign edge

Sybil edge

Figure 1. Sybil attack model.

3.3. LBP-Based Sybil Detection

This section first briefly recaps the basic components of the LBP-based method,
and then by introducing the existing LBP-based method design, we propose our design
motivations.

3.3.1. LBP Framework

As shown in Figure 2, LBP-based methods operate in the following steps. The process
starts with the OSN user interaction dataset, where we associate each node u ∈ V with a
binary random variable xu, whose state could either be −1 or 1, corresponding to benign
or Sybil, respectively.

Calculate posterior
for all nodes

Initialize nodes with
prior estimation  

Iteratively calculate
message on edges 

 

u v

Classify or rank
nodes by posterior

estimation

OSN user
interaction data

Figure 2. Overview of LBP-based methods.

We then model the joint probability distribution over all binary random variables
xV = {xu}u∈V as a pMRF. Specifically, pMRF factors the joint distribution P(xV ) into the
multiplication of a series of unary and pairwise potential functions:

P(xV ) =
1
Z ∏

u∈V
φu(xu) ∏

(u,v)∈E
ϕuv(xu, xv), (1)

where Z = ∑xV ∏u∈V φu(xu)∏(u,v)∈E ϕuv(xu, xv) summing over all possible combinations
of xV is the partition function used for probability normalization. The node potential φu(xu)
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defined by Equation (2) incorporates the node prior information. Furthermore, the edge
potential ϕuv(xu, xv) will be elaborated in the next section.

φu(xu) =:

{
qu, if xu = 1

1− qu, if xu = −1,
(2)

where qu is the prior probability of node u being a Sybil. Without further prior knowledge,
for those nodes labeled with Sybil, we set a soft probability q for them, and 1− q for those
labeled with benign. We set the prior probability to be neutral at 0.5 for the unlabeled nodes.

After initializing the prior probability that xu = 1 as qu for all nodes according to the
given labels, we then implement the LBP algorithm on pMRF to estimate the posterior
probability of each node xu being a Sybil, denoted by pu = P(xu = 1 | xV ).

The LBP algorithm can be summarized as the following two steps [36,37], that is,
update messages on edges until convergence and then calculate pu by message aggregation:

(1) For each edge (u, v) ∈ E, a message is sent from u to v in the tth iteration:

m(t)
uv (xv) = ∑

xu

φu(xu)ϕuv(xu, xv) ∏
k∈N(u)\v

m(t−1)
ku (xu). (3)

We iteratively apply Equation (3) until the difference between m(t)
uv and m(t+1)

uv is negli-
gible.

(2) For each node u, the posterior probability distribution of xu can be estimated from
the aggregation of all the converged messages received from its neighbors:

p(xu) =
1
Z

φu(xu) ∏
k∈N(u)

m(t)
ku (xu), (4)

where Z = ∑xu ∏k∈N(u) m(t)
ku (xu) summing over possible xu for probability normalization.

3.3.2. Existing Potential Function Designs

The LBP-based methods are differentiated mainly according to the edge-potential
function ϕuv(xu, xv), which partially reflects the distribution of a neighboring pair xu
and xv.

SybilBelief [16] designs a potential function that encodes the coupling strength between
nodes u and v as follows:

ϕuv(xu, xv) =:

{
w, if xuxv = 1

1− w, if xuxv = −1.
(5)

Specifically, when xuxv = 1 (i.e., xu and xv share the same state), ϕuv(xu, xv) takes a
presumed homophily strength w ranging from 0.5 to 1, which implies the possibility that xu
coincides with xv. Similarly, when xuxv = −1, ϕuvs.(xu, xv) should take the heterogeneity
strength between xu and xv, that is, 1− w.

SybilSCAR [17] follows a similar method to encode the interaction between nodes
by neighbor influence. GANG [20], on the other hand, aims to capture the asymmetric
relationship by the following design:

ϕuv(xu, xv) =:

{
w, if xu = 1 or xv = −1

1− w, if otherwise,
(6)

which is based on the intuition that, in a unidirectional edge, only if the tail is benign or the
head is Sybil, then this pair tends to share the same label with homophily strength w. Oth-
erwise, this edge tends to link two nodes with different labels. However, the use of a global
homophily strength w still limits its modeling fidelity because different nodes may have
different behavior patterns and, therefore, different local homophily with their neighbors.
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3.3.3. Our Design Motivation

The motivation behind our potential function design lies in the following considera-
tions.

(1) The message muv sent from node u to v represents an inference about the state xv
from u’s point of view, which partially depends on the directed relationship between node
u and v, i.e., following or being followed by. At the same time, the state of the message
sender xu also plays an important role in the message, i.e., xu = 1 or xu = −1. Therefore,
we want to portray these cases with a range of initial homophily strengths instead of only
one w.

(2) The message muv sent from u to v should include the discernment of u as a benign
user, which can be drawn from u’s following preference, and the deception capability as
a Sybil, which can be drawn from its followers’ statistics. To this end, we set adaptive
homophily estimators to capture these local characteristics.

These motivations will guide our potential function design in the next section.

4. Methodology

Based on the motivations mentioned above, in this section, we derive finer modeling
to adapt to the directed social graph, highlighting initial homophily strength parameters
and adaptive homophily estimators.

4.1. Initial Homophily Strength Parameters

In this subsection, we present how SybilHP profiles the label coordination of a pair of
nodes according to different edge types and the states of the message sender.

Note that LBP lets the variables pass messages to exchange their beliefs about each
other until the message converges to a consensus [36,37]. Specifically, we take the mes-
sage passed from u to v as an inference about xv from u’s standpoint [38,39]. However,
homophily strength included in a message muv sent from u to v should differ according to
message types and the state of the message sender as shown in Figure 3.

Benign
Sybil

State of the
message
sender 

Follow
relationship

Bidirectional
Sender following receiver
Sender followed by receiver

u v

(2) benign follower (3) Sybil follower(1) bidirectional followship

u u v vu

(4) benign followee (5) Sybil followee

u v vu

Figure 3. Message muv differs according to the edge type and the state of the sender u.

Therefore, we design five initial homophily strength parameters for these cases. Our
design considerations are as follows.

4.1.1. The Case of Bidirectional Edge

(1) As shown in Figure 3(1), the bidirectional edge (u, v) represents a mutual following
relationship, and it naturally implies strong homophily strength between nodes. Further-
more, for this symmetric relationship, we use one parameter←→w representing the initial
homophily strength to profile the co-occurrence probability of the pair.

For the unidirectional pair, however, we need more than one parameter to describe
such an asymmetric relationship in the message sent from u to v.
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4.1.2. The Case When Message Sender u Is a Follower/Tail

(2) As shown in Figure 3(2), given a benign tail u, from u’s standpoint, we can assume
that v is also benign with high confidence because most human users hold an inherent
discernment to follow human users. We use parameter −→w b (“b” stands for “benign”) to
represent such initial homophily strength.

(3) As shown in Figure 3(3), if the tail u is a Sybil, we assume Sybils are group controlled
and share a similar “following” pattern [40], that is, the probability that the head v is also
Sybil, which we denote as a homophily strength parameter −→ws (“s” stands for “Sybil”).

4.1.3. The Case When Message Sender u Is a Followee/Head

(4) As shown in Figure 3(4), if head u is benign, from u’s standpoint, we estimate that
the possibility of the follower v being benign as initial homophily strength←−wb.

(5) As shown in Figure 3(5), if a Sybil head u is followed by v, we denote the initial
homophily strength from u’s perspective as←−ws.

4.2. Adaptive Homophily Estimator

In this subsection, we build adaptive estimators to predict the assortativity [41,42]
for each node, i.e., the likelihood that an individual will form connections with other
individuals. Here, we do not distinguish between homophily and assortativity, although the
former is descriptive, and the latter is predictive. Furthermore, we call the estimators
homophily estimators.

Our idea comes from an observation that it is uncommon for Sybils to be actively
followed by human users, so the Sybil heads and benign tails tend to play more informative
roles compared to benign heads and Sybil tails. To better capture this information, we
maintain a pair of homophily estimators to measure a benign user’s capability to resist the
Sybil attack, and the Sybil’s capability to make a benign user compromise. These assortative
capabilities can be reflected in the statistics of the neighboring nodes’ states. Therefore,
for unlabeled nodes, we take their posterior probabilities in the previous iteration as their
state; thus, the estimators should be updated in each iteration.

If a benign user u has already followed a certain number of Sybils, then it is safe to say
that he/she will do it again. In other words, its discernment depends on the percentage of
benign nodes among the nodes it follows as shown on the left of Figure 4. We thus define
adaptive homophily estimator c(t)u_b as follows:

c(t)u_b =
∑v∈Nout(u) p(t)(xv = −1)

|Nout(u)|
, (7)

where Nout(u) is the set of outgoing neighbors of u. Furthermore, p(t)(·) is the temporary
posterior probability distribution at iteration t, which is calculated by the aggregation of
propagated label information at iteration t− 1:

p(t)(xu) =
1
Z

φu(xu) ∏
k∈N(u)

m(t−1)
ku (xu). (8)

Similarly, a Sybil u who has already managed to obtain many benign followers can also
entice one more benign follower at a small price. In other words, its deception capability
depends on the percentage of benign nodes among its followers as shown on the right of
Figure 4. We thus define adaptive homophily estimator c(t)u_s as follows:

c(t)u_s =
∑v∈Nin(u) p(t)(xv = 1)

|Nin(u)|
, (9)

where Nin(u) is the set of incoming neighbors of u. p(t)(·) is the label propagation from
iteration t− 1 defined in Equation (8). Note that we count the bidirectional linked neighbors
in both Nin(u) and Nout(u).
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u?u ?
 

 
 

Benign
Sybil

State of the
message
sender 

Predicted benign
Predicted Sybil

State of the
message
receivers ? Unknown

Figure 4. Homophily estimator for the edge incident with a benign tail or a Sybil head.

4.3. Redefine Potential Function

Finally, we integrate the results derived from the previous sections into our edge-
potential design. For unidirectional edge (u, v), considering that message passing in the
LBP algorithm goes both ways, we make our potential function direction sensitive based
on the initial homophily strength parameters and then involve the adaptive homophily
estimators to adapt to characteristics of nodes.

Existing work [20,21] assumes that a Sybil’s following behavior is unpredictable. So,
from a Sybil tail u’s standpoint, we cannot gain much effective information about the
head’s state. Similarly, if a benign user is being followed, chances are slim that one could
infer the follower’s state. Therefore, in these cases, we only use the initial homophily
strength parameters −→ws and←−wb for a rough estimation of the benign head and the Sybil
tail’s homophily strength as shown in Figure 5(1,3), respectively.

u vu

u vvu

u v vu

  
  

 

 

 
 

 
 

 

 

uv  

 

  

 
 

 

 

u v u

(1) (2) 

(4) (3) (3) 

(5) (6) (7) 

Benign
Sybil

State of the
message
sender 

Follow
relationship

Bidirectional
Sender following receiver
Sender followed by receiver

Figure 5. Initial homophily strength parameters and adaptive homophily estimators for potential function.

Dynamic homophily estimators c(t)u_b and c(t)u_s can be applied to weaken the homophily-
based inference for “dumb” benign nodes who always follow Sybils and enhance the
heterogeneity-based inference for “enticing” Sybil nodes who have plenty benign followers.
In each iteration, they are updated to further elaborate the initial homophily strength −→wb
and←−ws according to the nodes’ preferences as shown in Figure 5(2,4).

Formally, we have unidirectional edge-potential functions as follows. When sending a
message from tail u to head v of a unidirectional edge, we have −→ϕ (t)(xu, xv) design:

−→ϕ (t)(xu, xv) =



−→wbc(t)u_b, xu = −1, xv = −1

1−−→wbc(t)u_b, xu = −1, xv = 1
−→ws, xu = 1, xv = 1

1−−→ws, xu = 1, xv = −1.

(10)
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When sending a message from head u to tail v,←−ϕ (t)(xu, xv) follows:

←−ϕ (t)(xu, xv) =



←−wb, xv = −1, xu = −1

1−←−wb, xv = −1, xu = 1
←−wsc(t)u_s, xv = 1, xu = 1

1−←−wsc(t)u_s, xv = 1, xu = −1.

(11)

For bidirectional edges, we adopt homophily strength←→w with the following modification:

←→ϕ (t)(xu, xv)=



1
2
←→w
(

c(t)u_b + c(t)v_b

)
, xu =−1,xv =−1

1− 1
2
←→w
(

c(t)u_b + c(t)v_s

)
, xu =−1,xv =1

1
2
←→w
(

c(t)u_s + c(t)v_s

)
, xu = 1, xv = 1

1− 1
2
←→w
(

c(t)u_s + c(t)v_b

)
, xu =1,xv =−1.

(12)

To sum up, we have the following direction-sensitive edge-potential design:

ϕ(t)(xu, xv)=


←→ϕ (t)(xu, xv), if (u, v) bidirectional
−→ϕ (t)(xu, xv), if (u, v) unidirectional
←−ϕ (t)(xu, xv), if (v, u) unidirectional.

(13)

Integrated with the proposed edge-potential function ϕ(t)(xu, xv), the pMRF model
along with the LBP algorithm forms SybilHP. Given the social graph and a training set,
SybilHP returns the posterior probability of nodes being Sybil in graph G for further
classification or ranking tasks. Algorithm 1 summarizes the pseudo-code of SybilHP,
from which, we can see that the time complexity of SybilHP is O(iter · |E|). As most social
networks are often sparse graphs, we have O(iter · |E|) = O(iter · |N|).

Algorithm 1 SybilHP

Require: directed social graph G = (V, E),
the training set T = (Ls, Lb),
the soft probability for labeled Sybil q,
initial homophily strength parameters←→w , −→wb, −→ws,←−wb,←−ws,
and the number of iterations iter.

Ensure: posterior probability distribution p(xu), ∀u ∈ V
for nodes u ∈ V do

initialize qu according to u,
qu = q if u ∈ Ls,
qu = 1− q if u ∈ Lb,
qu = 0.5 if u is unlabeled,
initialize p(0)(xu) = qu,
initialize m(0)

uv = 1 for all (u, v) ∈ E.
end for
for t ∈ 1, 2, . . . , iter do

for edges (u, v) ∈ E do
compute m(t)

vu (xu) and m(t)
uv (xv) per Equation (3),

update c(t)u_b, c(t)u_s, c(t)v_b and c(t)v_s per Equations (7) and (9).
end for
for u ∈ V do

update p(t)(xu) per Equation (8).
end for

end for
Return p(iter)(xu) for all u.
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5. Experiment
5.1. Experiment Setup

Dataset description: In this section, we first evaluate the influence of various factors
including Sybil attack strength, Sybil group scale, and label noise in SybilHP. Since our
experiments require social networks with various forms and patterns, we synthesize benign
and Sybil regions based on a real-world social graph.

(1) Synthetic-directed Pokec

For the sake of fairness and comparison, we adopted this directed Pokec network [43]
from the official repository (https://github.com/binghuiwang/sybildetection (accessed
on 2 July 2022)) of for GANG [20], SybilSCAR [17] and SybilBelief [16] for robustness and
performance illustration. In particular, we extract a connected component that contains
10,000 nodes and 90,065 edges from Pokec as the benign region, and then we make the Sybil
region a replicate of the benign region and add (bidirectional, unidirectional) attack edges
between the two regions uniformly at random. If not specified, we add 500 bidirectional
edges, 1000 unidirectional Sybil-to-benign attack edges, and 100 unidirectional benign-to-
Sybil compromised edges as illustrated in Figure 6. We keep 100 Sybil and 100 benign users
as the training set and test on the overall social graph.

500

1000

1000

Benign
region

Sybil
region

Figure 6. An abridged illustration of the synthesized Pokec dataset.

Furthermore, we compare the detection performance of the proposed method and
some state-of-the-art benchmark methods on a large real Twitter dataset.

(2) Real-world Twitter follower–followee graph

By the means of breadth-first search (BFS) graph traversal, we sampled a Twitter
follower–followee graph with 269,640 nodes and 6,818,501 edges from [44]. The original
data was crawled by Kwak in 2009 [44]. The graph is directed and includes 41,652,230 users
and 1,468,364,884 edges. However, only 10,000 Sybils and 10,000,000 benign users are
labeled, which can be used as ground truth for training and testing. The remaining nodes
are treated as unknown. In other words, there are less than a quarter of labeled nodes in
the original dataset.

The ratio of Sybil to benign nodes is even more severely imbalanced at 1:100, which
makes the discrimination of benign nodes dominate the performance evaluation results.
To address the under-labeling and imbalance of the original dataset, we sampled the
original dataset. The BFS starts from these labeled nodes, and we only keep those labeled
neighbors until all nodes are reached. Finally, we delete those isolated nodes, and we obtain
91,263 Sybils and 178,377 benign users to form our connected and labeled social graph. We
divide 9000 Sybil and 17,000 benign users (about 10%) from them as the labeled training
set and test on the overall social graph.

An overview of the datasets is presented in Table 1.

https://github.com/binghuiwang/sybildetection
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Table 1. Overview of the datasets.

Datasets # Users # Edges # Sybils # Benign |Ls| |Lb|
Synthesized Pokec 20,000 182,130 10,000 10,000 100 100
Twitter 269,640 6,818,501 91,263 178,377 9000 17,000

Compared methods: We compared SybilHP with directed graph-based method
GANG [20] (including a matrix version and a basic version) and other LBP-based methods
SybilSCAR [17] (SybilSCAR-D) and SybilBelief [16]. For undirected graph-based methods,
we transformed the directed graph to be undirected by only keeping those bidirectional
edges (which is recommended by the original paper). Note that this can cause many nodes
isolated and fail to involve in the LBP process.

Parameter setting: For SybilHP, we set the prior probability for labeled Sybil nodes
p = 0.9, which was also suggested by authors of GANG, SybilSCAR, and SybilBelief; We
assigned initial homophily strength parameters←→w = 0.99,−→ws = 0.77,−→wb = 0.97,←−wb = 0.73,
←−ws = 0.95, and set the number of LBP iterations iter = 5. For GANG, we set w = 0.51
adapting to Twitter as suggested by the author. Note that we also adopt the basic version
of GANG with an optimized parameter (w = 0.63) for our Twitter dataset. We set the
parameters of SybilSCAR and SybilBelief in the same way as introduced in [16,17]. An
overview of the parameter settings is presented in Table 2.

Table 2. Overview of the parameter settings.

Methods Parameter Settings

SybilBelief [16] w = 0.9, θ = 0.9
SybilSCAR [17] w = 0.6(ŵ = 0.1), θ = 0.6
GANG [20] w = 0.51(ŵ = 0.01), θ = 0.9
GANG_basic [20] w = 0.63(ŵ = 0.13), θ = 0.9

SybilHP
←→w = 0.99, −→ws = 0.77, −→wb = 0.97,
←−wb = 0.73,←−ws = 0.95, θ = 0.9

Evaluation metrics: The following indicators are adopted to evaluate the performance
of Bot detection methods:

• Accuracy is the fraction of instances that are correctly classified. It is a simple and
intuitive metric, but it can be misleading in cases where the classes are imbalanced.

• Recall is the fraction of positive instances that are correctly classified. It is a measure
of how well the model is able to identify positive instances.

• Precision is the fraction of predicted positive instances that are actually positive. It is a
measure of how well the model is able to avoid false positives.

• The area under the curve (AUC) is a measure of the overall performance of a classifier.
It is calculated by plotting the true positive rate (TPR) against the false positive
rate (FPR) for a range of classification thresholds. A higher AUC indicates a better-
performing classifier.

We implemented SybilHP in Python 3.8. For the proper comparative experiment, we
also ported the original C++ codes (from the authors) of GANG, SybilSCAR, and SybilBelief
to Python.

5.2. General Robustness Evaluation

We first briefly evaluate the robustness of SybilHP under different conditions including
attack edges density, Sybil community scales, and labeling with noises on the Synthesized
Pokec dataset.

Impact of attack edges: We add different numbers of unidirectional attack edges and
bidirectional edges (compromised edges) in a ratio of 2:1. Table 3 shows the accuracy
decay as the number of attacking edges increases. We found no distinct performance
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difference between these homophily-inference-based methods. As the synthesized dataset
does not reflect the behavioral preferences of real-world users and Sybil users, the proposed
algorithm has only a slight advantage on this dataset, which could be attributed to the
additional parameters.

Table 3. The classification accuracy under different numbers of attack edges.

Methods 1 1K/0.5K 2K/1K 3K/1.5K 4K/2K 5K/2.5K

SybilBelief [16] 0.975 0.968 0.936 0.92 0.88
SybilSCAR [17] 0.971 0.965 0.932 0.923 0.881
GANG [20] 0.973 0.959 0.929 0.92 0.87
SybilHP 0.975 0.969 0.938 0.918 0.878

1 The notation “1K/0.5K” means the number of added unidirectional attack edges is 1000 and added bidirectional
attack edges is 500.

Impact of Sybil community scale: To be more realistic, we split the Sybil region to
form several smaller communities to simulate the scenario when multiple Sybil clusters
launch attacks on a benign user community, as shown in Figure 7, where (a), (b), and (c)
correspond to one, two, and three Sybil clusters attacking the benign region, respectively.
Then, the detection performance of SybilHP is examined. Specifically, we partition the Sybil
region by obtaining a certain number of neighboring nodes that constitute the community
through a BFS traversal starting at a certain point.

(a) (b) (c)
Figure 7. An abridged view of the simulated attack of multiple Sybil clusters.

It can be seen that the total number of Sybil communities increases as the number
of individual community nodes decreases, which is similar to the real-world scenario in
which Sybil is controlled by different organizations and individuals. We did not change the
edges between Sybil and benign regions nor the training set, and the detection performance
of SybilHP is shown in Figure 8. It can be seen that the size of the Sybil cluster has almost
no impact on the performance of our method. Note, however, that this assumes that nodes
in the training set are present in each Sybil cluster.

1 3 7 95
    Number of Sybil groups
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Figure 8. Robustness against attacks from different number/scale of Sybil clusters.
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Impact of label noises:In the case of a partially mislabeled training set, LBP-based
methods have inherent robustness against label noise. Figure 9 shows the influences of
different percentages of false labels on the recall rate for Sybil. We found that SybilBelief
and SybilHP showed stronger robustness against label noises compared to SybilSCAR and
GANG, which could be due to their nonlinearity.

0 0.1 0.4 0.490.2 0.3 
  Proportion of noisy labels
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0.7

0.8
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1.0
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l
SybilHP
SybilSCAR
SybilBelief
GANG

Figure 9. Robustness against noisy labels.

5.3. Comparative Experiments on Real-World Twitter Dataset

In this section, we first focus on the model parameters’ adaptation to the real-world
Twitter datasets and then give a comparison study with other LBP-based methods.

Model parameter adaptation: The initial homophily strength ←→w ,−→wb,−→ws,
←−wb,←−ws for

edge potential can be taken as adjustable parameters. We evaluate different configurations
of these parameters by variable-controlling on the directed Twitter dataset. Figure 10 shows
the variation of detection performance when we vary one of the parameters. We observe
that there are points with a good trade-off between precision and recall, and we set them as
the parameters for subsequent experiments.
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Accuracy
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wb
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Precision
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Figure 10. Detection performance under different parameter configurations. Note that the precision,
recall, and accuracy are relative and have no reference value since the other parameters are fixed.
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Overall classification and ranking performance: Table 4 shows the overall classification
performance compared with the other state-of-the-art Sybil-detection methods. SybilHP
achieved the highest precision and accuracy and second highest recall. Note that the
SybilHP_basic in the table does not incorporate the adaptive homophily estimator mech-
anism, we see that, with the ablation of the adaptive homophily estimator enhancement,
SybilHP still shows superiority over other methods.

Table 4. Classification performance.

Methods Precision Recall Accuracy

SybilBelief [16] 0.873 0.501 0.806
SybilSCAR [17] 0.905 0.508 0.815
GANG_matrix [20] 0.798 0.446 0.74
GANG_basic [20] 0.757 0.808 0.847
SybilHP 0.908 0.797 0.904
SybilHP_basic 0.897 0.764 0.893

As LBP-based detection methods estimate the posterior probability for each node to
be Sybil, we can rank the nodes by the posterior probabilities to produce a more thorough
performance analysis. We take the Area Under the Receiver Operating Characteristic Curve
(AUC) as the evaluation measure for ranking, which can be interpreted as the probability
that a randomly sampled Sybil node is ranked higher than a randomly sampled benign
node in the testing dataset. Figure 11 shows the overall ranking performance by AUC,
and we make the following observations.

SybilBelief
SybilSCAR

SybilBelief_re
SybilSCAR_re

GANG_matrix
GANG_basicSybilHP

SybilHP_basic
0.5

0.6

0.7

0.8

0.9

1.0

AU
C

0.711
0.689

0.84
0.821

0.861
0.904

0.939 0.93

Figure 11. AUCs of compared methods.

First, we found that methods designed for directed social graphs substantially outper-
formed those methods for undirected graphs. To adapt to methods for undirected graphs,
we only kept reciprocal edges in the original social graph (as the original papers suggest),
which resulted in some isolated nodes that were unable to be involved in the computation.
This is the main reason for the lower AUC performance compared with that reported in
the original paper. However, even when we reevaluate these methods after excluding
these isolated nodes, their performance is still limited by the loss of directed information,
as SybilSCAR_re and SybilBelief_re shown in Figure 11.

Second, we can see that complexity and more refined modeling facilitate the capturing
of the characteristics of the data. SybilBelief, the basic version of GANG and SybilHP
are more effective than their simplified versions because the computational efficiency can
hardly be balanced with accuracy.

Finally, we observed that, without an adaptive homophily estimator mechanism,
SybilHP_basic still had decent performance. Furthermore, the performance improvement
brought by adaptive homophily estimators is not significant, so the balance of performance
and computational cost should be properly considered in practical applications.
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Sybil nodes in top-ranked nodes: Since the ranking of nodes can be used as a priority
list to do further inspection and verification by system or humans, the accuracy in the
top-ranked nodes is important because extra costs for human workers will rule out the
majority of nodes. Therefore, we further compare the proportion of Sybil in different
fractions of top-80,000 positive-reported nodes. Specifically, we divide top-80,000 nodes
(because the dataset only contains around 90,000 Sybils) into 10 intervals and calculate the
number of Sybils in each interval.

Figure 12 shows the distribution of Sybils detected in each 10,000 interval. For
GANG_matrix, SybilSCAR, and SybilBelief, we can observe a clear drop at the inter-
val 50-60k, while the proposed SybilHP proceeds with its superiority. We speculate that
a group of Twitter users with a particular following pattern, “dumb benign followers”
or “intriguing Sybils” could have managed to evade these detection methods. However,
SybilHP has captured their pattern and discovered them.
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Figure 12. Sybil proportion in each 10,000 interval of top 80,000 positive-reported nodes.

6. Conclusions

In this work, we proposed SybilHP, a Sybil-detection method optimized for directed
social networks with adaptive homophily prediction. The proposed algorithm features a
novel edge homophily estimator, which is updated iteratively to adapt to the dynamics of
homophily between Sybil and benign users in real-world social networks. It also endows
message passing on edges with directionality by a direction-sensitive potential function
design. We analyzed and compared SybilHP with multiple state-of-the-art graph-based
detection methods using a real-world Twitter dataset, and the proposed method achieved
superior performance.

7. Discussion of Future Research Directions

In fact, a Sybil-detection system using the proposed method is suitable to be deployed
in Twitter, Instagram, TikTok, and many other social media that forms directed social net-
works. Our future research will focus on a richer range of graph data sources. For example,
Sybil detection on a heterogeneous social network can be promising and challenging work.
Furthermore, research on time-series homophily also has the potential to shed light on
social user behavior analysis and Sybil detection.
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