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Abstract: Object detection is a classic image processing problem. For instance, in autonomous driving
applications, targets such as cars and pedestrians are detected in the road scene video. Many image-
based object detection methods utilizing hand-crafted features have been proposed. Recently, more
research has adopted a deep learning approach. Object detectors rely on useful features, such as the
object’s boundary, which are extracted via analyzing the image pixels. However, the images captured,
for instance, in an outdoor environment, may be degraded due to bad weather such as haze and fog.
One possible remedy is to recover the image radiance through the use of a pre-processing method
such as image dehazing. We propose a dehazing model for image enhancement. The framework was
based on the conditional generative adversarial network (cGAN). Our proposed model was improved
with two modifications. Various image dehazing datasets were employed for comparative analysis.
Our proposed model outperformed other hand-crafted and deep learning-based image dehazing
methods by 2dB or more in PSNR. Moreover, we utilized the dehazed images for target detection
using the object detector YOLO. In the experimentations, images were degraded by two weather
conditions—rain and fog. We demonstrated that the objects detected in images enhanced by our
proposed dehazing model were significantly improved over those detected in the degraded images.

Keywords: object detection; road scene; fog; rain; image dehazing; generative adversarial network;
conditional generative adversarial network

1. Introduction

Many image-processing applications perform localization of target objects in the first
place. For instance, detecting and inferring objects (such as road signs, pedestrians and
vehicles) in road scene videos are the essential tasks of an autonomous driving system [1].
Representative features are estimated from image pixels, generally under the assumption
that the image is acquired with good visibility. High quality images are also important
for remote sensing and surveillance. For instance, ground settlement monitoring in con-
struction sites, or structural health assessments of buildings, demand an accurate survey
and geometric reconstruction of the scene. Liu et al. [2] employed time series synthetic-
aperture-radar interferometry (InSAR) to estimate the deformation of land reclamation.
Remote sensing can also be achieved through the use of image processing techniques such
as structure from motion (SfM) photogrammetry.

One main problem of image-based applications is that the acquired images are of
low quality. Remote sensing images are often captured in outdoor environments. The
visibility in the images depends on the weather conditions. When there is haze, rain
or fog, the acquired images are seriously degraded. As a result, the image feature is
distorted and the image-processing algorithm will fail to reach the expected accuracy.
To address this problem, image dehazing is often employed. Many image processing
algorithms assume that the image records the scene’s radiance. If the image dehazing
method restores the image radiance, representative features can be extracted using the
subsequent processing steps of the algorithm. Image dehazing is an important and foremost
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module in many applications, e.g., auto-driving [3], scene surveillance [4] and remote
sensing [5]. These studies demonstrated that image dehazing can address some common
problems faced by various image-based applications. Image dehazing has become a popular
research topic. The amount of image dehazing papers has increased over recent years (see
a recent review [6]). We aim to propose an image dehazing algorithm that can improve
the visibility in images, particularly images that are degraded by rain and fog. Moreover,
we demonstrate the benefit of using the proposed method on a popular image-based
application of object detection.

We propose a new image dehazing model based on a convolutional neural network
(CNN). The single network can be trained end-to-end to transform a hazy image into a
haze-free image. A quantitative evaluation of the proposed model, with respect to some
metrics, was performed on various image datasets. As demonstrated from the numerical
results, our model outperformed other image dehazing methods. Moreover, the visual
results illustrated the improvement of visibility in the degraded images. The dehazed
images look very similar to the haze-free images. In the research of object detection, we
observed that outdoor images degraded by rain and fog produced predictions with lower
accuracy than those obtained from clearer images. We, therefore, utilized the proposed
image dehazing method to enhance the visibility of the degraded images before the object
detection task. We investigated the impact of dehazed images with respect to the detection
of five target objects captured in road scene videos. Following thorough experimentation,
we demonstrated that the objects detected in images enhanced by our proposed dehazing
model were significantly improved over those detected in the degraded images. Our main
contributions are as follows:

• We adopt the conditional generative adversarial network (cGAN) and propose a
novel image dehazing model. The network, which is comprised of a generator and
discriminator, demands no pre-processing step. Therefore, the single network learns
the dehazing function via end-to-end training. The generator module has an encoder–
decoder structure. We strengthened the analytical power of the network via the
adoption of convolutional blocks with progressively more layers. Moreover, the entire
dehazing framework was enhanced with the utilization of a new activation function in
both the generator and discriminator modules. Thorough experimentation was carried
out to illustrate the superiority of the proposed model over other image dehazing
methods on various image dehazing datasets.

• Image enhancement was beneficial to various image processing tasks. One practical
application was the detection of objects in degraded images. To the best of our
knowledge, our research is the first to propose a new cGAN-based image dehazing
method for the enhancement of images for object detection. For this investigation,
we created a dataset of road scene videos. Five target objects (pedestrian, bicycle, car,
bus and truck) were annotated. Two common weather conditions (rain and fog) were
adopted for the synthesis of degraded images.

• We adopted the object detector You Only Look Once (YOLO). Experimentation was
performed on clear images, images degraded by rain, images degraded by fog and
images enhanced using our proposed image dehazing method. The numeric results
showed that our proposed image dehazing method can lead to target detection with
higher accuracy. The visual results also illustrated that, with the use of images dehazed
using our method, the object detector was able to detect objects which may have been
missed in images processed using other image dehazing methods.

Our paper is organized as follows. The related research on image dehazing and object
detection are reviewed in the Section 2. We explain the proposed image dehazing model in
detail in Section 3. Section 4 presents the experimental set up of detecting target objects
in road scene images. Experimental results of image dehazing and object detection are
illustrated in Section 5. We compare our proposed image dehazing model with other
methods first on various image dehazing datasets. We then illustrate the performance of
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object detection using degraded images and images enhanced using our proposed dehazing
method. In Section 6, we draw conclusions and present some future work.

2. Related Work

Many deterministic image dehazing methods have been proposed, with the assump-
tion of prior information or a physical model. Wang and Yuan [7] reviewed the research
on image dehazing. The methods, in accordance with the processing technique used, can
be categorized as image enhancement, multi-image fusion or image restoration. Image
enhancement methods aim to improve the visibility with image processing algorithms.
Multiple input images can be fused to generate the dehazed image. These two approaches
do not rely on a physical model of hazy image formation. On the contrary, restoration-
based methods adopt a degradation model. Image visibility is improved by reversing the
degradation processes. He et al. [8] proposed a method based on the dark channel prior
(DCP) for single image dehazing. They observed the presence of low intensity pixels within
local regions in haze-free images. Formulations were then devised for the computation
of transmission and airlight. With these parameters and the assumption of the physical
model, the scene radiance was restored. As presented in Section 5, DCP has a problem of
color distortion. Dharejo et al. [9] proposed a method to correct the color and enhance the
contrast of hazy images. Galdran [10] utilized multiple-exposure images and a Laplacian
blending scheme for image dehazing. Pixelwise hazy-free color is also estimated from the
physical model formulation. Kumar et al. [11] implemented a multi-exposure framework
for haze removal of images represented in the hue saturation value (HSV) color space. To
avoid color distortion, the hue channel is not processed. The multiple-exposure images are
generated with the gamma factor varied incrementally. Chaudhry et al. [12] proposed a
framework which is comprised of hybrid median filtering for visibility restoration, Lapla-
cian filtering for initial dehazing, and just noticeable difference-based boosting for image
detail enhancement. These studies exploit hand-crafted features in image dehazing, while
many recently proposed models adopt deep learning approach. In some applications,
deterministic algorithms can achieve competitive, or even better performance, than deep
learning models. For instance, Khaldi et al. [13] demonstrated that handcrafted features
perform better than CNN-based descriptors in texture analysis.

Recently, more image dehazing research adopted a data-driven approach. The im-
age dehazing model was developed via deep learning from training data. Li et al. [14]
proposed a hybrid method called AOD-Net, in which a CNN is trained to generate a
transmission map from the image samples. A haze-free image is then computed with
the input of a transmission map and the formulation of an atmospheric scattering model.
However, the images generated by AOD-Net may be dark. Zhang and Patel [15] proposed
a two-stream network to predict the transmission map and airlight. The correlation of
the generated dehazed image and the estimated transmission map are analyzed with a
generative adversarial network (GAN). Dong et al. [16] also proposed a GAN framework
for single image dehazing. The generator network has an encoder–decoder structure. The
frequency information, computed from the ground-truthed image and generator output
image, is then the input for the discriminator network. Although deep learning models can
be trained to produce very good results with benchmark datasets, their performance can
deteriorate significantly on unseen images. In summary, these methods either combine a
deep learning network with the formulation of the atmospheric scattering model, or embed
a deterministic computation module to a CNN. Instead, we propose a novel single network
that can be trained end-to-end to generate a haze-free image without pre-processing or
additional modules.

Guo et al. [17] proposed an image dehazing model combining transformer and CNN
modules. The transformer, with the use of prior 3D information, aims for global modeling.
The CNN encoder is capable of local modeling. The activation function in each convolution
block is ReLU. Transformer features and CNN features are fused. The dehazed image is
generated by the CNN decoder module. Qin et al. [18] proposed FFA-Net, which is an
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end-to-end feature fusion network. There is no input of a clear image during training.
The feature attention (FA) block combines the channel attention (uneven haze) and pixel
attention (low intensity color channel). The training process adopted only an L1 loss
function. Wu et al. [19] proposed an autoencoder network with contrastive regularization
for image dehazing. The idea was to generate a dehazed image closer to the ground-truthed
image and further from a hazy image. The model, consisting of 2.61 M parameters, has
a simpler structure than FFA-Net. Dong et al. [20] proposed an image dehazing network
based on U-Net. The decoder module was modified with the incorporation of a strengthen–
operate–subtract (SOS) boosting strategy which generates the dehazed image progressively
from the multi-scale features. However, as presented in [19], the network is far more
complex than other models, such as AOD-Net and FFA-Net, with lower performance.

GAN is a well-known CNN for image synthesis. Many researchers have adopted it for
image-to-image translation, single-image dehazing, etc. However, GAN may suffer from
training failure. To address this problem, cGAN was proposed, with constraints added to
the GAN architecture. Some cGAN models have been proposed recently for single-image
dehazing. For instance, Su et al. [21] proposed a prior guided cGAN framework which
contains an encoder–decoder-based generator and a multi-scale discriminator. Features are
extracted using an attention-based encoder and parameters are shared with the generator.
Kan et al. [22] proposed a cGAN framework, which adopts a U-shaped residual network
as the generator. Li et al. [23] proposed the cGAN model based on the generator network
with an encoder–decoder structure of the U-Net. They adopted the summation method to
skip connections. The activation functions were ReLU and LeakyReLU. They evaluated
the model only using a synthetic dataset. The performance on real degraded images is
not known. We adopted the cGAN structure for our proposed image dehazing model.
To strengthen the analytical power of the network, we propose two modifications. First,
we designed the framework with convolutional blocks comprising more layers in the
encoder output. We used the concatenation method to forward the detail features from the
encoder to the decoder. According to Li et al.’s results [23], the PSNR of the concatenation
method is higher than the summation method for most of the training epochs. Second, for
the activation function in the generator and discriminator, we selected a new nonlinear
activation function Mish. As will be explained in Section 3.1, Mish is better than ReLU in
allowing gradient flow. We also inserted dropout layers in the generator to provide more
variety of network configuration during training.

To facilitate image dehazing research, many synthetic or real image datasets have been
created. The acquisition of haze-free and hazy images, e.g., in the indoor environment, can
be made under control. For instance, Ancuti et al. [24] utilized a professional machine to
generate haze in a scene. Therefore, clear and hazy image pairs can be captured. However,
the acquisition of haze-free outdoor images is a tedious task. One possible approach is
to add the hazy effect to a clear image via simulation. For instance, Tarel et al. created
two synthetic datasets, the Foggy Road Image Database (FRIDA) [3] and FRIDA2 [25].
Sakaridis et al. [26] constructed two foggy datasets to facilitate foggy scene understanding
and image dehazing. They applied fog synthesis on the Cityscapes dataset and generated
Foggy Cityscapes with 20,550 images. Alternatively, Zhao et al. [27] created BeDDE, which
contains real outdoor images. The haze-free and hazy image pairs were acquired in slightly
different positions. A quantitative measure was computed on the common region of interest
(ROI) of the image pair which was manually segmented by the authors. As we did not a
find haze-free and hazy real road scene image pair dataset, we collected and annotated real
road scene videos for our research. The degraded images were synthesized through the
addition of rain and fog effects to the clear images.

Deep learning-based object detection methods can be grouped into two categories—
one stage and two stage. A one-stage detector conducts target classification and target
positioning in one pass. For instance, YOLO [28] directly calculates the position and
category of objects in the output layer. SSD [29] uses a multi-scale feature map to return
the location and category of the objects. A two-stage detector produces a target bounding
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box first. Then, for each candidate box, classification and regression are carried out. For
instance, R-CNN [30] adopts the region proposal method to generate the ROIs. The ROIs are
then converted into fixed-size images and fed into the CNN to achieve target classification
and refinement of the bounding box. Faster R-CNN [31] extracts the image feature only
once, instead of extracting a feature for each ROI. It achieves target classification and
refinement of the bounding box based on ROI pooling which converts each of the feature
maps with various sizes into a fixed-size feature map. Mask R-CNN [32] performs instance
segmentation. It is a two-stage method that divides instance segmentation into object
detection and mask representation. It adopts ResNet [33] as the backbone to extract feature
maps. A pyramidal network is used to combine the feature maps from the low layer to
the high layer and produce the prediction feature maps. Chen et al. [34] proposed a Faster
R-CNN-based object detector with the addition of image-level adaptation, instance-level
adaptation and consistency regularization of the two domain classifiers. The challenges are
that the target domain has no annotation and its distribution is different from the source
domain. The augmented model can tackle both image-level and instance-level shifts. The
authors evaluated the proposed model on various datasets with different domain shift
scenarios. For instance, Cityscapes was used as the source domain, while Foggy Cityscapes
was used as the target domain. Wang et al. [35] also tackled the domain adaptation problem
with two modules, DQFA (to reduce domain discrepancy in global feature representation)
and TDA (to reduce the domain gaps in instance-level feature representation), which were
added to the backbone Deformable DETR. They evaluated the proposed unsupervised
domain adaptive object detector (DAOD) on three scenarios, e.g., Cityscapes to Foggy
Cityscapes. In summary, a two-stage detector can achieve higher accuracy (e.g., 0.7 mean
average precision (mAP)) at the expense of higher computational load (e.g., 0.1 s per image).
A one-stage detector has a faster speed (e.g., 50 frames per second (fps)) with a slightly
lower accuracy (e.g., 0.6 mAP). The accuracy is further decreased with the use of degraded
images. In order to improve the object detection accuracy of the one-stage object detector,
we utilized the proposed image dehazing method to pre-process the images.

3. Image Dehazing Model

Image dehazing is considered a generative problem. A network learns from the
training samples how to transform the degraded image into a clear image. As compared
with the traditional methods that rely on a physical model, a deep learning-based generative
model does not demand explicit computation of parameters such as a transmission map
and atmospheric light. Model optimization is driven by the hazy/clear-image-pair dataset.
To strengthen the learning algorithm for better dehazing, the realness of the generator
result is challenged using a discriminator which is adversarially trained.

We adopted the structure of cGAN, as shown in Figure 1, as our proposed image
dehazing model. cGAN is a supervised learning model with two major modules—generator
and discriminator. Like GAN, the generator module G learns the mapping from a random
noise vector z to the output y (G: z → y). The generator output (fake data), together
with the real data, is then passed to the discriminator module D. The discriminator is
trained to determine whether the generator output is real or fake. The generator and
discriminator, formed as an adversarial pair, work together in optimizing the realness of
the generated image. The structure of cGAN is almost the same as GAN but with the
additional information of “label”. This additional input will guide/constrain the generator
module to generate the desired kind of output. Bharath Raj and Venketeswaran proposed
Dehaze-GAN [36] for image-to-image translation. We selected it as the base model. We
then modified and extended the network for it to become our proposed image dehazing
model. In the proposed model, the real data are the clear image and the label is the hazy
input. With the random noise vector z and output y, an additional variable x is added such
that G: {x, z}→ y. The details of the generator network and discriminator are explained in
the following sub-sections.
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Figure 1. Overview of our image dehazing model.

3.1. Generator Network

In the base model Dehaze-GAN, each dense block (DB) contains four composite layers
(CLs). The activation function is ReLU. Figure 2 shows the generator network (G) of our
proposed image dehazing model. There are five DBs in the encoder and five DBs in the
decoder. On the encoder side, each DB is followed by a down-sampling layer. Similarly,
on the decoder side, each DB is followed by an up-sampling layer. The decoder can
generate a high-resolution image due to the concatenation of detailed features from the
encoder side. We substantially extended the generator network from the base model of
56 layers to 103 layers. In deep learning, more layers do not imply better results and
accuracy. The performance of the model depends on various factors such as the number of
training samples, regularization technique, etc. For instance, a complex network trained
with insufficient data may lead to overfitting. Oppositely, a shallow network may suffer
from the underfitting problem when it is trained with a large amount of data. Through
thorough experimentation, and as demonstrated in our superior results, we designed G
with 103 layers.

We proposed G which differs from the base model with two modifications. First, in
contrast with the base model, which contained a constant number of CLs in each DB, our
generator network has progressively more CLs in the encoder. The number shown in each
DB in Figure 2 is the number of CLs. This structure, with more non-linear computational
power towards the end of the encoder, can capture the transformations at the multiple
scales needed for artifact removal. In general, more layers in a network means more
features can be extracted from the raw data. This can lead to better accuracy, provided that
the training dataset is large enough. If the network contains more layers than necessary
for the application, those unnecessary layers may try to extract some useless/unrelated
features. This problem of overfitting will produce erroneous results. Second, we adopted
Mish f (x) as the activation function. Mish is a state-of-the-art activation function [37]. It is a
composite function of two existing activation functions, tanh and softplus.

f (x) = x× tanh(so f tplus(x)) (1)

so f tplus(x) = ln(1 + ex) (2)
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Mish has superior performance over other activation functions such as Swish and
ReLU. It allows a better gradient flow than ReLU due to the slight allowance for negative
values. Instead of a hard zero bound in ReLU, a smoother activation function can also
enhance the backpropagation process, which allows more information to flow into the
neural network deeply and, thus, leads to a better accuracy and generalization. A drawback
of using Mish is the slight increase of network complexity, which leads to a longer training
time. However, considering the higher accuracy and better training stability that Mish can
accomplish, it was well worth adopting it in our proposed model. We demonstrate the
superiority of our proposed generator network with one example of the progression of the
generator output in Figure 3. Our proposed generator network could eventually produce
an output which resembled the clear image.
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3.2. Discriminator

Figure 4 shows the discriminator of our proposed image dehazing model. It consists
of four layers of strided convolution. The inputs were the hazy image concatenated with
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the clear image and the generated fake image. The activation function at the output layer
was sigmoid. The discriminator performed a patch-wise comparison of the clear image
with the generated fake image to determine whether the generator output was real or
fake. Therefore, the discriminator forced the generator to improve the realness of the
output and helped remove the artifacts in the hazy image. In our experimentation, we had
two versions of discriminator. The first one (D1) was the same as the base model with the
use of LeakyReLU as the activation function. The second one (D2) utilized Mish as the
activation function.
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3.3. Loss Function and Training

The G and D of the image dehazing model were trained simultaneously, where G min-
imized the generative objective, and D maximized the discriminator objective. Therefore,
the training process was formulated as a min–max of loss function. The generator objective
LG consisted of three weighted terms—standard objective Lgan, L1 loss and perceptual
loss Lp.

LG = WganLgan + WL1LL1 + WpLp (3)

Lgan = −mean[log(D(x, G(x)))] (4)

LL1 = Ex,y
[∥∥y′ − G(x)

∥∥
1

]
(5)

Lp = c×mse
[
V
(
G(x), V

(
y′
))]

(6)

where x is the hazy image, y′ is the clear image, V is the VGG-19 network and Wgan, WL1
and Wp are the weights to be determined empirically. Lp is the mean squared error (mse)
between the VGG-19 outputs of the dehazed image and clear image scaled by the constant
c. The discriminator objective is as follows:

LD = mean
[
log

(
D
(
y′, y

))
+ log(1− D(x, G(x)))

]
(7)

The model was trained on a computer with Intel Xeon Silver 4108 16-core CPU,
Nvidia RTX 2080Ti GPU, and 55 GB RAM. In our experimentations, the dataset was
partitioned into around 90% training samples and 10% testing samples. To find the best
set of hyperparameters, 20% of the training samples were selected as a validation set. The
model was trained with a learning rate of 0.001. The training process stopped when there
was no improvement in accuracy.
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4. Target Detection

Object detection is the foremost process in many image-based applications. It aims
to detect the RoIs of the target objects in the image. A one-stage detector conducts target
positioning and classification in the last convolutional layer in one pass. It has a faster
operating speed with lower accuracy. For instance, You Only Look Once (YOLO) [28] is
a powerful and widely used one-stage object detector. We select YOLO v5s, which is one
of the latest versions, as the object detector. The model was the best choice in terms of
balancing the requirements of detection accuracy and detection speed in road scene images.

The YOLO model first resizes the input image to a square matrix and partitions it into
a number of grid cells. The network contains 24 convolutional layers and 2 fully connected
layers. The function of these convolutional layers is to perform feature extraction. Fully
connected layers are to generate the position and confidence score of detected objects. Each
grid cell will respond to the detected class of object with the predicted bounding box and
confidence score. The prediction consists of five values—the x-coordinate, y-coordinate,
width and height of the bounding box and confidence score. The x- and y-coordinates are at
the center of the box. The width and height are the distance between the boundary and the
center of the bounding box. The confidence score represents the probability that the specific
object is in the bounding box. The class-specific confidence score is calculated based on the
appearance and positional information. Final results are generated after non-maximum
suppression (NMS) in order to discard the duplicated detections.

We observed that images degraded by rain and fog produce target object predictions
with lower accuracy than those obtained from clear images. Therefore, in this experimen-
tation, we investigated the significance of using dehazed images for road scene target
detection. The results of target detection, as presented in Section 5, were obtained from
clear images, degraded images and dehazed images. We illustrate the improvement of
target detection in dehazed images over degraded images in terms of the dimension and
confidence score of the detected targets.

It is necessary to train the object detector with custom image samples rather than using
a pre-trained model. We created the first dataset with 5509 road scene images collected
online. Five target objects, as shown in Table 1, were annotated. Figure 5 shows some image
samples with annotated targets. The images are of good visibility and were considered
clear image samples.

Table 1. Annotated targets and their quantities.

Type of Target Number of Annotations

Pedestrian 1150

Bicycle 2100

Car 2050

Bus 1900

Truck 1950

We then created two degraded image datasets. Clear images were degraded with
two weather conditions (rain and fog). Acquiring real images under raining and foggy
weather conditions at the same location and the same time of the day as the clear images
would be extremely difficult. Therefore, we adopted the approach of synthesizing and
adding the weather conditions to the clear image. Table 2 shows the steps of the synthesis of
rain. Figure 6 shows some images degraded with rain. Compared with the corresponding
clear images, degraded images exhibited long thin white lines simulating the heavy rain.
Fog was synthesized by adding two cloud layers with different fill opacities to the clear
image. Table 3 shows the steps and parameter settings for the synthesis of fog. Figure 7
shows some images degraded with fog. The degraded images are covered with dense fog.



Appl. Sci. 2023, 13, 5326 10 of 26

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 26 
 

Truck 1950 
 

   
(a) (b) (c) 

  

 

(d) (e)  

Figure 5. Clear image samples with annotations: (a) pedestrian, (b) bicycle, (c) car, (d) bus, (e) 
truck. 

We then created two degraded image datasets. Clear images were degraded with two 
weather conditions (rain and fog). Acquiring real images under raining and foggy weather 
conditions at the same location and the same time of the day as the clear images would be 
extremely difficult. Therefore, we adopted the approach of synthesizing and adding the 
weather conditions to the clear image. Table 2 shows the steps of the synthesis of rain. 
Figure 6 shows some images degraded with rain. Compared with the corresponding clear 
images, degraded images exhibited long thin white lines simulating the heavy rain. Fog 
was synthesized by adding two cloud layers with different fill opacities to the clear image. 
Table 3 shows the steps and parameter settings for the synthesis of fog. Figure 7 shows 
some images degraded with fog. The degraded images are covered with dense fog. 

   
(a) (b) (c) 

Figure 5. Clear image samples with annotations: (a) pedestrian, (b) bicycle, (c) car, (d) bus, (e) truck.

Table 2. Synthesis of image degraded with rain.

Rain Synthesis

Create a blank background layer

Add Gaussian noise

Add Gaussian blur and motion blur

Add ripple distortion and Gaussian blur

Adjust intensity of background layer

Merge background layer with original image

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 26 
 

Truck 1950 
 

   
(a) (b) (c) 

  

 

(d) (e)  

Figure 5. Clear image samples with annotations: (a) pedestrian, (b) bicycle, (c) car, (d) bus, (e) 
truck. 

We then created two degraded image datasets. Clear images were degraded with two 
weather conditions (rain and fog). Acquiring real images under raining and foggy weather 
conditions at the same location and the same time of the day as the clear images would be 
extremely difficult. Therefore, we adopted the approach of synthesizing and adding the 
weather conditions to the clear image. Table 2 shows the steps of the synthesis of rain. 
Figure 6 shows some images degraded with rain. Compared with the corresponding clear 
images, degraded images exhibited long thin white lines simulating the heavy rain. Fog 
was synthesized by adding two cloud layers with different fill opacities to the clear image. 
Table 3 shows the steps and parameter settings for the synthesis of fog. Figure 7 shows 
some images degraded with fog. The degraded images are covered with dense fog. 

   
(a) (b) (c) 

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 26 
 

  

 

(d) (e)  

Figure 6. Image samples degraded with rain: (a) pedestrian, (b) bicycle, (c) car, (d) bus, (e) truck. 

Table 2. Synthesis of image degraded with rain. 

Rain Synthesis 
Create a blank background layer 
Add Gaussian noise 
Add Gaussian blur and motion blur 
Add ripple distortion and Gaussian blur 
Adjust intensity of background layer 
Merge background layer with original image 

Table 3. Synthesis of image degraded with fog. 

Fog Synthesis 
Duplicate the original image as background layer 
Set the blending effect as soft light 
Add render filter with different clouds 
Fill the clouds with white 
Duplicate the clouds layer 
Transform first cloud layer by x: −8.61 cm y: −12.03cm 
Transform second cloud layer by x: +4.69 cm y: −10.51cm 
Set the fill opacity to 75% for first cloud layer and 50% for second cloud layer 

 

   
(a) (b) (c) 

Figure 6. Image samples degraded with rain: (a) pedestrian, (b) bicycle, (c) car, (d) bus, (e) truck.



Appl. Sci. 2023, 13, 5326 11 of 26

Table 3. Synthesis of image degraded with fog.

Fog Synthesis

Duplicate the original image as background layer
Set the blending effect as soft light
Add render filter with different clouds
Fill the clouds with white
Duplicate the clouds layer
Transform first cloud layer by x: −8.61 cm y: −12.03cm
Transform second cloud layer by x: +4.69 cm y: −10.51cm
Set the fill opacity to 75% for first cloud layer and 50% for second cloud layer
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Finally, we created two dehazed datasets from the rain and fog degraded images.
Dehazed images were generated using the image dehazing method as described in the
Section 3. Five object detection models (clear, rain, fog, dehazed rain, and dehazed fog)
were trained with supervised learning. The models were trained on a computer with AMD
R7 3700X CPU, Nvidia RTX 2070s GPU, 16 GB RAM and 2 TB disk memory. Each dataset
was partitioned into an 80% training sample and 20% validation sample. Each model
was trained with the Adam optimizer and a learning rate of 0.001. The training process
stopped when there was no improvement in the last 100 epochs. To find the best set of
hyperparameters, we adopted five-fold validation.

5. Experiments and Results

The source code and the datasets used in the paper are publicly available at the follow-
ing website: https://github.com/tychow45/cGAN_YOLOv5 (accessed on 20 April 2023).

https://github.com/tychow45/cGAN_YOLOv5
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5.1. Image Dehazing Result

In the first experiment, the performance of the proposed image dehazing model was
evaluated and compared with other methods using two datasets. The first dataset was a
combination of NYU-Depth V2 [38] and RESIDE-β [39]. NYU-Depth V2 contains indoor
scenes with synthetic heavy haze, while RESIDE-β contains outdoor scenes with synthetic
light haze. There were 2800 images in total (1424 from NYU-Depth V2 and 1376 from
RESIDE-β). A total of 2500 images were taken as the training set. The remaining 300 images
were used as the test set. To further evaluate the performance of our model on outdoor
images, we also utilized the Synthetic Objective Testing Set (SOTS) which is a subset of
RESIDE. It contains 500 pairs of real outdoor images with and without synthetic haze.

We adopted three evaluation metrics—the peak signal-to-noise ratio (PSNR), structural
similarity index measure (SSIM) and a score which was a weighted sum of the PSNR
and SSIM:

Score = WPSNR × PSNR + WSSIMSSIM (8)

where WPSNR and WSSIM were set to 0.05 and 1, respectively.
Table 4 shows the results of our proposed model and four other methods on the

NYU/RESIDE dataset. The base model performed better than the methods that utilized
hand-crafted features (DCP, BCCR [40]) and the deep learning-based method (AOD-Net).
Our proposed model achieved a further improvement in accuracy (nearly an increment of
2dB in PSNR over the base model) and outperformed all other methods. Table 5 shows the
results with the SOTS dataset. Again, our proposed model outperformed all other methods
in terms of all evaluation metrics. The improvements over the base model were due to the
changes to the cGAN structure and the activation function. Our proposed model could
learn better from the training samples with the additional computation layers for feature
extraction. Moreover, the training was more effective with the new activation function that
could provide better gradient flow. Table 6 compares the inference time per image between
our proposed model and the base model. Since our image dehazing model contained more
computation layers than the base model, it demanded a longer inference time. Our model
was still able to generate the dehazed image in near real-time speed.

Table 4. Results of image dehazing on NYU/RESIDE dataset.

Method PSNR SSIM Score

DCP [8] 17.23 0.803 1.665

BCCR [40] 15.12 0.719 1.475

AOD-Net [14] 11.63 0.624 1.206

Base model [36] 23.18 0.845 2.004

Our model 25.14 0.876 2.133

Table 5. Results of image dehazing on SOTS dataset.

Method PSNR SSIM Score

DCP [8] 18.66 0.873 1.806

BCCR [40] 14.02 0.757 1.458

AOD-Net [14] 18.48 0.833 1.757

Base model [36] 22.24 0.891 2.003

Our model 22.91 0.901 2.046
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Table 6. Inference time per image.

Method Inference Time (s)

Base model [36] 0.029

Our model 0.044

The score parameter was ranked as medium, good or excellent. A score of 1.7 was
considered medium (i.e., PSNR = 20 dB, SSIM = 0.7). A score of 2.0 was considered good
(i.e., PSNR = 24 dB, SSIM = 0.8). A score of 2.5 was considered excellent (i.e., PSNR = 30 dB,
SSIM = 1). According to this ranking scheme, the DCP and AOD-Net were between medium
to good, and the base model was good. Our proposed model, as shown from the results
on NYU/RESIDE and SOTS datasets in Tables 4 and 5, Table 4 was ranked between good
and excellent.

Figure 8 shows some visual results (indoor and outdoor images) on the NYU/RESIDE
dataset. The methods that employ hand-crafted features produced darker images with
distorted colors. AOD-Net produced more natural airlight in the outdoor scene, but the
image was still dark. It was unable to remove the haze in the indoor image (it also had the
worst numerical results in Table 3). The base model achieved better visual results. However,
there were color distortions in some regions of the outdoor image, and the restored indoor
image was blurred. Our model generated very natural colors in the outdoor image. The
sky and trees were almost the same as those in the clear image. Our model also generated
a much clearer indoor image than the base model (see the bookshelves). Figure 9 shows
some visual results using the SOTS dataset. DCP and BCCR both had the same problem of
color distortion. The dehazed images were dark. The base model performed better than
AOD-Net, but the sky did not look natural and some haze was not removed. Our proposed
model produced high quality haze removal. As compared with the results of the base
model, our proposed model generated dehazed images with no color distortions in the sky.
The buildings were very similar to those in the clear images.

In the previous experiment, we demonstrated that the framework of cGAN outper-
formed various hand-crafted and deep learning-based methods with image dehazing
datasets. In the second experiment, we aimed to evaluate some cGAN models in order
to select the best model. We compared two versions of our cGAN model with the base
model on custom datasets of road scene images. Table 7 shows the results using the rain
dataset. Table 8 shows the results using the fog dataset with three more evaluation parame-
ters: the visual contrast measure (VCM), color naturalness index (CNI) and fog reduction
factor (FRF) [41]. Fog is a more serious defect than rain. In general, the evaluation metrics
obtained on the fog dataset were lower than those of the rain dataset. We also compared
our proposed models with two state-of-the-art image dehazing methods: FFA-Net [18] and
MSBDN [20]. Figure 10 shows some visual results obtained using our proposed model
2, FFA-Net and MSBDN. With the two modifications in our design, both versions of our
cGAN model achieved better performance than the base model (more than 0.6 dB in PSNR
with the rain dataset and more than 0.7 dB in PSNR with the fog dataset). Furthermore,
with the adoption of Mish as the activation function in the discriminator, model 2 could
further improve the dehazing as compared with model 1.
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row: image dehazed using base model; last row: images dehazed using our proposed model.
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Figure 9. Visual results using SOTS dataset—first row: clear images; second row: hazy images; third
row: images dehazed using DCP; fourth row: images dehazed using AOD-Net; fifth row: images
dehazed using base model; last row: images dehazed using our proposed model.
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Table 7. Results of image dehazing on rain dataset.

Method PSNR SSIM Score

Base model [36] 29.43 0.937 2.408
Our model 1 (G + D1) 30.02 0.944 2.445
Our model 2 (G + D2) 30.05 0.948 2.451

Table 8. Results of image dehazing on fog dataset.

Method PSNR SSIM Score VCM CNI FRF

Base model [36] 22.40 0.885 2.005 48.66 0.56 1.94
FFA-Net [18] 18.26 0.836 1.749 55.51 0.49 1.47
MSBDN [20] 19.01 0.876 1.827 55.00 0.53 1.65
Our model 1 (G + D1) 22.47 0.890 2.014 51.69 0.61 1.88
Our model 2 (G + D2) 23.16 0.896 2.054 50.04 0.59 1.92
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model 2.

Furthermore, we performed an additional image dehazing experiment using the Real-
world Task-driven Testing Set (RTTS) in the RESIDE dataset which contains real and strong
hazy images. Figure 11 shows some visual results obtained using the base model and our
proposed model 2. The visual results demonstrated that the dehazed images generated
using our proposed model could restore the details of the buildings and the colors of the
sky better than the base model (see the red boxes highlighted in the images).
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5.2. Object Detection Result

To investigate the significance of image dehazing on object detection, we compared the
accuracy of target detection using two versions of our cGAN model with the base model.
We created five datasets of road scene images—clear images, rain images, fog images,
dehazed rain images and dehazed fog images. Table 9 shows the object detection accuracy
mAP on clear images, rain images and fog images. The rain and fog images were generated
with the weather effects synthesized and overlayed on the clear images. No image dehazing
was performed on the rain and fog images. It was clear that using degraded images would
lead to lower object detection accuracy in all object classes. The overall mAP on rain
images and fog images dropped by 0.012 and 0.024, respectively, as compared with the
corresponding result with clear images. In some categories, the reduction in accuracy was
more substantial. For instance, in the class of pedestrian, the mAP on rain images and fog
images reduced by 0.042 and 0.052, respectively, as compared with the corresponding result
for clear images. Table 10 compares two versions of our cGAN model with the base model
using dehazed rain images. The utilization of the cGAN framework for image dehazing
could significantly improve the object detection accuracy. Our proposed models achieved a
further gain in accuracy in some object classes (e.g., pedestrian, bicycle, car) and also the
highest overall accuracy. Table 11 compares two versions of our cGAN model with the
base model, FFA-Net [18], and MSBDN [20] using dehazed fog images. Although fog is a
more serious defect than rain, the object detection accuracy on the dehazed fog dataset was
close to that obtained with the dehazed rain dataset. This demonstrates the effectiveness
of the cGAN framework in tackling different types of degradation. Our proposed models
achieved better performance than the base model in some object classes (e.g., pedestrian,
bicycle, bus), and also the highest overall accuracy. Our proposed model 2 also achieved
better performance than FFA-Net in the object classes of car and bus. The confidence score
was a numeric result (between 0 to 1) produced by the object detector. It represents the
likelihood of the recognized class of object. Table 12 compares the average confidence
scores of degraded images and dehazed images. cGAN improved the confidence score of
the dehazed rain image and fog image by 0.013 and 0.049, respectively, over the degraded
images. This further illustrated the benefit of dehazed images over degraded images in
object detection, in particular with regard to foggy images.

Table 9. Object detection accuracy with clear images, rain images and fog images.

Category
Clear Image Rain Image Fog Image

mAP @0.5 mAP @0.95 mAP @0.5 mAP @0.95 mAP @0.5 mAP @0.95

Pedestrian 0.782 0.455 0.740 0.425 0.730 0.415

Bicycle 0.871 0.651 0.858 0.635 0.842 0.622

Car 0.954 0.675 0.952 0.678 0.937 0.664

Bus 0.976 0.850 0.979 0.856 0.974 0.865

Truck 0.966 0.807 0.963 0.805 0.854 0.811

All 0.910 0.688 0.898 0.680 0.886 0.675

Table 10. Object detection accuracy with dehazed rain images.

Category
Base Model [36] Our Model 1 (G + D1) Our Model 2 (G + D2)

mAP@0.5 mAP@0.95 mAP@0.5 mAP@0.95 mAP@0.5 mAP@0.95

Pedestrian 0.766 0.444 0.821 0.459 0.777 0.462

Bicycle 0.865 0.644 0.868 0.658 0.868 0.631

Car 0.957 0.680 0.966 0.674 0.956 0.678

Bus 0.969 0.849 0.966 0.838 0.974 0.856

Truck 0.958 0.796 0.929 0.796 0.956 0.802

All 0.903 0.683 0.910 0.685 0.906 0.686
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Table 11. Object detection accuracy mAP @0.5 with dehazed fog images.

Category Base Model [36] FFA-Net [18] MSBDN [20] Our Model 1
(G + D1)

Our Model 2
(G + D2)

Pedestrian 0.765 0.849 0.923 0.786 0.774

Bicycle 0.864 0.885 0.944 0.866 0.870

Car 0.957 0.942 0.973 0.954 0.955

Bus 0.966 0.966 0.983 0.964 0.967

Truck 0.955 0.952 0.977 0.949 0.950

All 0.902 0.919 0.960 0.903 0.903

Table 12. Average confidence score.

Method Rain Image Fog Image

No image dehazing 0.791 0.753

Base model [36] 0.804 0.802

Our model 1 (G + D1) 0.803 0.801

Our model 2 (G + D2) 0.804 0.802

Figure 12 shows the visual results of object detection with clear images, rain images and
fog images. Target objects, e.g., pedestrians and cars, may have been missed in degraded
images. Figure 13 shows the corresponding visual results with dehazed rain images. While
some objects were not detected in the degraded images, they were detected in the dehazed
images. In comparison with the base model, our proposed models could better predict
the bounding boxes (see the blue circles highlighted in the pedestrian and bus images)
and achieved higher confidence scores (e.g., bus). Figure 14 shows the corresponding
visual results with dehazed fog images. In comparison with the base model, our models
removed the fog more effectively (see the bicycle images). Our model 1 better predicted the
bounding boxes (e.g., pedestrian). Our model 2 achieved high confidence scores that were
close to or higher than those achieved with the base model.
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Furthermore, we performed an additional object detection experiment on the RTTS
dataset. We did not re-train our proposed model 2 for this dataset. Table 13 shows a
comparison of the accuracy of object detection with the original hazy images and dehazed
images generated using our proposed model 2. Figure 15 shows some visual results
obtained with the original hazy images and the dehazed images generated using our
proposed model 2. The numerical and visual results demonstrated that the dehazed images
generated using our proposed model could result in better object detection than the original
hazy images.
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Table 13. Object detection accuracy with RTTS.

Category # Labels
Original Hazy Images Dehazed Image by Model 2

mAP @0.5 mAP @0.95 mAP @0.5 mAP @0.95

Pedestrian 2447 0.622 0.337 0.570 0.303

Bicycle 338 0.617 0.418 0.664 0.443

Car 4430 0.595 0.413 0.602 0.422

Bus 6 0.039 0.031 0.035 0.029

Truck 127 0.066 0.047 0.083 0.057

All 7348 0.388 0.249 0.391 0.251
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6. Conclusions

We designed a novel single end-to-end network based on the cGAN framework for
image dehazing. We strengthened the analytical power of the network via the adoption
of convolutional blocks with progressively more layers. Moreover, the entire dehazing
framework was enhanced with the adoption of a new non-linear activation function in
both the generator and discriminator modules. The dehazed image was beneficial for the
detection of objects in degraded road scene images. Based on the enhanced framework,
we proposed two image dehazing models with two discriminators. Through thorough
experimentation, we demonstrated that our proposed image dehazing models improved
the visibility of the degraded images and resulted in a higher accuracy of object detection.
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Our proposed models outperformed not only the hand-crafted and deep learning-based
methods, but also the cGAN base model using various datasets.

We will continue our research on image dehazing. In the current work, we investigated
the impact of our proposed image dehazing model on object detection performed on images
degraded with rain and fog effects. More experimentation will be performed to investigate
the capability of our proposed model in tackling other types of image degradation. Besides
object detection in 2D images, we will also explore the impact of image dehazing on other
applications such as monocular 3D object detection.

For practical applications, we will consider integrating the image dehazing as an
optional module within the object detection framework. To save computational costs, there
is no need to perform image dehazing when the scene visibility is good. Automatically
triggering the execution of the image dehazing module is possible via computation of
the similarity between the hazy input image and the dehazed output image. Significant
changes in quantitative measures, e.g., SSIM, will enable the continuing function of the
image dehazing module. An automatic alert of extreme conditions would be possible when
the confidence score of an object detection is low.
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