
Citation: Aldyaflah, I.M.; Zhao, W.;

Upadhyay, H.; Lagos, L. The Design

and Implementation of a Secure

Datastore Based on Ethereum Smart

Contract. Appl. Sci. 2023, 13, 5282.

https://doi.org/10.3390/app13095282

Academic Editor: Leandros Maglaras

Received: 24 March 2023

Revised: 20 April 2023

Accepted: 21 April 2023

Published: 23 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

The Design and Implementation of a Secure Datastore Based on
Ethereum Smart Contract
Izdehar M. Aldyaflah 1, Wenbing Zhao 1,* , Himanshu Upadhyay 2 and Leonel Lagos 2

1 Department of Electrical Engineering and Computer Science, Cleveland State University,
Cleveland, OH 44115, USA; aldyaflahizdehar@yahoo.com

2 Applied Research Center, Florida International University, Miami, FL 33174, USA; upadhyay@fiu.edu (H.U.);
lagosl@fiu.edu (L.L.)

* Correspondence: wenbing@ieee.org

Abstract: In this paper, we present a secure datastore based on an Ethereum smart contract. Our
research is guided by three research questions. First, we will explore to what extend a smart-contract-
based datastore should resemble a traditional database system. Second, we will investigate how to
store the data in a smart-contract-based datastore for maximum flexibility while minimizing the gas
consumption. Third, we seek answers regarding whether or not a smart-contract-based datastore
should incorporate complex processing such as data encryption and data analytic algorithms. The
proposed smart-contract-based datastore aims to strike a good balance between several constraints:
(1) smart contracts are publicly visible, which may create a confidentiality concern for the data stored
in the datastore; (2) unlike traditional database systems, the Ethereum smart contract programming
language (i.e., Solidity) offers very limited data structures for data management; (3) all operations that
mutate the blockchain state would incur financial costs and the developers for smart contracts must
make sure sufficient gas is provisioned for every smart contract call, and ideally, the gas consumption
should be minimized. Our investigation shows that although it is essential for a smart-contract-
based datastore to offer some basic data query functionality, it is impractical to offer query flexibility
that resembles that of a traditional database system. Furthermore, we propose that data should be
structured as tag-value pairs, where the tag serves as a non-unique key that describes the nature of
the value. We also conclude that complex processing should not be allowed in the smart contract
due to the financial burden and security concerns. The tag-based secure datastore designed this way
also defines its applicative perimeter, i.e., only applications that align with our strategy would find
the proposed datastore a good fit. Those that would rather incur higher financial cost for more data
query flexibility and/or less user burden on data pre- and post-processing would find the proposed
database too restrictive.

Keywords: blockchain; smart contract; data immutability; datastore; user access control; role-based
authentication; gas consumption; IPFS

1. Introduction

Data security is of paramount importance for all systems [1,2]. Traditionally, data
are stored in relational database systems or NoSQL datastores [3]. Unfortunately, data
stored this way are not only vulnerable to theft, but could easily be modified as well [4,5].
While data theft clearly is a security breach, compromised data could lead to more serious
integrity problems [6]. Blockchain technology [7], on the other hand, offers a new way of
storing data with the immutability property if the blockchain system has sufficient scale [8].

There are primarily two ways of storing data with the blockchain [7]. One way is to
store data directly as part of a transaction, which is possible for most public blockchain
systems. The other way is to store data via a smart contract. Directly storing data as
part of a transaction costs much less and it is also much less complex than using a smart

Appl. Sci. 2023, 13, 5282. https://doi.org/10.3390/app13095282 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13095282
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3202-1127
https://doi.org/10.3390/app13095282
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13095282?type=check_update&version=1

Appl. Sci. 2023, 13, 5282 2 of 29

contract [9]. However, directly storing data as part of a blockchain transaction suffers
from several limitations: (1) there is no access control over who may write the data to the
blockchain and who may read the data from the blockchain; (2) there is no support for
querying the data stored in the blockchain systematically, i.e., one would have to know the
transaction hash to locate the particular transaction; (3) the amount of data can be packed
into a transaction is very limited due to the predefined transaction structure.

While using a smart contract may address all three issues, there is a lack of universally
accepted guidelines on designing secure datastore based on smart contracts. The current
study is an attempt towards this goal and is driven by three research questions. First, we
will explore to what extend a smart-contract-based datastore should resemble a traditional
database system. Second, we will investigate how to store the data in a smart-contract-
based datastore for maximum flexibility while minimizing the gas consumption. Third, we
seek answers regarding whether or not a smart-contract-based datastore should incorporate
complex processing such as data encryption and data analytic algorithms. The proposed
smart-contract-based datastore aims to strike a good balance between several constraints:
(1) smart contracts are publicly visible, which may create a confidentiality concern for the
data stored in the datastore; (2) unlike traditional database systems, the Ethereum smart
contract programming language (i.e., Solidity) offers very limited data structures for data
management; (3) all operations that mutate the blockchain state would incur financial costs
and the developers for smart contracts must make sure sufficient gas is provisioned for
every smart contract call, and ideally, the gas consumption should be minimized.

Our investigation shows that although it is essential for a smart-contract-based datas-
tore to offer some basic data query functionality, it is impractical to offer query flexibility
that resembles that of a traditional database system. Defining a complex schema for highly
structured data as commonly used in traditional database systems could compromise the
confidentiality because the smart contract is publicly visible. Adopting a more complex
structure for data storage in a smart contract would significantly increase the financial
cost (in terms of gas consumption) for insertion operations. Furthermore, Solidity lacks
built-in support for some database system features, such as the auto increment primary
key. Hence, it is both desirable and necessary to adopt basic structures for data storage and
for data query.

Furthermore, we propose that data should be structured as tag-value pairs, where the
tag serves as a non-unique key that describes the nature of the value. This idea is inspired
by the pervasive use of key-value pairs in modern NoSQL datastore and in Ethereum. We
intentionally allow the tag to be non-unique so that multiple data entries may share the
same tag. This design offers a high degree of flexibility for applications. For example,
in sensing data logging, it may be desirable to use the same tag for all data generated by
the same sensor in the same day [10]. We note that this design allows the users to insert
tag-value pairs with unique tags.

We also conclude that complex processing should not be allowed in a smart contract
due to the financial burden and security concerns [11,12]. While adding complex processing
could improve the usability of the datastore because the users are relieved from having to
perform such processing, the complexity of the smart contract could be drastically increased.
Higher complexity could sharply increase the gas consumption and increase the likelihood
of introducing vulnerabilities to the smart contract [11,12].

The tag-based secure datastore designed this way also defines its applicative perimeter,
i.e., only applications that align with the chosen answers to the research questions would
find the proposed datastore a good fit. Those who would rather incur higher financial cost
for better data query flexibility and/or less user burden on data pre- and post-processing
would find the proposed database too restrictive. We follow a design principle that if an
operation can be conducted off-chain (i.e., outside the smart contract), then the operation
should be moved out of the smart contract to keep the smart contract as simple as possible.
A simple smart contract would not only reduce gas consumption, but also minimize the
likelihood of introducing security vulnerabilities. Another apparent applicative perimeter

Appl. Sci. 2023, 13, 5282 3 of 29

is that the proposed datastore is based on Ethereum. Users who wish to use other public
blockchains would have to port our design to the desirable blockchain.

We argue that the tag-based datastore provides the best tradeoff for query flexibility,
data confidentiality, smart contract security, and minimizing the financial cost of the
datastore. The first benefit of this design is that it helps protect the confidentiality of the
data stored in the datastore. By encoding the tag and the data as strings, it is difficult for an
adversary to understand what the original data are. The encoding method can be as simple
as mapping the type of sensor (e.g., temperature) to an integer and can be as complex as
encrypting the data using AES. The datastore itself does not care how the tag and the data
entry are encoded, i.e., the datastore treats the tag and data as opaque objects and only
offers storage and query functionalities. The user of the datastore gets to decide the level of
protection of the tag and the data entry. Indeed, this aligns with the guideline for designing
smart contracts [11].

The second benefit of this design is simplicity. By treating the tag and the data as opaque
objects, the insertion and query operations become simple and much less error-prone.

The third benefit of this design is flexibility. In addition to the flexibility for achieving
data confidentiality as we mentioned earlier, this design also offers the flexibility of system
integration. For applications that only have a small amount of data to log with a low data
generation rate, the data can be directly written to the datastore after proper encoding.
That said, we caution that even with a moderate data generation rate, storing all data in
the datastore via a smart contract will not only incur excessive financial cost, but also may
exceed the throughput of the blockchain system. To address this concern, we propose to
only store the digest of the data entry in the smart contract and log the full data entry in
other peer-to-peer file systems, most notably, the InterPLanetary File System (IPFS) (https://
docs.ipfs.tech/concepts/what-is-ipfs/ (accessed on 1 March 2023)). This would minimize
the financial cost and significantly lower the throughput demand on the blockchain system.
If the generation rate is high, it may be necessary to first aggregate the data and record the
hash of the aggregated data in the blockchain, as we have done previously [13].

In summary, this paper makes the following research contributions:

• In this study, we raise three research questions and present our answers by considering
the differences between traditional database systems and Ethereum smart contract.
Driven by these research questions, we aim to propose a set of guidelines on datastore
design based on Ethereum smart contract;

• We introduce a smart contract that functions as the proposed secure datastore. The data-
store allows role-based access control and tag-based query of data in the datastore
while protecting the data confidentiality. The design of the smart contract is intention-
ally simple yet flexible that accommodates different data generation rates, different
levels of data confidentiality requirements, and different levels of financial budget.

• We fully characterize the financial cost (i.e., gas consumption) of the datastore in terms
of gas consumption under a variety of scenarios and compare with competing solutions;

• We provide the design, implementation, and evaluation of a system that integrates the
proposed datastore and IPFS, where the smart contract is used to store the digest of
each data entry, and the IPFS is used to store the full data entry. We demonstrate the
advantages of this integrated solution for secure data storage and retrieval in terms of
gas consumption and operation latency.

The remainder of the paper is organized as follows. Section 2 presents the related
work and highlights our research contributions. Section 3 elaborates the details of our
smart contract design. Section 4 discusses the system integration issues with the proposed
smart contract for secure data storage. Section 5 reports the experimental results. Section 6
concludes the paper and outlines future research directions.

2. Related Work

This study is about relying on blockchain to securely store data. The related studies
reported in the literature can be roughly divided into three categories: (1) custom-built

https://docs.ipfs.tech/concepts/what-is-ipfs/
https://docs.ipfs.tech/concepts/what-is-ipfs/

Appl. Sci. 2023, 13, 5282 4 of 29

blockchain systems designed specifically for secure data storage (such as [14,15]); (2) storing
data directly in transactions using public blockchains; and (3) storing data in smart contract
using public blockchains.

Although the work in the first category has some merit, for example, a system was
designed to handle large-scale Internet of Things (IoT) data with data trading functionalities
in [14], and another system was designed to self-repair corrupted data with local repair
groups in [15], the proposed systems are not actually implemented, let alone available for
other researchers to use for secure data storage. As such, we do not draw comparisons with
this line of work.

Studies in the second category predominately used the IOTA distributed ledger
IOTA [16,17]. IOTA was designed to support high-throughput transactions using a direct
acyclic graph instead of a single chain of blocks. Furthermore, IOTA does not impose a
transaction fee. To mitigate spamming attacks, all clients must perform a moderate amount
of proof-of-work in every transaction submitted to the IOTA network. IOTA provides
application programming interfaces (APIs) for the construction of a transaction that only
contains data. The transaction size in IOTA is limited to 32KB. In 2017, IOTA introduced
the masked authenticated message (MAM) to facilitate secure communication between IoT
devices and IOTA (https://github.com/iotaledger/mam.client.js/ (accessed on 1 March
2023)). A number of studies used IOTA MAM for securing IoT data [18–20], for supply
chain applications [21], for health data sharing [22,23] and management [24,25], for man-
ufacturing applications [26,27], for securing industry control [28], for securing system
logs [29], for securing vehicular networks [30,31], and for securing power systems [32].

Previously, we also focused on using IOTA to store sensing data securely [10]. The sys-
tem adopted a hierarchical aggregation scheme for the sensing data [33] to reduce the
amount of data to be placed on IOTA. Recently, we extended the work to store sensing data
directly in the data field of Ethereum transactions [13]. Our previous work has a number of
limitations as a result of storing of data directly as part of blockchain transactions. A major
concern of the approach is the lack of user access control regarding who may upload the
data into the blockchain. Not addressing this issue could lead to serious security issues
because the integrity of the data may be compromised if adversaries could upload faulty
data to the blockchain. Second, the data stored in the blockchain are publicly accessible,
which could present confidentiality and privacy issues. By adding user access control,
we address both concerns. Third, it is difficult to query the data stored in the blockchain.
One would have to know the transaction hash to retrieve the data stored in a particular
transaction. In [13], we proposed a workaround by introducing an indexing scheme. How-
ever, the indexing data must also be stored securely. If the indexing data are compromised
or lost, data query would not be possible. In the current study, the datastore offers the
functionality of data queries.

In the remainder of this section, we consider related studies in the third category. We
note that although there is a large body of work on smart contract applications and this
line of work has been well reviewed (for example, [34,35]), most such studies focus on
using smart contracts for access control and coordination. A small fraction of studies are
dedicated to secure data storage using smart contracts. An even smaller fraction of studies
provided details on smart contract operations for secure data storage and retrieval [36–39],
which are the only works directly related to our current study. We discuss these studies by
looking at how they responded to the three research questions.

2.1. Query Flexibility of Smart-Contract-Based Datastores

Most studies attempted to develop smart contracts for data storage in a way similar
to traditional database systems from two perspectives: (1) structured data are explicitly
specified in the smart contract; and (2) users may query the data in the smart contract using
a filter for a result directly needed by the users. These studies are predominately in the
biomedical and healthcare domain for medical data storage and query [36–38,40], and most
are winning entries in the 2019 secure genome analysis competition [36,37].

https://github.com/iotaledger/mam.client.js/

Appl. Sci. 2023, 13, 5282 5 of 29

2.2. Data Structures Used in Smart-Contract-Based Datastores

Ethereum offers limited data structures for data storage and indexing. Data entries
may be added into an array of predefined types (such as string or bytes32) or custom
types (such as a complex structure with multiple fields). The latter would be quite similar
to tables in traditional database systems. However, unlike tables in traditional database
systems, there is no need to specific primary keys and the developer must manually keep
track of the index to each entry. The only form of indexing in Ethereum is mapping, which
is a hash table that maps a key to one or more values. To facilitate data query, one mapping
is typically needed for each required filter criterion.

In [36], three smart contract solutions that were developed for the 2019 secure genome
analysis competition were presented. The three solutions won the first place, the second
place, and the honorable mention. The first-place solution is referred to as query index.
The second-place solution is referred to as index everything. The honorable mention
solution is referred to as dual-scenario indexing.

In query index [36], a single mapping and an array are used to store the gene-variant-
drug observations, as shown in Figure 1. Each of the gene-variant-drug observations is
appended to the array (Step 1 in Figure 1). The value of the mapping is the list of indices to
the observation array. To facilitate query using either gene-variant-drug or a combination
of gene/variant/drug with one or more wildcards, for each insertion of a unique gene-
variant-drug observation, eight keys (i.e., gene-variant-drug, gene-variant-*, *-variant-drug,
gene-*-drug, gene-*-*, *-variant-*, *-*-drug, *-*-*) are inserted into the mapping, and the
index of the observation to the array is appended to the list of indices stored as the value of
the mapping (Step 2 in Figure 1). Here * denotes a wildcard, meaning that the user wishes
to query the data that contain all possible values for this field.

Array

HLA-B, 57, abacavir
CYP3A5, 52, pegloticase

0
1

Mapping (Hash Table)

HLA-B, 57, abacavir 0
HLA-B, *, abacavir

HLA-B, 57,*
*, 57, abacavir
HLA-B, *, *
*, *, abacavir

*, 57, *
*, *, *

CYP3A5, 52, pegloticase
CYP3A5, *, pegloticase

CYP3A5, 52, *
*, 52, pegloticase

CYP3A5, *, *
*, *, pegloticase

*, 52, *

0
0
0
0
0
0

0,1
1
1
1
1
1
1
1

Index

Indices

insert(CYP3A5, 52, pegloticase, …)

(1) Append to Array

(2) Update Mapping
(for indexing)

Call to Smart Contract

Figure 1. Data structures used in the query index scheme and how they are used in an insert call to
the smart contract.

Unlike the first-place solution, index everything assumes that the number of gene,
variant, and drug is small enough to be represented as an 8-bit integer [36]. Based on
this assumption, a 24-bit unsigned integer can be used to encode all gene–variant–drug
combinations. The counts for each of the possible outcomes for each gene-variant-drug
observation are recorded as the value to the mapping. To capture all possible outcomes,
five mappings are used for the five possible outcomes: improved, unchanged, deteriorated,
suspected relation, and side effect. As shown in Figure 2, when the insert function is
invoked, the key is first constructed in Step 1, and then the five mappings are updated in
Step 2. In the figure, the 8-bit integer and the 24-bit integer are represented as a hexadecimal
numbers. All hexadecimal numbers are preceded with 0x.

Appl. Sci. 2023, 13, 5282 6 of 29

Keys

CYP3A5, 52, pegloticase

25 || 52 || 122

Unchanged Mapping

0x19347a 1

count

0x19 || 0x34 || 0x7a

0x19347a

Relation Mapping

0x19347a 1

count

SideEffect Mapping

0x19347a 1

count

(unint24 => unit)

Improved Mapping

0x19347a 0

count

Deteriorated Mapping

0x19347a 0

count

insert(CYP3A5, 52, pegloticase, unchanged, yes, yes)

(1) Construct Key

(2) Update Mappings
(for indexing)

Call to Smart Contract

Figure 2. Data structures used in the index everything scheme and how they are used in an insert
call to the smart contract.

In the dual-scenario indexing solution [36], two mappings (GeneDrugRelationKeyMap-
ping and GeneData), one structure called GeneDrugRelation, and an GeneDrugRelation
array are used to store the observation entries and to facilitate queries with the full gene-
variant-drug and with wild cards, as shown in Figure 3. The GeneDrugRelation structure
contains the gene name, variant number, drug name, and various outcome counts and per-
cent. The GeneData mapping maps the gene–variant–drug combination to a GeneDrugRe-
lation array. The GeneDrugRelationKeyMapping mapping maps all possible combinations
with wild cards to gene–variant–drug combinations. The latter mapping is pre-populated
and is used entirely to facilitate queries with one or more wildcards.

GeneDrugRelationKeyMapping
(string => string [] GeneDrugRelationKeys)

CYP3A5, 52, *

Entries

CYP3A5, 52, pegloticase

Struct GeneDrugRelation

string geneName
unit variantNumber

string drugName
unit totalCount

unit improvedCount
string improvedPercent
uint unchangedCount

string unchangedPercent
uint deterioratedCount

string deterioratedPercent
unit suspectedRelationCount

string suspectedRelationPercent
uint sideEffectCount

string sideEffectPercent

CYP3A5, 53, pegloticase, unchanged, yes, yes
CYP3A5, 53, abacavir, unchanged, yes, yes

CYP3A5, 52, pegloticase, unchanged, yes, yes

CYP3A5, 52, abacavir
GeneData Mapping

(string => GeneDrugRelation)

CYP3A5, 52, pegloticase
CYP3A5, 53, pegloticase
CYP3A5, 52, abacavir

CYP3A5, 52, pegloticase, …
CYP3A5, 53, pegloticase, …
CYP3A5, 52, abacavir, …

insert(CYP3A5, 53, abacavir, unchanged, yes, yes)

Pre-populate all possible
GeneDrugRelationKeyMapping

Insert Data to GeneData Mapping

Call to Smart Contract

Figure 3. Data structures used in the dual scenario scheme and how they are used in an insert call to
the smart contract.

Appl. Sci. 2023, 13, 5282 7 of 29

In [37], two smart contracts that won the third place in the same competition are
presented in great details. We refer to this solution as full indexing. Both smart contracts
in [37] offer identical insert and query interfaces to users. The data structures used in this
solution consist of one array (called Database) to store the observation entries, and three
mappings for gene, variant, and drug, respectively. As shown in Figure 4, when the
insert function is invoked, the data entry is first appended to the Database array in Step 1,
and then the three mappings are updated in Step 2.

Database (array)

HLA-B, 57, abacavir, …
CYP3A5, 52, pegloticase, …

0
1

Gene Mapping

HLA-B 0
CYP3A5

57
52

abacavir
pegloticase

1,2,3

0
1

0,3
1,2

Index Indices

Variant Mapping

Drug Mapping

CYP3A5, 53, pegloticase, …
CYP3A5, 53, abacavir, …

2
3

53 2,3

insert(CYP3A5, 53, abacavir, …)

(1) Append to Array

(2) Update Mappings
(for indexing)

Call to Smart Contract

Figure 4. Data structures used in the full indexing scheme and how they are used in an insert call to
the smart contract.

In [38], an Ethereum smart contract was used to store and query fictitious COVID-19
patient data. The design of the smart contract is rather similar to the first smart contract
introduced in [37]. Each observation consists of the COVID-19 variant (of string type),
patient ID (of unsigned integer type), comorbidity (of string type), chest CT severity grade
(of unsigned integer type), and patient age (of unsigned integer type). The first three
parameters are used together as the key to the entry.

All these studies focused on quantifying the insertion and query latency, and space
utilization of the data stored in the smart contract. User access control is notably missing
in these studies. While there is some discussion regarding minimizing the gas usage in
the store and query parameters in [37], the overall financial cost for the datastore was
not investigated.

The only study that is not in the field of healthcare is [39], where one array is used
to store IoT data. The focus of this study is to characterize the gas consumption in two
alternative schemes. The first design assumes that the contract simply appends all IoT data
into an array (referred to as array appending). The second design assumes that the contract
uses a fixed array of size N to store the IoT data where only the latest N data entries are
kept (i.e., old data entries are overwritten by the newly arrived data entries once the array
is full). The second design is referred to as array substitution. In both designs, the gas cost
grows linearly with the number of IoT data entries logged in the contract. The substitution
cost per data entry is 39,305 gas, which is slightly cheaper than that for recording a new data
entry (i.e., 52,960 gas). The paper did not consider user authentication, user management,
and data query issues.

Before ending this subsection, we comment on how data should be stored in smart
contracts. The existing solutions all use a single array to store the data entries. To facilitate
data query, either multiple mappings are used or extra entries are created in a single
mapping. We argue that a single mapping with one tag as the key is sufficient for practical
use with less gas consumption, provided that the users are willing to encode the tag
properly and extract data from the result of the single-tag query, as we will show in
later sections.

Appl. Sci. 2023, 13, 5282 8 of 29

2.3. Complex Processing and Smart Contract

It appears that it is common practice to avoid incorporating complex processing in
smart contracts. This is quite different from traditional database systems, which offer
various stored procedures for automatic data analytics. Studies that wish to protect the
confidentiality/privacy of the data always encrypt the data off-chain and the smart contract
is often used for key management and user access control [41,42]. In [41], re-encryption is
used off-chain to secure the IoT data. In [42], searchable encryption is used, again off-chain,
to ensure the security of the sharing of electronic health records.

Although it is clear that encryption of data should be performed off-chain, the data
structures used in the smart contract must be compatible with storing encrypted data.
The tag-based data structures in our smart contract are designed to be compatible with
storing encrypted tags and data values.

2.4. Novel Contributions of Our Study

The most prominent novel contribution of our study is the recognition of the funda-
mental differences between smart contracts and traditional database systems. The current
study is guided by the three research questions we elaborated above. The answer to the first
research question has led us to choose a strategy of providing a basic tag-based data query
function in the smart contract. The objective is to keep the smart contract simple so that
there is little chance of introducing vulnerabilities and the gas consumption is minimized.
The answer to the second research question has led to us using only a single string array
and a single mapping that maps a given tag (of the string type) to a value (also of the string
type). As we will show in later sections of this paper, we demonstrate that this design
minimizes the gas consumption and has sufficient expressibility and flexibility. The data
structure design in our approach is also influenced by the answer to the third research
question. Although it is commonplace to avoid complex processing in the smart contract,
the design of the smart contract must be conducive to meeting user requirements such as
data confidentiality and privacy. In our design, both the tag and the data value are treated
as opaque strings where the user could use encrypted tags and data values. In contrast,
the existing solutions in [36,37] would have to make significant changes if the genome data
must be encrypted.

3. Smart Contract Design

In this section, we present the details of our smart contract design. As we report
earlier in Section 2, academic studies on using smart contract for data storage and query are
typically focused the functionality and the storage and query efficiency in terms of latency
and space utilization. In our study, what prompted us to consider smart contract is to protect
the security of the data placed on the blockchain as part of a secure sensing data processing
and logging system [10]. Without proper access control, public functions defined in a smart
contract may be invoked by any user who knows the contract address. For sensing data and
many other forms of data, such as biomedical, healthcare, and electronic medical records, it
is essential to allow only legitimate users to upload data into the smart-contract datastore
because otherwise the integrity of the data cannot be guaranteed. For confidentiality of
the data, only authorized users may query the data from the smart contract. In this paper,
we show how to add user access control as part of the smart contract for data storage and
query. The smart contract is written in Solidity, the official programming language for
Ethereum smart control. The full smart contract source code is provided in Appendix A.

3.1. User Access Control and User Management

The user access control algorithm in the smart contract is described in Algorithm 1. We
define three roles: Administrator (Admin for short), Writer, and Reader. The Admin has all
the privileges, including user management, the right to write data into the smart contract,
and the right to read from the smart contract. The Writer has the right to write data into
the smart contract and the right to read from the smart contract, but does not have user

Appl. Sci. 2023, 13, 5282 9 of 29

management privilege. The Reader only has the right to read from the smart contract. This
design means that for a user (i.e., the corresponding account) to read from or write to the
smart contract, the user must be added to the list of accounts with proper roles. Each role
is represented by a 32-byte long byte array (using the Solidity bytes32 type) obtained by
hashing a string literal (“Admin” for the Admin, “Write” for the Writer, and “Read” for the
Reader) using the keccak256 secure hash function (A represents the Admin, W represents
the Writer, and R represents the Reader).

Access control is enforced for all public functions defined in the smart contract using a
modifier called ONLYROLE. As shown in lines 1–12 in Algorithm 1, this modifier takes one
argument as the minimum role for the called operation, and checks if the calling account
has already been assigned a role that is the same or more privileged. The call is rejected if
the check fails.

By default, the account that created the smart contract assumes the Admin role. This
account may add other accounts as Admin, Writer, or Reader via the GRANTADMINROLE,
GRANTWRITERROLE, and GRANTREADERROLE functions. To keep track of the accounts that
have been authorized with Admin, Writer, or Reader roles, a mapping roles is defined,
as shown in Figure 5. In Solidity, a mapping is a hash table that takes a key and a value.
The roles mapping would map a role into another mapping that maps an account address
to a boolean value. In cases where multiple accounts have Admin, Writer, or Reader
role, the value of the roles mapping would resemble an array. However, unlike an array,
the value in a mapping cannot be iterated. One would have to know the account address
in the value of the roles mapping to know whether the account has been granted one of
the roles. The roles mapping is essentially a two-dimensional hash table with the role
as the first key and the address of an account as the second key. If an account with an
address acct is authorized with a particular role, then roles[role][acct] is set to true,
as illustrated in Figure 5. It is possible that an account was first granted a particular role,
but was later removed from the role, in which case, the account is still kept in value of the
roles mapping with the Boolean value set to false.

Admin Writer Reader

Account

Role

T

roles (mapping)

T T T F T T T T F
address to bool

mapping

Figure 5. Data structures used for user management and their relationship.

As shown in Algorithm 1, if an account acct is granted the Admin role, roles[A][acct],
roles[W][acct], roles[R][acct] are all set to true in lines 5–7; if an account acct is
granted the Writer role, roles[W][acct], roles[R][acct] are set to true in lines 10–11;
and if an account is granted the Reader role, then only roles[R][acct] is set to true in
line 14.

An Admin account may also remove the Writer or Reader role from other accounts
by calling the DELETEWRITER and DELETEREADER functions. When removing a role from
an account, the roles mapping for the corresponding account is set to false (in lines 24–25
when removing the writer role, and in line 28 when removing the reader role). Only the con-
tract owner may remove the Admin role from an account (in line 17), and roles[A][acct],
roles[W][acct], roles[R][acct] are all set to false in lines 18–20.

Appl. Sci. 2023, 13, 5282 10 of 29

Algorithm 1 Algorithm for user access control.

Require: address owners
Require: mapping(bytes32 => mapping(address => bool) roles
Require: bytes32 A← keccak256(“Admin”)
Require: bytes32 W← keccak256(“Write”)
Require: bytes32 R← keccak256(“Read”)

1: procedure ONLYROLE(role)
2: require(roles[role][msg.sender], “not authorized”)
3: end procedure
4: procedure GRANTADMIN(acct) ONLYROLE(A)
5: roles[A][acct]← true
6: roles[W][acct]← true
7: roles[R][acct]← true
8: end procedure
9: procedure GRANTWRITER(acct) ONLYROLE(A)

10: roles[W][acct]← true
11: roles[R][acct]← true
12: end procedure
13: procedure GRANTREADER(acct) ONLYROLE(A)
14: roles[R][acct]← true
15: end procedure
16: procedure DELETEADMIN(acct) ONLYROLE(A)
17: if is owner of contract then
18: roles[A][acct]← false
19: roles[W][acct]← false
20: roles[R][acct]← false
21: end if
22: end procedure
23: procedure DELETEWRITER(acct) ONLYROLE(A)
24: roles[W][acct]← false
25: roles[R][acct]← false
26: end procedure
27: procedure DELETEREADER(acct) ONLYROLE(A)
28: roles[R][acct]← false
29: end procedure

Figure 6 illustrates the four roles defined in our smart contract and related operations.
The Owner is the account that deploys the smart contract, which has the highest privilege.
The Owner assumes the Admin role automatically. Both the Owner and the Admin may
grant other accounts the Admin, Writer, or Reader roles. However, only the Owner may
delete an Admin account.

In the sensing data logging application scenario (more about this scenario in Section 4.1),
the sensing data processing component would function as the Owner role. This component
would also take the Admin and Writer roles because it is in charge of uploading sensing
data to the datastore. If a data visualization component is present in the system, then this
component would need to be granted a Reader role so that it may query the datastore.

In the secure genome analysis application scenario (more about this scenario in
Section 4.2), each institution that enters the competition would function in the Owner
and the Admin role because the institution would develop its own smart contract for data
insertion and query as specified by the competition organizer. In a more realistic scenario
where researchers could upload their genome experiment observations to the datastore for
data sharing, such researchers would need to acquire the Writer role. Other researchers
who are interested in downloading the genome experiment observations would need to
acquire the Reader role. The institution that makes the datastore available to the researchers
would function as the Owner and Admin.

Appl. Sci. 2023, 13, 5282 11 of 29

EthereumOwner

Deploy

Deploy Smart Contract

Admin
GrantAdmin

Writer

Reader
GrantWriter

GrantReader

Write Data

Read Data
DeleteAdmin

Figure 6. Different roles in the user management and user access control and their operations.

3.2. Data Storage and Retrieval

The pseudo code for the data storage and retrieval is shown in Algorithm 2. The smart
contract maintains a string array called database, a mapping called tagindex, and a
counter that remembers the last index to the database, as shown in Figure 7. The tag and
the data for each write operation are regarded as opaque objects. How the tag and data
are encoded and the relationship between the tag and the data to be written to the contract
are completely up to the user. Although we recommend the tag to be limited to 32 bytes
to save on gas, we do not impose any limit on the tag length. Furthermore, the tag can
be unique among all the writes or it could be the same for multiple writes. To facilitate
query of the data written to the smart contract, we offer three functions: (1) fetch all data
that carry the same given tag; (2) fetch all data written to the contract; and (3) fetch a given
number of most recent data entries written to the contract. If the tag and/or the data are
encoded properly, one may conduct various queries on the fetched data.

Tag1 Tag2 Tag3

Indices
(array)

Tags

Database
(array)

index

tagindex (mapping)

Figure 7. Data structures used for data storing and query operations.

To write data to the contract, one would call on the WRITE function with a tag and a
data entry (lines 1–12 in Algorithm 2). The data entry is first appended to the database
array (line 2 in Algorithm 2), then the tag is added to the tagindex mapping with the
current counter as the value (line 3 in Algorithm 2). Finally, the counter is incremented by
1 (line 4 in Algorithm 2).

Appl. Sci. 2023, 13, 5282 12 of 29

To fetch data from the contract, one would call the READ function with a tag (lines
6–12 in Algorithm 2). The indices array is retrieved from the tagindex mapping (line 7
in Algorithm 2). Then, the entries from the database are retrieved and added into a local
result variable in a loop (lines 8–12 in Algorithm 2). Finally, the result is returned to the
caller (line 16 in Algorithm 2).

To fetch all the data written to the contract, one would call the READALL function (lines
18–12 in Algorithm 2), where the database is returned to the caller (line 19 in Algorithm 2).
The number of entries in the database can be queried via the GETDBSIZE function (lines
21–12 in Algorithm 2). One may fetch the most recent n entries from the contract via the
READRECENT function. If n is the same or larger than the current size of the database,
then the entire database is returned to the caller (lines 25–12 in Algorithm 2). Otherwise,
the most recent n entries are retrieved, coped to a local array, and returned to the caller
(lines 28–12 in Algorithm 2).

Algorithm 2 Algorithm for data write and read.

Require: mapping(string => uint []) tagindex
Require: string [] database
Require: uint counter

1: procedure WRITE(tag, entry) ONLYROLE(W)
2: database.push(entry)
3: tagindex[tag].push(counter)
4: counter++
5: end procedure
6: procedure READ(tag) ONLYROLE(R)
7: uint [] indices← tagindex[tag]
8: uint length← indices.length
9: string [] result← new string(length)

10: i← 0
11: while i < length do
12: entry← database[indices[i]]
13: result[i]← entry
14: i ++
15: end while
16: return result
17: end procedure
18: procedure READALL() ONLYROLE(R)
19: return database
20: end procedure
21: procedure GETDBSIZE() ONLYROLE(R)
22: return counter
23: end procedure
24: procedure READRECENT(n) ONLYROLE(R)
25: if n >= counter then
26: return database
27: end if
28: string [] result← new string[](n)
29: i← 0
30: while i < n do
31: entry← database[counter-i-1]
32: result[i]← entry
33: i ++
34: end while
35: return result
36: end procedure

Appl. Sci. 2023, 13, 5282 13 of 29

4. System Integration with Smart Contract

In this section, we show how to use the proposed smart contract in a system for secure
data storage and query as illustrated in Figure 8. The main components in the system
consists of data producers (such as IoT devices and wireless sensors), data consumers
(i.e., those who make decisions based on the data collected), a datastore frontend, IPFS,
and Ethereum with the proposed smart contract.

Smart Contract

Data
Producers

Datastore
Frontend

IPFS Ethereum

Data
Consumers

Figure 8. Main components in a system for secure data storage and query.

We assume that strong authentication is in place in the system to ensure that data
producers and data consumers are authorized to store and query data via the datastore
frontend. How to ensure such strong authentication is out of the scope of this study and
we have reported our solution to this issue in a separate article [13]. The purpose of the
datastore frontend is to provide easy-to-use APIs for data insertion and query so that
data producers and data consumers do not have to handle the integration of IPFS and
Ethereum smart contracts. Another benefit of using the frontend is that the system can be
adapted to use with other blockchain systems by modifying the frontend component only.
The smart contract design allows only authorized users to upload and download data from
the smart contract.

The data producers are the entities that would like to upload data to the system.
For example, in a sensing system, a sensor or IoT device could function as a data producer.
In the case of the genome analysis competition, the organization that would like to enter
the competition would function as a data producer. The data consumers are the entities that
would like to retrieval data from the system. In a sensing system, managers and engineers
could be data consumers because they would like to inspect the data to gauge if the plant
being monitored is functioning normally. The IPFS is used to store the data uploaded by
the data producers. The smart contract is used to store the IPFS hash generated by the IPFS.
The smart contract is also in charge of performing user access control.

The interaction flow of the users (i.e., data producers and data consumers), the datas-
tore frontend, IPFS, and the smart contract deployed on Ethereum are illustrated in Figure 9.
The proposed smart contract is deployed by the datastore frontend at the begining of the
system operation. To upload data, a data producer would call the store(tag,data) func-
tion provided by the datastore frontend. Upon being invoked, the datastore frontend
would add the data to IPFS by calling add_json(data). The call returns an IPFS hash,
which will be written to the smart contract as the data entry with the given tag in the
call write(tag,hash). To retrieve data from the system, a data consumer would call the
datastore frontend with fetch(tag). Then, the datastore frontend would first issue a
read(tag) call to the smart contract. Once the data entry is returned, which would be
the IPFS hash, the datastore frontend issues a get_json(hash) call to IPFS, which would
return the original data stored at IPFS. In the last step, the datastore frontend returns the
data corresponding to the particular tag. We note that in this design, the datastore frontend
would be the only entity that interacts with the smart contract, i.e., the datastore is the
Owner as well as the Admin.

In the following, we first consider the scenario typical in sensor-based systems where
multiple sensors would generate a large volume of sensing data. Then, we demonstrate how
to use our smart contract as a potential solution for the secure genome analysis competition.
Finally, we present an analysis of the security properties in the proposed secure datastore.

Appl. Sci. 2023, 13, 5282 14 of 29

Ethereum

Data Producer

Deploy

Data Consumer

store(tag, data)

Datastore
Frontend

IPFS
add_json(data)

read(tag)

Deploy Smart Contract

hash
write(tag,hash)

fetch(tag)

hash

get_json(hash)

datadata

Figure 9. The interaction flow involving the user (i.e., data producers and data consumers), the datas-
tore frontend, IPFS, and the smart contract deployed on Ethereum.

4.1. Sensing Data Logging

Sensors typically generate a large volume of sensing data with high sampling rates,
as such, it is not practical to create one transaction per sample for data storage at pub-
lic blockchains. As we pointed out in our previous publications [10,33], it is better to
first aggregate sensing data and only place the aggregated data on the blockchains for
immutability protection.

Even with aggregation, the data for each sample could be 500 bytes or larger. Con-
sidering that Ethereum charges 20,000 gas for each 32-byte of data, this means that the
minimum cost for each data entry of 500 bytes would be 312,500 gas. Assuming that the
gas price is 14.3 gwei (1 gwei = 10−9 ETH) and the ETH price is USD 1640, this transaction
would cost at least USD 7.33. While this amount does not appear to be large, the total
transaction fees would add up in the long run. For example, if one transaction is issued
every 10 minutes, 144 transactions will be issued every 24 h and the total cost in transaction
fees would be over USD 1000 per day! Only large institutions could afford this amount of
transaction fees.

To address this issue, we propose to store the full data entry in IPFS and record the
IPFS hash returned by the IPFS in the smart contract. The IPFS hash is a 46-byte-long self-
describing multihash that can be used to identity both the content of the data entry as well
as the peer and key to access the entry in the IPFS network (https://richardschneider.github.
io/net-ipfs-core/articles/multihash.html (accessed on 1 March 2023)). The mechanism
to do so is illustrated in Figure 9. With this design, only 46 bytes are stored in the smart
contract instead of 500 bytes. For each transaction, this would saves 272,500 gas, which is
equivalent to USD 6.39, and the daily savings would be USD 920.26.

4.2. Secure Genome Analysis

In the context of secure genome analysis as defined in [36,37], each observation is
fairly short, hence, it is acceptable to store all the observations directly in the smart contract.
However, we show here that it is unnecessary to store extra keys with wildcards in one or
more mappings to facilitate queries with one or more wildcards.

For secure genome analysis, the gene, variant, and drug are used together as the
key to each observation. In our smart contract, the gene–variant–drug combination is
encoded into “gene/variant/drug” as the tag to each observation. In this use case, the tag
is unique to each observation. The data entry for each observation is encoded in the form
“gene/variant/drug/outcome/relation/sideeffect.” We use the symbol “/” as the separator

https://richardschneider.github.io/net-ipfs-core/articles/multihash.html
https://richardschneider.github.io/net-ipfs-core/articles/multihash.html

Appl. Sci. 2023, 13, 5282 15 of 29

because the gene name may contain “-”. A string encoded this way can be stringified easily
in all modern programming languages.

For a query using the full gene–variant–drug combination, the corresponding obser-
vation can be retrieved directly via the READ(tag) function. For a query with one or more
wildcards, all data entries are first retrieved using the READALL() function. Once the dataset
is retrieved, further queries with wildcards will not induce any call to the smart contract.
Each entry in the dataset is then transformed from one string into six strings (gene, variant,
drug, outcome, relation, side effect). A query with one or more wildcards will entail a
linear search of the dataset, which is identical to the solutions proposed in [36,37].

4.3. Security Analysis of the Proposed Datastore

We analyze the security of the proposed datastore with respect to the three primary
security properties: confidentiality, integrity, and availability [43]. We also discuss the risk
of privacy leakage. Confidentiality means that the data are not revealed to the general
public, i.e., only those who are authorized may access the data. Integrity means that the
data come from a trusted source, and are kept intact in their original form, i.e., the data
are not falsified and not modified in any unauthorized way. Availability means that the
data are accessible to authorized users whenever needed. Privacy is closely related to
confidentiality and it typically emphasizes the protection of the identity of the owner of the
data. Privacy leakage refers to the violation of both the confidentiality and the privacy of
the data, i.e., unauthorized users (such as adversaries) may obtain sensitive data from a
system and somehow could learn the identity of the data owners [44].

Confidentiality is protected via strong user authentication so that unauthorized users
cannot access the data stored in a system. In the proposed system, the data stored in
the smart contract are accessible only to the smart contract owner and those who have
been granted a read, write, or admin privilege. Hence, the proposed system guarantees
data confidentiality.

The protection of the data integrity in a system requires more complex mechanisms.
First, a mechanism must exist to accept data from legitimate sources only. Second, once
the data are stored in the system, an additional mechanism must be in place to prevent
unauthorized modification of the data or the deletion of the data. In the proposed system,
only the smart contract owner and the users that have been granted the write or admin
privilege may insert data to the system. Assuming that the smart contract owner is trusted,
then, the system ensures that all data come from legitimate sources. Since the blockchain
guarantees data immutability, once data are inserted into the smart contract, they cannot
be modified or deleted. Therefore, the proposed system ensures the integrity of the data.

Availability is protected by both system fault tolerance and proper authentication of
users. Fault tolerance ensures that the data would exist for access at any time. Proper
authentication would grant authorized users access to the data whenever requested. Since
the proposed system depends on the blockchain and IPFS, both have built-in fault tolerance
mechanisms with heavy degree of replication of the data to ensure that the data are always
available. The user authentication mechanism as part of the proposed smart contract would
ensure all authorized users have access to the data. Hence, the proposed system ensures
availability of the data.

Next, we argue that the proposed system has low risk of privacy leakage. As the
proposed system is built on top of Ethereum, each of the users is identified by an address.
This design grants all users of the proposed system pseudo-anonymity. Furthermore,
the user access control mechanism incorporated into the smart contract ensures that an
unauthorized adversary does not have access to the data stored in the system. Hence,
neither the identity (other than the address) of the user, nor the data are revealed
to adversaries.

We note that the security of all blockchain systems relies on the proper protection
of the private keys. Once the private key is stolen, the corresponding account can be
compromised. On the other hand, if the private key is lost, the corresponding account

Appl. Sci. 2023, 13, 5282 16 of 29

would not be able to generate new transactions. Should the latter scenario happen, the data
placed in the secure database would no longer be accessible by this account, and this
account would not be able to make contract write calls either (if it has been granted the
write or admin privilege).

Finally, before we conclude the security analysis of the proposed datastore, it is
necessary to mention the potential risk of IPFS. Although virtually all academic publications
(such as [45,46]) have assumed that IPFS is secure, there are known vulnerabilities in
IPFS (https://consensys.net/diligence/blog/2022/09/the-forgotten-ipfs-vulnerabilities/
(accessed on 1 March 2023)).

5. Experimental Results and Discussion

The primary objective of the experiments is to demonstrate that our smart contract
has the advantage of incurring low gas consumption with sufficient expressibility to accom-
modate different application scenarios. In addition, we fully characterize the performance
of the smart contract with and without IPFS integration. Unlike [36,37], we focus on using
gas consumption as the metric for evaluating the efficiency of the smart contract design
instead of runtime latency for write and read. Since, by design, public blockchain systems
must target a sufficiently long block interval for the decentralized consensus to complete,
the time it takes to write to blockchain inevitably depends on the target block interval.

The experiments were performed using an iMac-27 with core-i5 CPU and 64 GB
RAM. The truffle suite (https://trufflesuite.com (accessed on 1 March 2023)) was used
for development and testing. The truffle suite consists of the truffle tools (truffle compile,
truffle migrate, and truffle console), and Ganache, which runs a local Ethereum node to
facilitate the development, deployment, and testing of smart contracts.

In our implementation, we chose to use the Python language to be consistent with
our previous work on securing sensing data processing and logging [13]. A Python script
is developed to compile and deploy our Ethereum smart contract to a local Ganache
node. The script also implements the logic to communicate with the local IPFS node,
and to issue signed transactions to the Ganache node. The script imports a number
of libraries to work with Ethereum smart contracts and with IPFS, including py-solc-x
(https://pypi.org/project/py-solc-x/ (accessed on 1 March 2023)), web3.py (https://pypi.
org/project/web3/ (accessed on 1 March 2023)), and py-ipfs-http-client (https://pypi.org/
project/ipfshttpclient/ (accessed on 1 March 2023)).

5.1. Comparison with Competing Approaches

To compare with existing smart contract solutions for secure data storage as reported
in [36,37], we intentionally removed user access control from our smart contract so that the
comparison would be fair because the smart contracts introduced in [36,37] have no user
access control. Removing user access control eliminates possible complexity introduced by
user access control during the data storage and query operations.

In the comparison, we use four observations from the secure genome analysis compe-
tition dataset as the inputs for the tests. The input consists of six components: gene name,
variant, drug name, outcome (improved, unchanged, or deteriorated), possible relation
(yes or no), side effect (yes or no):

• case1: (“HLA-B”, “57”, “abacavir”, “improved”, yes, no);
• case2: (“CYP3A5”, “52”, “pegloticase”, “unchanged”, yes, yes);
• case3: “CYP3A5”, “53”, “pegloticase”, “unchanged”, yes, yes);
• case4: “CYP3A5”, “53”, “abacavir”, “unchanged”, yes, yes).

We compare our solution with the four smart contract solutions designed for secure
gene analysis, in the order of the ranking from the first place winner to the honorable
mention during the 2019 competition [36,37]: query index [36], index everything [36], full
index [37], and dual-scenario indexing [36] for the four cases. The results are summarized
in Table 1. The mean gas consumption for different studies is illustrated in Figure 10.

https://consensys.net/diligence/blog/2022/09/the-forgotten-ipfs-vulnerabilities/
https://trufflesuite.com
https://pypi.org/project/py-solc-x/
https://pypi.org/project/web3/
https://pypi.org/project/web3/
https://pypi.org/project/ipfshttpclient/
https://pypi.org/project/ipfshttpclient/

Appl. Sci. 2023, 13, 5282 17 of 29

Table 1. Comparison between our smart contract and competing solutions in terms of the gas
consumed for the write operation.

Input This
Study

Query
Index

Index
Everything Full Indexing Dual Scenario

Indexing

deploy 823,933 903,780 707,460 896,850 791,741

case1 160,706 345,226 79,394 238,526 339,863

case2 146,526 453,249 84,818 333,549 339,902

case3 146,490 401,949 50,618 238,646 339,902

case4 129,354 384,786 50,582 204,374 339,863

mean 145,769 383,478 66,353 253,774 339,883

This Study

Query Index

Index
Everything

Full
Indexing

Dual
Scenario
Indexing

Figure 10. Comparison of gas consumption for different studies.

Prior to testing the gas consumption of the write operation, the smart contract for the
respective solutions is first deployed. The deployment cost of the smart contract is shown
in the first data row of Table 1. While the deployment cost is high in all solutions, they
differ very little.

We note that the four cases are used as the input to the WRITE function of the smart
contract in order (i.e., case1 is followed by case2, case3, and case4), and the order matters for
the competing solutions as explained below. In our smart contract, the WRITE functions take
two arguments—a tag and the data entry, both in the string format. For the four cases, we
concatenate the first three components in the form of “c1/c2/c3” as the tag and concatenate
all six components in the form of “c1/c2/c3/c4/c5/c6” as the data entry. As the first three
parameters’ (gene-variant-drug) combinations are all different in the four cases, the tags
are all different, which means that in each case, the mapping would create a new entry and
the gas consumption would be determined by the tag and data entry length.

It is not surprising that the gas consumption for the query index solution is much
higher than ours (more than twice of ours). Although the query index solution also uses
a single mapping and a single string array to store the data, multiple entries are created
in the mapping in each of the cases. In our solution, only a single entry is created in the
mapping. More specifically, in case1, the query index solution creates a total of eight entries
in the mapping when storing the observation (one entry with a unique gene–variant–drug
combination and seven entries with one or more wildcards). In case2, the query index
creates a total of seven entries in the mapping because the case of “*/*/*” has already been
created during case1 and this existing entry is updated. The higher gas consumption for
case2 is due to the longer drug name and longer outcome strings. In case3, five entries
are added into the mapping due to the variant change between case2 and case3 and three
existing entries are updated. As a result, the gas consumption is about 50,000 gas less
in case3 than in case2. In case4, only a single entry is created in the mapping and seven

Appl. Sci. 2023, 13, 5282 18 of 29

existing entries are updated, which is why the gas consumption is the smallest among the
four cases.

The gas consumption for the index everything solution is much smaller than that
for our solution. This is because the index everything solution is customized for the
dataset used in the secure gene analysis competition where the gene names, variants,
and drug names are encoded as 8-bit integers, and the gene–variant–drug combination is
encoded as 24-bit integers. Five mappings are used to map each gene-variant-drug to the
number of presence of each outcome/relation/side effect (using a 32-bit integer). As such,
the mappings take little space. In all cases, the key of the mapping takes one 32-byte word,
and the value of the mapping takes another 32-byte word. We note that while this solution
works well for the secure gene analysis competition, it is not a good fit for general purpose
data storage.

The gas consumption for the full indexing solution is between 50% to 100% higher
than that for our solution. This is due to the use of three mappings compared to a single
mapping in ours. In case1, one new entry is created for each of the three mappings. In case2,
one new entry is also created for each of the three mappings. The reason why the gas
consumption for case2 is higher is because the gene name and the drug name are longer
than those in case1. In case3, a new entry is created in the variant mapping and one entry
from each of the gene and drug mappings is updated, and the same is true for case4.
Updating an existing entry in a mapping costs less than creating a new entry.

The gas consumption for the dual-scenario indexing is consistently high in all four
cases due to the use of a large structure to store the observation (i.e., GeneDrugRelation).
This solution uses two mappings. One mapping (GeneDrugRelationKeyMapping) is created
and populated prior to any query can be accepted. The GeneDrugRelationKeyMapping
maps all possible gene–variant–drug combinations with one or more wildcards to the
list of full gene-variant-drug (without any wildcard) combinations. The other mapping
(called geneData) is used to map full gene-variant-drug to the GeneDrugRelation record.
The WRITE function only updates the geneData. Hence, the reported gas consumption in
Table 1 does not include the cost for populating the GeneDrugRelationKeyMapping. Due
to the way the data are stored (i.e., using a struct instead of a string), this solution is not
extensible for general purpose data storage.

5.2. Gas Consumption w.r.t Data Entry Size

It is well known that Ethereum uses 32-byte words to store data, and the byte32 type
is the preferred type to minimize gas consumption. However, it is much more convenient
to use string to store data. In this section, we report the gas consumption versus different-
sized data entries encoded as strings. During the experiments, we vary the data entry size
from 1 to 640 bytes with a 1-byte increment in a loop to call the WRITE function defined in
the smart contract. We experimented with four scenarios: (1) no user access control and the
same tag for all data entries; (2) no user access control and each data entry is associated
with a unique tag; (3) with user access control and the same tag for all data entries; (4) with
user access control and each data entry is associated with a unique tag. In Scenarios (1) and
(3), the string literal “tag1” is used for all data entries. In Scenarios (2) and (4), the tag is
constructed by concatenating “tag” and the loop index, which changes from 0 up to 639.
The experimental results are shown in Figure 11.

As can be seen in Figure 11a, the gas consumption increases linearly with the size of
the data entries for Scenario (1). The results for Scenarios (2), (3), and (4) look very similar
in this scale. To show the subtle differences between the four scenarios and also show the
details on how the gas consumption increases with respect to the size of the data entries,
we include the charts for a very limited range of the data entry sizes between 1 to 69 bytes
in Figure 11a,b. As can been seen, the very first call to the WRITE function incurs higher gas
than subsequent calls. The first call incurs 115,682 gas for Scenarios (1) and (2) and 118,287
for Scenarios (3) and (4). The next call incurs 84,294 for Scenario (1), 101,394 for Scenario
(2), 86,899 for Scenario (3), and 103,999 for Scenario (4).

Appl. Sci. 2023, 13, 5282 19 of 29

Without User Authentication

With User Authentication

Without User Authentication
Same Tag

(a)

(b)

(c)

Figure 11. Gas consumption with respect to the size of the data entries (a–c).

It is unclear why in all scenarios the gas consumption has a jump from size 20 to
size 21 (with 22,227 gas) and immediately has another jump from size 21 to size 22 (with
22,328 gas). After this initial period, there is a jump in gas consumption (23,328 gas) for
every 16 bytes in the data entry size. A further examination shows that the gas consumption
increases 24 gas for each additional byte in the size of the data entry. In Ethereum smart
contract, string is encoded using the utf-8 variable-length character encoding standard
where each string character is encoded using one to four bytes. Based on our observation,
it looks like each string character is encoded using two bytes, which is why there is a jump
in gas consumption for every 16 string characters.

The gas consumption for Scenario (2) is 17,100 higher than that for Scenario (1) for
the same data entry size. The same is the case for Scenario (4) versus Scenario (3). This
shows that the cost of creating a new entry in the tag mapping is 17,100 gas. The gas
consumption for Scenario (3) is 2605 higher than that for Scenario (1) for the same data
entry size. The same is the true for Scenario (4) compared with Scenario (2). This means
that the cost of user authentication is only 2605 gas.

Appl. Sci. 2023, 13, 5282 20 of 29

5.3. Gas Consumption for User Management

In this section, we report the gas consumption for user management operations.
With user management and user access control, the deployment cost for our smart contract
is 2,742,751 gas, which is significantly higher than without. Table 2 shows the gas con-
sumption for grant roles (GRANTADMIN, GRANTWRITER, GRANTREADER) and delete roles
(DELETEADMIN, DELETEWRITER, DELETEREADER) operations. As can be seen, the most
expensive operation is to grant a new user the Admin role, which costs 95,198 gas because
three entries in the roles mapping are updated. It costs a little less to grant a new user
with the Write role, at 72,867 gas, where two entries in the roles mapping are updated.
It costs the least to grant a new user with the Read role, at 49,977 gas, where only a single
entry in the roles mapping is updated.

Table 2. Gas consumption for user management operations.

Role GRANTROLE DELETEROLE

Admin 95,198 37,262

Write 72,867 31,347

Read 49,977 28,613

An account may be stripped off the Admin, Writer, or Reader role via the DELETEAD-
MIN, DELETEWRITER, DELETEREADER functions. Only the account that created the smart
contract (i.e., the Owner) may remove users with the Admin role. Accounts with the write
or read roles may be deleted by any account with the Admin role. The DELETEADMIN incurs
37,262 gas. The DELETEWRITER incurs 31,347 gas. The DELETEREADER incurs 28,613 gas.
The gas consumption for user management is summarized in Table 2 and illustrated in
Figure 12. As expected, the gas consumption for addition and deletion of admin accounts
is higher than those of the writer accounts, which in turn is higher than those of the
reader accounts.

GrantRole DeleteRole
0

2

4

6

8

Ga
s C

on
su

m
pt

io
n

1e4

Figure 12. Gas consumption for granting roles and deleting roles.

5.4. Data Storage and Retrieval with IPFS and Smart Contract

In this section, we report the performance of the wrapper functions and demonstrate
the advantage of integrating IPFS and smart contract as described in Section 4.1. We
measure the latency for uploading and downloading data to/from IPFS and the latency
in issuing write/read transactions to the smart contract (with user access control). Ad-
ditionally, we also measure the gas consumption for the write and read transactions to
our smart contract. We experimented with two scenarios: (1) storing only the IPFS hash
with a tag to the smart contract (using the wrapper functions illustrated in Figure 9); and
(2) storing the entire data with a tag to the smart contract (without using the wrapper

Appl. Sci. 2023, 13, 5282 21 of 29

functions). During the experiments, we vary the data size from 100 to 2000 bytes with a
step of 100 bytes. The transactions use distinct tags for subsequent transactions.

The latency results for the write and read transactions on the smart contract are
illustrated in Figure 13. The curves labeled with “Contract Write” and “Contract Read”
are the results for Scenario (1) where only the IPFS hash is stored at the smart contract.
The curves labeled with “Contract Write Full” and “Contract Read Full” are the results
for Scenario (2) where the entire data entry is stored at the smart contract without the
integration with IPFS. As can be seen, the latency for the write/read transactions generally
increases with the data entry size in Scenario (2). The latency for the write/read transactions
in Scenario (1) remains constant and lower than that for Scenario (2). These results are as
expected because in Scenario (1) the transaction size is the same for all original data entry
sizes, and in Scenario (2) the write transaction size and the transaction receipt for the read
transaction increase with the data entry sizes.

250 500 750 1000 1250 1500 1750 2000
Original Data Entry Size (B)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

La
te

nc
y

(s
ec

on
d)

Contract Write Full
Contract Read Full
Contract Write
Contract Read

Figure 13. Latency results in interaction with the smart contract.

As can be seen in Figure 13, the latency is below 0.5 s for all scenarios and for all data
entry sizes. We regard this latency satisfactory because the transaction rate must be kept
relatively low by considering several factors: (1) there is a very limited system throughput
capability due to the need for reaching decentralized consensus in blockchain (in Ethereum,
the target block interval is 12 s and there are usually less than 500 transactions per block);
(2) transactions that mutate the blockchain state (i.e., contract write) would incur significant
financial cost and even read-only transaction submitted to the blockchain (i.e., not served
locally) would still incur the base transaction gas fee. As such, users should only store the
most critical data in the smart contract and the calls on the smart contract should be made
infrequent, for example, at most a few times per hour. The observed latency results in our
experiments mean that our system can sustain a 1Hz transaction generation rate (i.e., one
transaction per second), which is much higher than that recommended for practical uses.

The latency results for IPFS uploading (i.e., add_json()) and downloading
(i.e., get_jsoon()) are shown in Figure 14. Downloading data from IPFS incurs the least
latency (0.002–0.003 s), and the latency remains small for all data sizes. However, the latency
for uploading data to IPFS is much larger (around 0.1 s) and has huge jitters for the first few
times. Again, this is expected because uploading would need to push the data first to the
local IPFS node, and then to a few nearby IPFS nodes, which takes time, and downloading
can be performed with the local IPFS node.

Appl. Sci. 2023, 13, 5282 22 of 29

250 500 750 1000 1250 1500 1750 2000
Original Data Entry Size (B)

0.0

0.1

0.2

0.3

0.4

0.5

La
te

nc
y

(s
ec

on
d)

IPFS Upload
IPFS Download

Figure 14. Latency in interaction with IPFS.

The gas consumption results for the two scenarios are shown in Figure 15. As can
be seen, for Scenario (2), the gas consumption increases linearly with the data entry sizes
for both the write and read transactions. The rate of increase is much larger for the write
transactions than that for the read transactions (i.e., the two curves labeled “Contract
Write/Read Full”). In contrast, the gas consumption for Scenario (1) for both the write
and read transactions remains constant (except the very first transaction during the run),
where the gas consumption for the write transactions is much lower than that for Scenario
(2) as the data entry sizes increase, and the gas consumption for the read transactions is
also lower than that for Scenario (2) because the returned data are shorter. These results
demonstrate that it is advantageous to use the proposed approach (in terms of financial
cost savings) that integrates with IPFS and stores only the IPFS hash of the data stored in
IPFS in the smart contract.

250 500 750 1000 1250 1500 1750 2000
Original Data Entry Size (B)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ga
s C

on
su

m
pt

io
n

1e6
Contract Write Full
Contract Read Full
Contract Write
Contract Read

Figure 15. Gas consumption with and without IPFS integration.

It is also informative to compare the total latency for read and write of data in Scenario
(1) and Scenario (2). The ratio of the total latency between Scenario (1) and Scenario (2) is
shown in Figure 16. If the ratio is below 1, it means that the total latency for IPFS read/write
and contract read/write for the integrated approach (i.e., Scenario (1) is lower than the
corresponding latency for Scenario (2). As can be seen, the ratio is below 1 consistently if
the original data entry size is 1250 bytes or higher.

Appl. Sci. 2023, 13, 5282 23 of 29

250 500 750 1000 1250 1500 1750 2000
Original Data Entry Size (B)

0

2

4

6

8

To
ta

l L
at

en
cy

 R
at

io

Write
Read

Figure 16. Total latency ratio for the read and write operations between Scenario (1) and Scenario (2).

5.5. Discussion

We emphasize here that blockchain-based secure datastore should not be regarded as
a secure version of traditional database system. Unlike traditional database systems, which
could offer a transaction rate higher than 1000 per second, blockchains are designed to have
limited throughput due to the need to allocate sufficient time interval for reaching decen-
tralized consensus. There are two conflicting factors: (1) target block interval, and (2) upper
limit on the block size. A smaller block interval and a larger block size would be conducive
to achieving higher system throughput. Unfortunately, the use of a smaller block interval
would inevitably necessitate the use of a smaller block size for system stability [47].

For example, Ethereum currently has a target block gas limit of 15 million gas with
maximum limit of 30 million gas. The minimum gas consumption for a transaction is
21,000 gas. This means that the target number of transaction per block is 714 (maximum
number of transactions is 1428). The current target block interval is 12 s. This means that the
target system throughput would be 59 transactions per second (maximum 118 transactions
per second). Considering that Ethereum has thousands of users, we recommend that users
of our proposed datastore generate less than one transaction per minute for contract write.
If users must handle data generated with higher frequency, we recommend aggregating
the raw data first, as we have proposed in [13]. If aggregating data is not possible, then
our proposed secure datastore is not suitable for the application because making too-
frequent contract write calls would create a backlog and severely increase the latency to an
unacceptable level.

Another limiting factor for our secure datastore is the financial cost. Even with
infrequent contract write and using the smart contract to record IPFS hash only, the system
would still incur significant financial cost in the long run. Using the gas cost reported in
Figure 15, a contract write call costs about 0.2× 106 = 200, 000 gas. If one contract write
call is made per hour, the total daily gas consumption would be 200, 000× 24 = 4, 800, 000.
Again, using the gas price of 14.3 gwei and the ETH price of USD 1640, the daily cost would
be USD 2.57 and the annual cost would be USD 41,087.9. Not all organizations can sustain
such high financial cost.

6. Conclusions

This article presented the details of the design and implementation of a secure datastore
based on Ethereum smart contract. The datastore has built-in user access control. While
the smart contract itself is publicly visible, only authorized users may write data entry
to the datastore and only authorized users may read from the database. Furthermore,
the datastore allows tag-based query of the data stored in the datastore.

To facilitate user access control, three different roles are defined in the smart contract.
The account that created the smart contract (i.e., the owner of the smart contract) has the

Appl. Sci. 2023, 13, 5282 24 of 29

highest privilege and it may grant an account the administrator, writer, or reader role.
The account that has administrative privilege may grant other accounts the writer or reader
roles. The account that has the write or administrative privilege may write data entries
with a tag to the datastore. The account that has the read, write, or administrative privilege
may retrieve data entries in the datastore. We argue that the proposed tag-based query is
simple, yet flexible enough to facilitate complex queries.

Other than these two features, the primary consideration of the datastore design is
to minimize gas consumption of the smart contract. To demonstrate the efficiency in gas
consumption of our smart contract design, we compared it with four competing solutions.
We showed that our solution incurs the second-smallest gas consumption. The solution that
incurred lower gas consumption than ours was custom-made for the secure gene analysis
competition and it is not usable for general-purpose data storage and retrieval.

Furthermore, we recommend to store the original data entry in IPFS and only store
the IPFS hash of the data entry in the smart contract. We demonstrated that the proposed
integration with IPFS can significant reduce the gas consumption compared with storing
all the data entry in the smart contract. Furthermore, we showed experimentally that if the
data entry size is 1250 bytes or larger, the IPFS-smart contract integrated solution would
incur lower latency for writing to and reading from our datastore compared with storing
the entire data entry in the smart contract.

Limitations of the Approach

Pros. The proposed tag-based datastore aimed to provide the right tradeoff for query
flexibility, data confidentiality, smart contract security, and minimizing the financial cost
of the datastore. The advantages of the proposed datastore includes its simplicity, flex-
ibility, user access control, and user management. The simplicity of the smart contract
design minimizes the likelihood of introducing security vulnerabilities and reduces the gas
consumption of its operations. The flexibility of the design supports various applications
(such as sensing data logging and genome analysis) and use cases (such as storing plain or
encrypted tag and data).

Cons. The obvious limitation of the proposed datastore is that it relies on Ethereum.
Additionally, the emphasis on simplicity would inevitably force the users to perform
additional operations, such as encryption and extraction of the needed answer from the
returned result of a datastore read. The current system does not yet offer a graphical user
interface. Furthermore, the number of applications and use cases is relatively limited.

In the future, we plan to improve the current design and system implementation by
addressing these limitations. First, we will compile more applications of the proposed
secure datastore beyond sensing data logging and genome analysis. Second, we will
enhance the datastore frontend with more wrapper functions to reduce the burden on
the users (i.e., data producers and data consumers). For each type of application, some
wrapper functions could be developed such that the datastore resembles more a traditional
database system. For example, the data insertion and query functions similar to what has
been used in the genome analysis could be offered by the database frontend. Internally,
the calls would be transformed so that our tag-based smart contract can be used. Third, we
will port the tag-based smart contract from Ethereum to other blockchain platforms (such
as Hyperledger) that support Turing-Complete smart contracts. Finally, we will enhance
the research prototype with a graphic user interface and a suite of examples in Python and
JavaScript. We plan to share our implementation source code as a public GitHub project.

Author Contributions: Conceptualization, W.Z., H.U. and L.L.; methodology, W.Z.; software, I.M.A.
and W.Z.; validation, I.M.A., W.Z., H.U. and L.L.; formal analysis, W.Z.; investigation, I.M.A. and W.Z.;
resources, W.Z., H.U. and L.L.; data curation, I.M.A. and W.Z.; writing—original draft preparation,
I.M.A. and W.Z.; writing—review and editing, W.Z.; visualization, W.Z.; supervision, L.L.; project
administration, H.U. and L.L.; funding acquisition, H.U. and L.L. All authors have read and agreed
to the published version of the manuscript.

Appl. Sci. 2023, 13, 5282 25 of 29

Funding: This research was funded by US Department of Energy grant number DE-FE0031745.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the anonymous reviewers for their highly constructive
criticisms and invaluable suggestions. This work was supported by the United States Department of
Energy Award DE-FE0031745.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The Solidity source code for the proposed smart contract is provided in the appendix.

1 // SPDX -License -Identifier: MIT
2 pragma solidity >=0.6.0 <0.9.0;
3 pragma experimental ABIEncoderV2;
4
5 contract datastore {
6 address public owner;
7
8 event GrantRole(bytes32 indexed role , address indexed account);
9 event RemoveRole(bytes32 indexed role , address indexed account);

10
11 constructor (){
12 owner=msg.sender;
13 _grantRole(Admin , msg.sender);
14 }
15
16 mapping(string => uint []) public tagindex;
17 string [] public database;
18 uint counter =0;
19 mapping(bytes32 =>mapping(address=>bool)) public roles;
20
21 bytes32 private constant Admin = keccak256(abi.encodePacked("Admin"));
22 bytes32 public constant Read = keccak256(abi.encodePacked("Read"));
23 bytes32 public constant Write = keccak256(abi.encodePacked("Write"));
24
25 modifier onlyRole (bytes32 _role) {
26 require(roles[_role][msg.sender], "not authorized");
27 _;
28 }
29
30 function _grantRole(bytes32 _role , address _account) internal {
31 if (_role== Admin) {
32 roles[Admin][_account]=true;
33 roles[Write][_account]=true;
34 roles[Read][_account]=true;
35 } else if(_role == Write) {
36 roles[Write][_account]=true;
37 roles[Read][_account]=true;
38 } else{
39 roles[_role][_account]=true;
40 }
41
42 emit GrantRole(_role , _account);
43 }
44
45 function grantAdminRole(address _account) external onlyRole(Admin){
46 require(_account != address (0), "Roles: account is the zero address");
47 require (! roles[Admin][_account], "the Role with address is already

available");
48 if (msg.sender == owner) {
49 _grantRole(Admin , _account);
50 } else {
51 revert (" admin not authorized to grant Admin Role");

Appl. Sci. 2023, 13, 5282 26 of 29

52 }
53 }
54
55 function grantWriteRole(address _account) external onlyRole(Admin){
56 require(_account != address (0), "Roles: account is the zero address");
57 require (! roles[Write][_account], "the Role with address is already

available"); //
58 _grantRole(Write , _account);
59 }
60
61 function grantReadRole(address _account) external onlyRole(Admin){
62 require(_account != address (0), "Roles: account is the zero address");
63 require (! roles[Read][_account], "the Role with address is already

available"); //
64 _grantRole(Read , _account);
65 }
66
67 function deleteAdminRole(address _account) external onlyRole(Admin) {
68 require(roles[Admin][_account], "the Role with address is not

available to be deleted"); // check if the address available
69 if (msg.sender == owner) {
70 deleteRole(Admin ,_account);
71 } else {
72 revert (" admin not authorized to delete owner");
73 }
74 }
75
76 function deleteWriteRole(address _account) external onlyRole(Admin) {
77 require(roles[Write][_account], "the Role with address is not

available to be deleted"); // check if the address available
78 deleteRole(Write ,_account);
79 }
80
81 function deleteReadRole(address _account) external onlyRole(Admin) {
82 require(roles[Read][_account], "the Role with address is not available

to be deleted"); // check if the address available
83 deleteRole(Read ,_account);
84 }
85
86 function deleteRole(bytes32 _role , address _account) internal onlyRole(

Admin) {
87 if(_role==Admin) {
88 roles[Admin][_account]= false;// false means deactive the content

means delete
89 roles[Write][_account]= false;
90 roles[Read][_account]=false;
91 } else if(_role == Write) {
92 roles[Write][_account]= false;
93 roles[Read][_account]=false;
94 } else {
95 roles[_role][_account]= false;
96 }
97 emit RemoveRole(_role , _account);
98 }
99

100 function write(string memory tag , string memory data) public onlyRole(
Write) {

101 database.push(data);
102 tagindex[tag].push(counter);
103 counter ++;
104 }
105
106 function read(string memory tag) public onlyRole(Read) view returns (

string [] memory) {
107 uint [] memory indices = tagindex[tag];
108 uint length = indices.length;
109 string [] memory result = new string [](length);
110 for(uint i=0;i<length;i++){
111 string memory entry = database[indices[i]];

Appl. Sci. 2023, 13, 5282 27 of 29

112 result[i] = entry;
113 }
114 return result;
115 }
116
117 function readall () public onlyRole(Read) view returns (string [] memory)

{
118 return database;
119 }
120
121 function readrecent(uint n) public onlyRole(Read) view returns (string

[] memory) {
122 if(n >= counter) {
123 return database;
124 }
125 string [] memory result = new string [](n);
126 for(uint i=0;i<n;i++){
127 string memory entry = database[counter -i-1];
128 result[i] = entry;
129 }
130 return result;
131 }
132
133 function getDatabaseSize () public onlyRole(Read) view returns (uint) {
134 return counter;
135 }
136 }

References
1. Denning, D.E.R. Cryptography and Data Security; Addison-Wesley Reading: Boston, MA, USA, 1982; Volume 112.
2. Yang, P.; Xiong, N.; Ren, J. Data security and privacy protection for cloud storage: A survey. IEEE Access 2020, 8, 131723–131740.

[CrossRef]
3. Jatana, N.; Puri, S.; Ahuja, M.; Kathuria, I.; Gosain, D. A survey and comparison of relational and non-relational database. Int. J.

Eng. Res. Technol. 2012, 1, 1–5.
4. Imran, S.; Hyder, I. Security issues in databases. In Proceedings of the 2009 Second International Conference on Future

Information Technology and Management Engineering, Sanya, China, 13–14 December 2009 ; IEEE: Piscataway, NJ, USA , 2009;
pp. 541–545.

5. Okman, L.; Gal-Oz, N.; Gonen, Y.; Gudes, E.; Abramov, J. Security issues in nosql databases. In Proceedings of the 2011 IEEE 10th
International Conference on Trust, Security and Privacy in Computing and Communications, Changsha, China, 16–18 November
2011; IEEE: Piscataway, NJ, USA, 2011; pp. 541–547.

6. Bertino, E.; Sandhu, R. Database security-concepts, approaches, and challenges. IEEE Trans. Dependable Secur. Comput. 2005,
2, 2–19. [CrossRef]

7. Zhao, W. From Traditional Fault Tolerance to Blockchain; John Wiley & Sons: Hoboken, NJ, USA, 2021.
8. Zhao, W. On Blockchain: Design Principle, Building Blocks, Core Innovations, and Misconceptions. IEEE Syst. Man Cybern. Mag.

2022, 8, 6–14. [CrossRef]
9. Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32.
10. Zhao, W.; Upadhyay, H.; Lagos, L. Design and Implementation of a Blockchain-Enabled Secure Sensing Data Processing and

Logging System. In Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Melbourne,
Australia, 17–20 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 386–391.

11. Zheng, G.; Gao, L.; Huang, L.; Guan, J. Ethereum Smart Contract Development in Solidity; Springer: Berlin/Heidelberg, Ger-
many, 2021.

12. Kushwaha, S.S.; Joshi, S.; Singh, D.; Kaur, M.; Lee, H.N. Systematic review of security vulnerabilities in ethereum blockchain
smart contract. IEEE Access 2022, 10, 6605–6621. [CrossRef]

13. Zhao, W.; Aldyaflah, I.M.; Gangwani, P.; Joshi, S.; Upadhyay, H.; Lagos, L. A Blockchain-Facilitated Secure Sensing Data
Processing and Logging System. IEEE Access 2023, 11, 21712–21728. [CrossRef]

14. Li, R.; Song, T.; Mei, B.; Li, H.; Cheng, X.; Sun, L. Blockchain for large-scale internet of things data storage and protection. IEEE
Trans. Serv. Comput. 2018, 12, 762–771. [CrossRef]

15. Liang, W.; Fan, Y.; Li, K.C.; Zhang, D.; Gaudiot, J.L. Secure data storage and recovery in industrial blockchain network
environments. IEEE Trans. Ind. Inform. 2020, 16, 6543–6552. [CrossRef]

16. Popov, S.; Lu, Q. IOTA: Feeless and free. IEEE Blockchain Tech. Briefs 2019 .
17. Silvano, W.F.; Marcelino, R. Iota Tangle: A cryptocurrency to communicate Internet-of-Things data. Future Gener. Comput. Syst.

2020, 112, 307–319. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.3009876
http://dx.doi.org/10.1109/TDSC.2005.9
http://dx.doi.org/10.1109/MSMC.2022.3192658
http://dx.doi.org/10.1109/ACCESS.2021.3140091
http://dx.doi.org/10.1109/ACCESS.2023.3252030
http://dx.doi.org/10.1109/TSC.2018.2853167
http://dx.doi.org/10.1109/TII.2020.2966069
http://dx.doi.org/10.1016/j.future.2020.05.047

Appl. Sci. 2023, 13, 5282 28 of 29

18. Pinjala, S.K.; Sivalingam, K.M. DCACI: A decentralized lightweight capability based access control framework using IOTA for
Internet of Things. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18
April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 13–18.

19. Lamtzidis, O.; Gialelis, J. An IOTA based distributed sensor node system. In Proceedings of the 2018 IEEE Globecom Workshops
(GC Wkshps), Limerick, Ireland, 15–18 April 2019; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6.

20. Gangwani, P.; Perez-Pons, A.; Bhardwaj, T.; Upadhyay, H.; Joshi, S.; Lagos, L. Securing environmental IoT data using masked
authentication messaging protocol in a DAG-based blockchain: IOTA tangle. Future Int. 2021, 13, 312. [CrossRef]

21. Suhail, S.; Hussain, R.; Khan, A.; Hong, C.S. Orchestrating product provenance story: When IOTA ecosystem meets electronics
supply chain space. Comput. Ind. 2020, 123, 103334. [CrossRef]

22. Zheng, X.; Sun, S.; Mukkamala, R.R.; Vatrapu, R.; Ordieres-Meré, J. Accelerating health data sharing: A solution based on the
internet of things and distributed ledger technologies. J. Med. Inter. Res. 2019, 21, e13583. [CrossRef] [PubMed]

23. Abdullah, S.; Arshad, J.; Khan, M.M.; Alazab, M.; Salah, K. PRISED tangle: A privacy-aware framework for smart healthcare data
sharing using IOTA tangle. Complex Intell. Syst. 2022, 1–19. [CrossRef]

24. Rydningen, E.S.; Åsberg, E.; Jaccheri, L.; Li, J. Advantages and opportunities of the IOTA Tangle for Health Data Management: A
Systematic Mapping Study. In Proceedings of the 2022 IEEE/ACM 5th International Workshop on Emerging Trends in Software
Engineering for Blockchain (WETSEB), Pittsburgh, PA, USA, 21–29 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 9–16.

25. Lücking, M.; Manke, R.; Schinle, M.; Kohout, L.; Nickel, S.; Stork, W. Decentralized patient-centric data management for sharing
IoT data streams. In Proceedings of the 2020 International Conference on Omni-layer Intelligent Systems (COINS), Barcelona,
Spain, 31 August–2 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6.

26. Ordieres-Meré, J.; Villalba-Díez, J.; Zheng, X. Challenges and opportunities for publishing IIoT data in manufacturing as a service
business. Procedia Manuf. 2019, 39, 185–193. [CrossRef]

27. Shih, C.S.; Yang, K.W. Design and implementation of distributed traceability system for smart factories based on blockchain
technology. In Proceedings of the Conference on Research in Adaptive and Convergent Systems, Chongqing, China, 24–27
September 2019; pp. 181–188.

28. Lin, I.C.; Chang, C.C.; Chang, Y.S. Data Security and Preservation Mechanisms for Industrial Control Network Using IOTA.
Symmetry 2022, 14, 237. [CrossRef]

29. Bhandary, M.; Parmar, M.; Ambawade, D. Securing Logs of a System-An IoTA Tangle Use Case. In Proceedings of the 2020
International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 2–4 July 2020;
IEEE: Piscataway, NJ, USA, 2020; pp. 697–702.

30. Shih, C.S.; Hsieh, W.Y.; Kao, C.L. Traceability for Vehicular Network Real-Time Messaging Based on Blockchain Technology. J.
Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2019, 10, 1–21.

31. Tesei, A.; Di Mauro, L.; Falcitelli, M.; Noto, S.; Pagano, P. IOTA-VPKI: A DLT-based and resource efficient vehicular public key
infrastructure. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30
August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6.

32. Hrga, A.; Capuder, T.; Žarko, I.P. Decentralized IoT Platform for Flexibility Service Providers in Power Systems. In Proceedings of
the 2021 IEEE International Conference on Blockchain (Blockchain), Melbourne, Australia, 6–8 December 2021; IEEE: Piscataway,
NJ, USA, 2021; pp. 1–7.

33. Zhao, W.; Yang, S.; Luo, X. Secure hierarchical processing and logging of sensing data and IoT events with blockchain. In
Proceedings of the 2020 The 2nd International Conference on Blockchain Technology, Hilo, HI, USA, 12–14 March 2020; pp. 52–56.

34. Fauziah, Z.; Latifah, H.; Omar, X.; Khoirunisa, A.; Millah, S. Application of blockchain technology in smart contracts: A systematic
literature review. Aptisi Trans. Technopreneurship (ATT) 2020, 2, 160–166. [CrossRef]

35. Gupta, R.; Tanwar, S.; Al-Turjman, F.; Italiya, P.; Nauman, A.; Kim, S.W. Smart Contract Privacy Protection Using AI in Cyber-
Physical Systems: Tools, Techniques and Challenges. IEEE Access 2020, 8, 24746–24772. .10.1109/ACCESS.2020.
2970576. [CrossRef]

36. Kuo, T.T.; Bath, T.; Ma, S.; Pattengale, N.; Yang, M.; Cao, Y.; Hudson, C.M.; Kim, J.; Post, K.; Xiong, L.; et al. Benchmarking
blockchain-based gene-drug interaction data sharing methods: A case study from the iDASH 2019 secure genome analysis
competition blockchain track. Int. J. Med. Inform. 2021, 154, 104559. [CrossRef] [PubMed]

37. Gürsoy, G.; Brannon, C.M.; Gerstein, M. Using Ethereum blockchain to store and query pharmacogenomics data via smart
contracts. BMC Med. Genom. 2020, 13, 1–11. [CrossRef] [PubMed]

38. Batchu, S.; Patel, K.; Henry, O.S.; Mohamed, A.; Agarwal, A.A.; Hundal, H.; Joshi, A.; Thoota, S.; Patel, U.K. Using ethereum
smart contracts to store and share COVID-19 patient data. Cureus 2022, 14, e21378. [CrossRef]

39. Kurt Peker, Y.; Rodriguez, X.; Ericsson, J.; Lee, S.J.; Perez, A.J. A cost analysis of internet of things sensor data storage on
blockchain via smart contracts. Electronics 2020, 9, 244. [CrossRef]

40. Priyadarshini, R.; Alagirisamy, M.; Rajendran, N. Medchain for Securing Data in Decentralized Healthcare System Using Dynamic
Smart Contracts. In Proceedings of the Third International Conference on Image Processing and Capsule Networks: ICIPCN
2022, Bangkok, Thailand, 20–21 May 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 574–586.

41. Manzoor, A.; Liyanage, M.; Braeke, A.; Kanhere, S.S.; Ylianttila, M. Blockchain based proxy re-encryption scheme for secure
IoT data sharing. In Proceedings of the 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Seoul,
Republic of Korea, 14–17 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 99–103.

http://dx.doi.org/10.3390/fi13120312
http://dx.doi.org/10.1016/j.compind.2020.103334
http://dx.doi.org/10.2196/13583
http://www.ncbi.nlm.nih.gov/pubmed/31172963
http://dx.doi.org/10.1007/s40747-021-00610-8
http://dx.doi.org/10.1016/j.promfg.2020.01.308
http://dx.doi.org/10.3390/sym14020237
http://dx.doi.org/10.34306/att.v2i2.97
http://dx.doi.org/10.1109/ACCESS.2020.2970576
http://dx.doi.org/10.1016/j.ijmedinf.2021.104559
http://www.ncbi.nlm.nih.gov/pubmed/34474309
http://dx.doi.org/10.1186/s12920-020-00732-x
http://www.ncbi.nlm.nih.gov/pubmed/32487214
http://dx.doi.org/10.7759/cureus.21378
http://dx.doi.org/10.3390/electronics9020244

Appl. Sci. 2023, 13, 5282 29 of 29

42. Chen, L.; Lee, W.K.; Chang, C.C.; Choo, K.K.R.; Zhang, N. Blockchain based searchable encryption for electronic health record
sharing. Future Gener. Comput. Syst. 2019, 95, 420–429. [CrossRef]

43. Pfleeger, C.P. Security in Computing; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1988.
44. Krishnamurthy, B.; Naryshkin, K.; Wills, C. Privacy leakage vs. protection measures: The growing disconnect. In Proceedings of

the Web 2.0 Security and Privacy, Oakland, CA, USA, 26 May 2011; IEEE: Piscataway, NJ, USA, 2011, Volume 2; pp. 1–10.
45. Nizamuddin, N.; Salah, K.; Azad, M.A.; Arshad, J.; Rehman, M. Decentralized document version control using ethereum

blockchain and IPFS. Comput. Electr. Eng. 2019, 76, 183–197. [CrossRef]
46. Ali, M.S.; Dolui, K.; Antonelli, F. IoT data privacy via blockchains and IPFS. In Proceedings of the Seventh International

Conference on the Internet of Things, Linz, Austria, 22–25 October 2017; pp. 1–7.
47. Akbari, E.; Zhao, W.; Yang, S.; Luo, X. The impact of block parameters on the throughput and security of blockchains. In

Proceedings of the 2020 The 2nd International Conference on Blockchain Technology, Hilo, HI, USA, 12–14 March 2020; pp. 13–18.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.future.2019.01.018
http://dx.doi.org/10.1016/j.compeleceng.2019.03.014

	Introduction
	Related Work
	Query Flexibility of Smart-Contract-Based Datastores
	Data Structures Used in Smart-Contract-Based Datastores
	Complex Processing and Smart Contract
	Novel Contributions of Our Study

	Smart Contract Design
	User Access Control and User Management
	Data Storage and Retrieval

	System Integration with Smart Contract
	Sensing Data Logging
	Secure Genome Analysis
	Security Analysis of the Proposed Datastore

	Experimental Results and Discussion
	Comparison with Competing Approaches
	Gas Consumption w.r.t Data Entry Size
	Gas Consumption for User Management
	Data Storage and Retrieval with IPFS and Smart Contract
	Discussion

	Conclusions
	Appendix A
	References

