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Abstract: Sensing, computing, and communication advancements allow vehicles to generate and
collect massive amounts of data on their state and surroundings. Such richness of information fosters
data-driven decision-making model development that considers the vehicle’s environmental context.
We propose a data-centric application of Adaptive Cruise Control employing Deep Reinforcement
Learning (DRL). Our DRL approach considers multiple objectives, including safety, passengers’
comfort, and efficient road capacity usage. We compare the proposed framework’s performance to
traditional ACC approaches by incorporating such schemes into the CoMoVe framework, which
realistically models communication, traffic, and vehicle dynamics. Our solution offers excellent
performance concerning stability, comfort, and efficient traffic flow in diverse real-world driving
conditions. Notably, our DRL scheme can meet the desired values of road usage efficiency most of
the time during the lead vehicle’s speed-variation phases, with less than 40% surpassing the desirable
headway. In contrast, its alternatives increase headway during such transient phases, exceeding the
desired range 85% of the time, thus degrading performance by over 300% and potentially contributing
to traffic instability. Furthermore, our results emphasize the importance of vehicle connectivity in
collecting more data to enhance the ACC’s performance.

Keywords: connected vehicles; vehicle dynamics; adaptive cruise control; traffic simulation; machine
learning

1. Introduction

According to a study conducted by the World Health Organization (WHO) [1], 1.35 million
people annually succumb to road accidents and 20–50 million people experience non-fatal
injuries. Road accidents can lead to traffic disruption and have a significant economic
impact, with some countries losing up to 3% of their gross domestic product. In this context,
the implementation of robust Advanced Driver Assistance Systems (ADAS) applications,
such as Adaptive Cruise Control and Automatic Emergency Braking, can help drivers
navigate safely, providing an automatic braking response to potential hazards, thereby
enhancing safety and optimizing traffic efficiency. To envision such systems, vehicles
and roadways are currently, and will progressively be, outfitted with sensory, processing
and wireless communication capabilities. As a result, they are becoming data sources that
generate massive amounts of information, advancing the growth of data-driven models for
context-aware decision-making.

In this context, machine learning (ML) techniques play a crucial role, as they have
proved to be very effective in prediction tasks and in supporting accurate decision-making.
Importantly, given the ability of vehicles to exchange data with each other through vehicle-
to-vehicle (V2V) communications as well as with the infrastructure through vehicle-to-
infrastructure (V2I) communications, distributed ML approaches in vehicular networks are
attracting a significant deal of interest.
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Adaptive Cruise Control (ACC) is emerging as one of the most popular and rele-
vant applications of ADAS that can benefit from ML techniques. Indeed, especially in
adverse road conditions, standard ACC increases the mental and temporal workload of the
drivers [2], often leading to human errors. On the other hand, connected autonomous vehi-
cles are required to implement sophisticated control of the vehicle’s behavior in terms of
efficiency, safety, and comfort under all road conditions. The headway control between two
consecutive vehicles can increase road capacity and stabilize traffic flow [3–5], thereby im-
proving traffic efficiency. The safety term addresses issues pertaining to vehicle stability and
the Time-To-Collision between two vehicles. The comfort term regulates the time derivative
of the vehicle’s acceleration to provide passengers with a jerk-free travel experience.

In particular, we are focusing on improving the safety of vehicles by accounting for
vehicle stability in different road conditions, an aspect that has been overlooked in the
literature. Generally, the literature on ACC [6,7] assesses the safety of a vehicle only based
on the inter-vehicular distance between the ego vehicle and the lead vehicle. However,
road conditions, such as wet or icy surfaces, can impact vehicle stability, affecting passenger
safety. Therefore, in our study, we have incorporated longitudinal slip as a vehicle stability
indicator to ensure the safety of the passengers, a factor other related works have failed
to tackle. The proposed methodology relies on the longitudinal wheel slip and tire–road
friction coefficient to prevent loss of traction with the road surface under diverse conditions,
effectively addressing the drawback. However, the accurate representation of the vehicle
states is difficult in real-world conditions, for instance, GNSS positioning errors. Even
though we assumed the availability of such information from simulation models, several
research works [8–10] have been proposed to estimate them in real-life situations.

In this work, we address the challenges posed by the ACC in connected autonomous
vehicles by utilizing Reinforcement Learning (RL), a particular ML technique, to address
the main problems with the standard ACC system. The choice of RL is due to its ability to
cope with highly dynamic environments and non-linear systems for near-optimal decision-
making and control. In RL, an agent learns to map environmental states onto actions and
subsequently receives a numerical reward for the adopted action. It aims to learn the
optimal state–action mapping policy yielding maximum cumulative numerical reward.

With the aim of dealing with real-world operational conditions, we focus on Deep
Reinforcement Learning (DRL), which incorporates deep neural networks in the RL ap-
proach to effectively represent the optimal policy mapping despite the high dimensionality
of the states usually observed in real-world situations. In particular, we use the Deep
Deterministic Policy Gradient (DDPG) [11] technique, which is a model-free off-policy DRL
algorithm, and we develop a DRL-based ACC application (depicted in Figure 1) that can
quickly adapt to the surroundings to ensure safe, comfortable, and efficient driving.

Figure 1. Architecture of the proposed DRL framework.
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The key contributions of this work are summarized as follows:

(i) We design a DRL framework that takes into account and appropriately weights the
various environmental factors influencing ACC, including vehicle stability. To the
best of our knowledge, we are the first to comprehensively and successfully address
all relevant issues, as existing studies focusing on ACC have not focused on such a
crucial issue as vehicle stability.

(ii) We assess the performance of our DRL framework by incorporating it into the CoMoVe
framework [12], which offers a realistic representation of traffic mobility, vehicle
communication, and dynamics. By utilizing such a fully fledged simulation tool,
we derive performance results regarding vehicle stability, comfort, and traffic flow
efficiency under diverse traffic conditions and road circumstances.

(iii) We compare the DRL framework results against traditional ACC and cooperative ACC
(CACC) algorithms and demonstrate the benefits of utilizing the information obtained
through V2X communications in the learning process of the DRL agent, especially
concerning the algorithm convergence time.

The remainder of this paper is organized as follows. Section 2 discusses the related
literature works and emphasizes our contributions. Section 3 introduces some preliminar-
ies on RL and presents the proposed DRL model and its integration with the CoMoVe
framework. Section 4 presents the simulation scenarios and the DRL agent’s performance,
while Section 5 concludes the paper and outlines future research directions.

2. Related Work

ML techniques have been widely used in autonomous and automated vehicles to
address a wide range of applications requiring a decision-making process [13–15]. Below,
we discuss the works that are most relevant to ours, as they have focused on ACC and
addressed the drawbacks that affect traditional ACC approaches.

In this context, among the various possible ML approaches, (D)RL has been often
applied, because of its effectiveness in dealing with control problems in dynamic and
partially observable environments. Further, the survey in [15] validates the effectiveness of
(deep) reinforcement learning models in vehicle longitudinal control systems. (D)RL models
provide an edge over their counterparts, which suffer from the lower variety of scenarios
recorded in complex road environments. The reward function of a (D)RL framework is
a critical component in the DRL agent’s learning process, as it allows the agent to assess
its performance in different states and learn the optimal strategy. In particular, ref. [16]
shows that the usage of sparse rewards can result in instability and policy convergence to
non-optimal solutions. We remark that, in contrast to earlier work [17], we have defined a
continuous reward function in our model in order to address the aforementioned issues and
successfully determine the ideal trade-off between efficiency, safety, and driving comfort.

The study in [7] presents one of the earliest research works leveraging DRL for CACC.
The framework proposed therein leverages the information acquired from the RADAR
sensor and through V2V communications to preserve the time headway with the leading
vehicle. The solution, however, limits the action space with discrete values where the
vehicle can accelerate/decelerate only with predetermined values, which may result in
oscillating behavior of the vehicle control and may not accurately represent the vehicle’s
response in real-world conditions. Further, ref. [7] considers the headway as the only safety
objective of the DRL, thus neglecting comfort and stability. This is a also major drawback
of traditional ACC solutions, which do not account for road conditions that can lead to a
dangerous situation while controlling the vehicle acceleration.

These issues are partially addressed by the DRL-based framework proposed in [6],
which deals with a continuous action space and reward function, accounting for multiple
criteria concerning time-to-collision, headway, and jerk. The major shortcoming of the
framework in [6] resides in the representation of the vehicle dynamics or the lack thereof.
Without considering vehicle dynamics, the framework’s vehicle response is inconsistent
with the vehicle’s actual performance. In addition, the representation of the RADAR
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sensor outputs is generated using the vehicle positions, as opposed to simulating a realistic
RADAR sensor. Other works proposing multi-objective functions to deal with safety
and comfort can be found in [18–20]. Even though vehicle stability under different road
conditions is an essential factor in passenger safety, none of them consider it an objective.

In the context of comfort, ref. [21] presents a comprehensive empirical analysis of
the factors affecting the comfort of the passenger when designing an automated driving
vehicle. In our study, we evaluate the influence of situational driving conditions, such as
potential collisions, on passenger comfort. A work that on the contrary focuses solely on
stability is the scheme introduced in [22]. The solution therein controls the torque vectoring
of an electric vehicle to improve vehicle stability. Ref. [22] use a discrete action space to
determine the optimal torque vectoring ratio by exploiting yaw rate and steering angle
as states.

Finally, ref. [23] presents a performance comparison between the Model Predictive
Control (MPC) and DRL for ACC. This study highlights that, being a model-based system,
the MPC requires online optimization, hence exacting a high toll in terms of computing
resource consumption for real-time applications. DRL, on the other hand, can be model-free
and produce results in a timely and efficient manner. In addition, the DRL framework
inherently captures the surrounding environment, contributing to improved performance
under control delays and sensor measurement errors. As a drawback, DRL suffers from
generalization issues. We emphasize that, based on our preliminary findings, DRL is
capable of overcoming such issues with sufficient training in various scenarios. We have
indeed tested the ACC performance of the DRL approach under different environmental
conditions and scenarios and always found that it could cope well with any of these
different situations.

Usually, (D)RL frameworks exploit well-known simulators as training environments
and validation tools to evaluate their agent’s performance; an example is the study in [17],
which utilizes VISSIM, a commercial traffic simulator. Within the scope of our study, we
utilize the capabilities of the CoMoVe simulation scheme [12], both as an environment
and a validation instrument for (D)RL agents. Compared to other virtual validation
tools [24,25], the CoMoVe simulation framework accounts for detailed vehicle dynamics
and communication models to ensure realistic simulations.

Novelty: To the best of our knowledge, we are the first to account for all relevant factors
in ACC, including the various environmental conditions that may be present in real-world
scenarios. In particular, unlike previous work, we designed our DRL framework to use a
continuous action space and consider time headway as well as the comfort and safety of the
driver and passengers, including vehicle stability. Regarding the latter, the longitudinal slip
of the vehicle has been one of our objectives to ensure vehicle stability on various types of
road surfaces. We have employed the CoMoVe framework [12] to evaluate the performance
of our DRL, which provides a realistic representation of vehicle dynamics, communication,
and traffic mobility. Further, it uses a RADAR and Vision-based sensor array to represent
the real-world sensor system.

3. Design and Implementation of the DRL Framework

In this section, we first introduce the DRL model we developed (Section 3.1); then, we
describe how the DRL model is integrated into our CoMoVe framework for its assessment
in real-world scenarios (Section 3.2).

3.1. The DRL Model

We now comprehensively present the DRL model, beginning with an overview of
DRL and then presenting the solution we created.

3.1.1. Preliminaries

In general, Reinforcement Learning (RL) is a sequential decision-making problem
in which an agent observes certain states (s(t)) as a representation of the environment
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and chooses an action (a(t)) based on the policy (π) at a given time step t. Given the
action, the environment will transition to a new state (s′) and receive a numerical value
(r(s(t), a(t))) as a reward. In RL, the interaction between the agent and the environment is
typically formulated as a discounted Markov Decision Process (MDP). The discounted MDP
can be formally defined as a tuple (S ,A,P ,R, γ) where S is the state space, A is the action
space, P is the state transition probability matrix (P a

ss′ = IP[s(t + 1) = s′|s(t) = s, a(t) = a])
conditioned to the action taken by policy π, R is the reward function (r(s(t), a(t)) =
E[r(s(t), a(t))|s(t) = s, a(t) = a]) and γ ∈ [0, 1] is a discount factor that defines the
importance of future rewards relative to the instant rewards. Policy π defines the decision-
making strategy through which an RL agent chooses an action based on the previous set of
observations. The RL agent aims to choose actions that maximize the expected discounted
reward E[∑T

k=0 γkr(s(t + k), a(t + k))] where γ is the discount rate and r(s(t + k), a(t + k))
is the immediate reward received at time step t + k.

An RL agent can utilize either model-based or model-free techniques to find the
optimal solution to a given problem. Model-based approaches properly model the en-
vironment’s transitions, where Dynamic Programming (DP)-based algorithms can iden-
tify the optimal solution. We resort to model-free solutions because, in most situations,
the state transitions of the environment are challenging to model due to the intrinsic na-
ture of the transitions. Such methods do not require a comprehensive understanding of
transitions; instead, they rely on experience samples from the environment where Monte-
Carlo Temporal-Difference (TD) Learning-based methods are applied. Q-learning [26]
and SARSA [27] are the two most popular TD model-free algorithms used to solve RL
problems. However, tabular approaches such as Q-learning become increasingly difficult
to implement when there are a vast number of states and actions, as the Q(s, a) values
must be stored for all state–action pairs. Therefore, with deep neural networks as function
approximators, Q(s, a|θ) can be used to represent the state and action value pairs, with
θ signifying the neural network’s weights. The integration of deep neural networks and
reinforcement learning techniques in Deep Reinforcement Learning facilitates the training
of a DRL agent to reach the ideal solution for complex real-world problems. In this study,
the Deep Deterministic Policy Gradient (DDPG) [11], a model-free Deep Reinforcement
Learning algorithm, is used to learn the optimal policy for the DRL-based ACC application.
It is worth noting that the DDPG algorithm is equipped to handle control action space in a
continuous domain and uses an actor-critic framework to learn a deterministic policy.

3.1.2. DRL-Based Acc Application

Figure 1 presents the high-level view of the framework we propose. The framework
is considered to be deployed in the ego vehicle, where data about the system state are
collected from local sensors as well as from neighboring vehicles, and a decision on the
desired acceleration is made.

State Space: The state space at any given time slot t comprises: (i) the lead vehicle
acceleration α(t), (ii) the headway ϑ(t), (iii) the headway derivative ∆ϑ(t), (iv) the longitu-
dinal slip ξ(t), and (v) the friction coefficient µ(t). In the state space, V2X communication
is used to acquire the lead vehicle acceleration (α(t)), and it is assumed that the ego vehicle
is equipped with an estimation mechanism to ascertain the tire–road friction coefficient
(µ(t)). The rest of the state space parameters are expressed in the following equations:

ϑ(t) =
∆Plead(t)
Vego(t)

(1)

∆ϑ(t) = ϑ(t)− ϑ(t− 1) (2)

ξ(t) =


VR

ego(t)−VW
ego(t)

VR
ego(t)

, ẍ(t) >= 0
VR

ego(t)−VW
ego(t)

VW
ego(t)

, otherwise
(3)
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where ∆Plead(t) represents the inter-vehicular distance between two car following vehicles,
Vego(t) indicates the ego vehicle’s velocity, ϑ(t − 1) and ϑ(t) are the headway values
at time t − 1 and t (respectively), VR

ego(t) and VW
ego(t) are the ego vehicle’s equivalent

rotational velocity and longitudinal axle velocity (respectively) [28], and ẍ(t) is the ego
vehicle’s acceleration at time t. Compared to [6,7], our model takes into account not just
the wheel longitudinal slip ratio but also the tire–road friction coefficient accounting for
the vehicle stability.

Action Space: The action space a(t) ∈ A, which denotes the acceleration to be adopted
by the ego vehicle, encompasses values within the range [−2, 1.47] to ensure a comfortable
ride for the driver and passengers [29]. The sampling period (τ) of our framework is set at
100 ms, with state observation and action decisions taken at each such interval.

Reward Components: We express the reward, i.e., the numerical value received by
the DRL Agent from the environment as a direct response to the DRL Agent’s action, as a
multi-objective function. Specifically, it includes three components: Headway (signifying
traffic flow efficiency), Comfort (for ride quality), and Stability (denoting safety), each
component taking values in the [−1,1] range. More formally, given state s(t) and action
a(t), the reward is given by

r(s(t), a(t)) = xhw · rhw(s(t), a(t)) + xcm f · rc(s(t), a(t)) + xstb · rs(s(t), a(t)) (4)

where xhw, xcm f , and xstb are weighting coefficients that, as detailed later, are set dy-
namically over time, and rhw(s(t), a(t)), rc(s(t), a(t)), and rs(s(t), a(t)) are, respectively,
the headway, comfort, and vehicle stability reward component at time step t. The reward
components are described in detail below.

Headway reward component: Time headway can be used as an alternative way to cal-
culate the distance between the lead and ego vehicle, and it is expressed as in Equation (1).
Although the term gap is widely used to define this time interval between consecutive vehi-
cles, in this study, we will use the term "headway", according to the recent related papers on
ACC [30,31]. The desired time headway between two vehicles is set at 1.3 s, and a headway
value under 0.5 s indicates a high risk of collision between the two vehicles [7]. However,
the headway value becomes ∞ when the ego vehicle approaches a stand-still situation,
i.e., zero velocity. This causes undesirable effects in DRL states, rewards, and the agent’s
learning progress. To overcome the issue, we have saturated the ego vehicle velocity to
2.16 m/s with the secure stand-still distance between two successive vehicles as 2.81 m [32],
and the optimal headway of 1.3 s, as reported in Equation (5).

Vego =


Vego,Vego > 2.16
V sat

ego,Vego ≤ 2.16
V sat

ego =
2.81 m
1.3 s ⇒ 2.16 m/s

(5)

A Log-Normal distribution function is used to model the headway reward component
(rhw(s(t), a(t))), which provides a maximum reward of +1 for a headway of 1.3 s and a
minimum of −1 for 0.5 s. It is formulated as

rhw(s(t), a(t)) = 2 · (Fhw − 0.5), with (6)

Fhw = 0.4944 · flognorm(ϑ(t)|ε = 0.285, σ = 0.15), (7)

flognorm(x|ε, σ) =
1

σ
√

2π
exp

(−(lnx− ε)2)

2σ2 (8)

Comfort reward component: Jerk j(t), i.e., the time derivative of the vehicle’s accelera-
tion, measures the comfort of the driver and passengers. In this work, the comfort reward
component is designed using the absolute values of the jerk with values less than 0.9 m/s3

corresponding to the best comfort, while values above 1.3 m/s3 fall under aggressive
driving behavior [29]. When j(t) increases from 0.6 m/s3 to 2 m/s3, the comfort reward
value gradually drops until it reaches -1, the lower reward limit. The desired reward
trend for jerk behavior has been formulated through the polynomial curve fitting method.
However, in critical situations, the safety of passengers is of more importance than comfort.
Thus, we consider the Time-to-Collision (TTC), which indicates the time until the potential
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collision occurs, as a safety indicator and discount comfort, instead giving priority to safety
in dangerous situations. According to European regulations, TTC ≤ 4 s indicates a critical
situation. Thus, we write:

rc(s(t), a(t)) = wcm f · f (jerk), with (9)

f (jerk) = polyfit(j(t), 9), wcm f =

{
1, TTC(t) > 4
0, TTC(t) ≤ 4 .

(10)

where wcm f is the weight indicator to disregard comfort in critical situations.
Stability reward component: The longitudinal stability is valued in terms of the

maximum tractive effort of a tire on a road contact area. According to the experimental
data, a longitudinal slip lower than 0.2 is regarded as a stable condition [33]. In this case,
a tanh function is used to represent the stability reward component. We write:

rs(s(t), a(t)) = 2.0099 · (Fstb + 1) with Fstb = tanh(−3 · ξ(t)) . (11)

Dynamic weight coefficients: The dynamic coefficients xhw, xstb, and xcm f play an im-
portant role in weighing each reward component; their values depend on the operating region,
with the ideal regions being defined as 1.25 ≤ ϑ(t) ≤ 1.35 for headway, 0 ≤ |ξ(t)| ≤ 0.2
for stability, and 0 ≤ |j(t)| ≤ 0.9 for comfort. To amplify the negative rewards, those
reward components taking values outside the ideal region are given more importance than
others. However, since the coefficients must always sum to 1, the maximum (minimum)
total reward a DRL agent can receive in time step t is still +1 (−1). In particular, we
set the dynamic coefficients in such a way that, if all reward components are outside or
inside the ideal regions, then each of them will obtain 1/3 as their coefficient. In other
cases, with one of the reward components (e.g., comfort) being outside the ideal region,
the dynamic coefficient values will be 2/3 for the comfort reward component and 1/6 for
each of the other components. Therefore, the dynamic coefficient values will sum to +1 for
all combinations, and the resulting reward will be between [−1, +1].

3.2. Integrating the Drl Model in the Comove Framework

A realistic simulation environment is vital for a DRL agent to learn the desired behavior,
which includes the movements of surrounding vehicles and environmental circumstances.
We realize such a simulation environment through CoMoVe, our sophisticated simulation
framework. The CoMoVe framework [12], shown in Figure 2, integrates widely known
simulators from Mobility, Communication, and Vehicle Dynamics domains. It combines
(i) the ns-3 simulator, with the LENA module, simulating LTE-based V2X communications;
(ii) the SUMO simulator for vehicle mobility; (iii) the MathWorks module, which models
the vehicle on-board sensors and vehicle dynamics; and (iv) the Python engine, which
serves as an interface to facilitate the exchange of data between the modules, and it also
features a DRL agent to control the vehicle’s movements.

The Python engine used a combination of Python libraries to envision efficient in-
teractions with other simulators. It includes TraCI, MATLAB Engine, and ns3 Python
bindings to interact with SUMO, extract vehicle-related information, and simulate vehic-
ular communication, respectively. Concerning the DRL state components, the ns3 V2X
communication model facilitates the reception of lead vehicle acceleration value (α(t)),
the headway (ϑ(t)) and headway derivative (∆ϑ(t)) values are computed using the velocity
and distance measurements acquired from the vehicle sensor models, and the Simulink
Vehicle Dynamic model provides the longitudinal slip (ξ(t)) and friction coefficient (µ(t))
values. The Python Engine gathers these values and provides them to the DRL framework
as observed state components. The Vehicle Dynamics Model utilizes the action (desired
acceleration) of the DRL framework as a reference signal for the lower-level controller of
the ego vehicle. The vehicle is modeled using Simulink with fourteen Degree-of-Freedom.
The key aspects of the vehicle model are an eight-speed automatic transmission, rear-wheel
driven, and a Spark Ignition engine.
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Vehicle Interface Module
(MathWorks Environment)

Driving Scenario Designer

Matlab Command Window

Simulink

DRL-ACC & 
Simula�on Control 

(Python Engine)

Network
Communica�on

Simulator 
(ns3)

RADAR &
Vision sensor

Model

Vehicle
Dynamics

Model

Simulink

TraCI

Road Scenario & 
Traffic Mobility Model 

(SUMO) Road Scenario

Road Scenario & 
 Vehicle mobility data

Vehicle & 
Sensor Data

Vehicle  
Accelera�on 

reference

CAMsControl 
Info

Vehicle 
Info

Figure 2. CoMoVe framework architecture.

4. Performance Results

Using the CoMoVe framework, we now demonstrate how our DRL-based ACC appli-
cation improves driving safety, comfort, and efficiency under various road conditions, and
compare its performance to that of traditional proportional controllers for ACC and CACC
as in [12]. In addition to the proportional controller of ACC, CACC includes a sum of the
lead vehicle’s acceleration as a feedforward signal to make the vehicle more reactive.

4.1. Reference Scenarios

We draw the reference scenarios based on the work of [18,20], which we have enhanced
by introducing the road friction coefficient, as it has a significant impact on vehicle stability.
We have divided our scenarios into two distinct traffic conditions: highway and urban.
In highway-related scenarios, the ego vehicle follows the lead vehicle on a straight road
under two conditions: (1) slippery road, with a road friction coefficient of 0.35, where
the lead vehicle accelerates/decelerates smoothly, and (2) sharp lead vehicle deceleration,
with a road friction coefficient of 0.55 and the lead vehicle decelerating by nearly −7 m/s2.
The low road friction coefficient is intended to affect only the car’s left front and rear wheels,
simulating conditions such as a wet puddle or oil leak along the roadside. Figure 3 depicts
the highway scenarios and test cases.

Lead Vehicle

Speed: 20 m/s (72 km/h)

Ego Vehicle (DRL Agent)

Speed: 20 m/s (72 km/h)

32 m patch (� = �.��)

226 m

patch (� = �) Lead Vehicle

Speed: 15 m/s (54 km/h)

Ego Vehicle (DRL Agent)

Speed: 15 m/s (54 km/h)

20 m patch (� � ��55)

60 m

patch (� � �)

Figure 3. Highway scenarios: Road condition (top) and lead vehicle acceleration (bottom) in the
slippery road scenario (left), and the sharp lead vehicle deceleration scenario (right).

In the urban environment, traffic queuing is a frequent situation that happens in
day-to-day life under different circumstances, such as crossing an intersection or sluggish
traffic movements. It is also an intriguing scenario to analyze, given its direct impact
on efficient traffic flow, and is undoubtedly a challenging scenario for traditional ADAS
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controllers. In our case, we simulate a traffic queuing scenario in which a lead vehicle
approaches a slow-moving traffic situation. The profile of the lead vehicle is designed
to drive at a rate consistent with the traffic flow; specifically, it decelerates to a lower
speed of about 1 m/s, and later it gradually accelerates to match the traffic movements.
Figure 4 illustrates the traffic queuing scenario and acceleration trend of the lead vehicle.
We adopted the same hyperparameter values as in our prior paper [34] for the DDPG
training process, with changes to the Replay buffer and mini-batch size, which were set
to 25,000 and 48 (slippery road scenario)/64 (Sharp lead vehicle deceleration and Traffic
queuing scenario,) respectively.

Ego Vehicle (DRL Agent)

Speed: 12 m/s (43 km/h)

15.6 m

Lead Vehicle

Speed: 12 m/s (43 km/h)

Queuing traffic

Figure 4. Urban Scenario: Road network (top) and lead vehicle acceleration (bottom) in the traffic
queuing scenario.

4.2. Results

We first assess in Figure 5 the system performance under the slippery road scenario.
Figure 5 shows the velocity (top left) and acceleration (top right) trend of the ego vehicle and
lead vehicle. The corresponding ego vehicle’s headway (left) and jerk (right) trend is shown
in the bottom plots of Figure 5, concerning the adopted DRL, CACC, and ACC algorithms.
The plot also highlights the desired range within which the headway should remain (black
lines), for the ego vehicle to follow the lead vehicle and improve road usage efficiency. It
is evident that the DRL approach helps the ego vehicle to maintain the headway in the
desirable range for a longer period of time compared to its alternatives (97% as opposed to
32%). Furthermore, it is essential to maintain the desired headway during the acceleration
and deceleration phases of the lead vehicle to prevent a potential phantom traffic jam
situation. Under such conditions, our DRL framework can preserve the headway in the
preferred range at all times, while the existing alternatives do so only 30% of the time. In
particular, the headway for the traditional ACC and CACC algorithms lies outside the
optimal range over 60% of the time. It must be highlighted that the time-to-collision (TTC),
a safety indicator, remains above the critical four-second threshold, regardless of whether
the headway is within the desired range or not.
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Figure 5. Slippery road scenario. Top: velocity (left) and acceleration (right). Bottom: headway (left)
and jerk (right), under DRL, ACC, and CACC.

The driving comfort is depicted in the right bottom plot of Figure 5. In the slippery
road scenario, all algorithms consistently produce jerk metric values that fall within the
desirable range, resulting in a pleasant driving experience (the latter being highlighted with
black lines). To further investigate the vehicle’s stability, Figure 6 depicts the trend of the
longitudinal wheel slip. As shown in Figure 6, the longitudinal slip remains within the safe
operating range (< ±0.2), guaranteeing the vehicle’s stability. As one can see by looking
at the plots, the better performance of the proposed DRL solution in terms of road usage
efficiency does not come at the cost of any degradation in terms of the vehicle’s stability.

Figure 6. Slippery road scenario: Wheel longitudinal slip with respect to DRL, ACC, and CACC.
The top (bottom) left and right plots represent the front (rear) left and right wheels (respectively).
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Next, we focus on the sharp lead vehicle deceleration scenario. As we can notice
from the lead vehicle’s acceleration profile in Figure 3, this scenario reflects an emergency
situation where the lead vehicle has to brake heavily under an unfavorable road or traffic
condition. Figure 7 reveals that the lead vehicle velocity (top left) dropped from 15 m/s to
7 m/s in a span of 1.5 s. As a consequence, the ego vehicle has to brake suddenly and heavily,
to avoid a collision. The performance of all three algorithms under this critical scenario are
presented in the bottom plots of Figure 7 as well as in Figure 8. The headway performance
(bottom left plot of Figure 7) reveals that the proposed DRL framework provides a dramatic
improvement with respect to the traditional ACC and CACC algorithms.

Figure 7. Sharp lead vehicle deceleration scenario. Top: velocity (left) and acceleration (right).
Bottom: headway (left) and jerk (right) under DRL, ACC, and CACC.

Figure 8. Sharp lead vehicle deceleration scenario: Wheel longitudinal slip with respect to DRL,
ACC, and CACC. The top (bottom) left and right plots represent the front (rear) left and right
wheels (respectively).
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The simulation results show that DRL can maintain the preferred headway for 55%
of the time, which represents a 19% improvement with respect to traditional algorithms.
Similarly, DRL outperforms the (C)ACC algorithms during the transient phase, keeping
the headway in its desired range 28% of the time—a considerable improvement over the
13% achieved by traditional algorithms. Furthermore, the DRL’s headway trend persists
around the desired region for a longer period of time than its alternatives. In terms of
comfort (bottom right plot of Figure 7), the jerk values occasionally exceed the preferred
region for all algorithms, whereas the DRL approach can significantly reduce the intensity
and duration of jerk spikes. We observe that, in such a critical scenario, the TTC briefly
falls below 4 s (between 5.9 s and 7.0 s) when the velocity of the lead vehicle decreases
abruptly for the DRL-based scheme; however, the fact that the headway remains above 1 s
indicates that the situation is not particularly dire. In addition, the DRL model is intended
to prioritize safety over comfort, as the jerk is only considered for TTCs greater than 4 s (as
demonstrated by Equation (10)).

In terms of vehicle stability, Figure 8 shows that traditional ACC-based approaches
have longitudinal slip values outside the desired range, resulting in the ego vehicle’s
poor performance and compromising the driver’s and passengers’ safety. On the contrary,
our DRL-based solution achieves the desired performance level, demonstrating that it
can provide an excellent trade-off between the objectives and achieve better road usage
efficiency and comfort.

In the traffic queuing scenario, as shown by the lead vehicle acceleration trend in
Figure 4, the lead vehicle slows down at a deceleration rate of 3 m/s2 in order to align with
the velocity of the urban traffic. This situation requires a similar response from the ego
vehicle to avert a potential collision and keeps the traffic flow smooth. Therefore, the DRL
agent that runs on the following vehicle (i.e., the ego vehicle) has to learn the behavior of
the lead vehicle to avoid the collision while sustaining a good and nearly constant headway
to ensure traffic efficiency. Since we are dealing with a low-velocity situation, we calculate
the headway based on the saturated ego vehicle velocity, as reported in Equation (5).

The top plots of Figure 9 depict the acceleration and velocity trend: the lead vehicle’s
velocity profile demonstrates a rapid deceleration from 12 m/s to 1 m/s in just 5 s, with sub-
sequent changes in velocity to keep up with the traffic. The headway plot (bottom left plot
of Figure 9) reveals that DRL is able to sustain the headway near the desired region more
often than the traditional algorithms: the conventional approaches indeed leave a wider
space between the vehicles, resulting in a decrease in traffic flow efficiency at lower speeds.
In terms of traffic flow efficiency, the DRL framework outperforms other approaches, as it
can sustain the preferred headway for a longer amount of time, while (C)ACC algorithms
can only sustain it briefly when the lead vehicle is cruising at a steady speed. Additionally,
during the transient phase, the DRL can sustain the desirable headway 50% of the time,
which is substantially better than the alternatives’ 4%. The Root Mean Square Error (RMSE)
comparison, which is presented in Table 1, further highlights the (C)ACC algorithm’s
significant deviation from the desired region.

In terms of comfort (bottom right plot of Figure 9), jerk values are out of the ideal
range occasionally for all algorithms. However, given the gravity of the situation, achieving
the desired headway and ensuring safety are critical, surpassing the need for passengers’
comfort. In the DRL framework, the maximum value of jerk is observed as the vehicle
approaches zero velocity. This is due to the usage of the saturated ego vehicle velocity in
the headway calculation, as stated in Equation (5), resulting in a lesser headway, which
activates the heavy braking action. Using the saturated velocity, however, is a crucial step in
controlling the vehicle at lower speeds. In terms of TTC, DRL provides a lower TTC (≤4 s)
between the time frame of the 7th to 11th second; however, given the observed speed and
headway, we can conclude that the ego vehicle is not on an imminent collision course with
the lead vehicle. Furthermore, since this scenario involves dry road conditions, Figure 10
shows that the vehicle proves to remain stable under any of the considered schemes.
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Figure 9. Traffic queuing scenario. Top: velocity (left) and acceleration (right). Bottom: headway
(left) and jerk (right), under DRL, ACC, and CACC.

Figure 10. Traffic queuing scenario: Wheel longitudinal slip with respect to DRL, ACC, and CACC.
The top (bottom) left and right plots represent the front (rear) left and right wheels, (resp.).

Table 1 provides the obtained values of RMSE as a performance index, comparing the
DRL framework against the CACC and ACC algorithms. The DRL framework substantially
outperforms the traditional approaches across all scenarios regarding traffic flow efficiency
and stability. However, in terms of comfort, the (C)ACC algorithms exhibit lower RMSE
values of jerk, and this is especially evident in the traffic queuing scenario. Nevertheless,
the higher RMSE value in the traffic queuing scenario is mostly due to the jerk when the ve-
hicle is at lower velocities. We can therefore observe that the proposed DRL framework can
achieve an excellent balance between safety, efficiency, and comfort, ultimately providing
an excellent experience for both drivers and passengers.
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Table 1. Comparison of Root Mean Square Error (RMSE) values.

RMSE

Metrics Scenarios DRL ACC CACC

Headway
(Ideal = 1.3)

Normal 0.0278 0.0638 0.073

Sharp Deceleration 0.0629 0.5298 0.6561

Traffic queuing 0.0839 1.7594 2.2911

Jerk
(Ideal = 0)

Normal 0.2111 0.1804 0.1693

Sharp Deceleration 1.846 2.471 2.5839

Traffic queuing 2.8181 1.1773 1.2699

Slip
(Ideal = 0)

Normal 0.0028 0.0029 0.0028

Sharp Deceleration 0.0071 0.0581 0.0594

Traffic queuing 0.0202 0.01 0.0115

Finally, to assess the importance of V2V communication, we remove the lead ve-
hicle acceleration α(t) from the DRL framework states and train the DDPG policy for
the traffic queuing scenario. While pre-training the model, the DRL, without the lead
vehicle’s acceleration, converged to a stabilized control policy only after 1750 iterations
and attained a maximum reward of 0.71. On the contrary, the DRL framework with lead
vehicle acceleration was able to converge on the optimal control policy in 1250 iterations
during pre-training, achieving a maximum reward of 0.76. This strongly suggests that
the lead vehicle acceleration information is a vital component of the DRL states and that
it considerably aids the DDPG algorithm learning and converging to the optimal control
policy efficiently.

5. Conclusions

We proposed a deep reinforcement learning (DRL) approach to enhance the adaptive
cruise control system in connected autonomous vehicles. The proposed strategy aims to
achieve traffic efficiency, safety (including vehicle stability), and comfort by integrating
and appropriately weighting headway, longitudinal slip, and jerk. In contrast to traditional
ACC and cooperative ACC schemes, the proposed method offers much better overall
performance. Importantly, the DRL approach outperforms the traditional CACC and ACC
algorithms in headway performance by 36% in totality and by 47% during the lead vehicle’s
speed variation phases, thus resulting in higher traffic flow efficiency under both highway
and urban conditions. In addition, the RMSE comparison reveals that the proposed method
can achieve a good balance between safety, comfort, and efficiency, maximizing traffic
efficiency and enhancing the overall driving experience. Importantly, these results have
been obtained under a realistic model of vehicle dynamics and various difficult scenarios.
Finally, we demonstrated that the information gathered via V2X communication concern-
ing lead vehicle acceleration is a crucial component of the DRL-based ACC application,
which yields significant performance improvements. As future work, we will focus on
examining the effect of the vehicle state’s estimation uncertainty on the performance of
the DRL. Furthermore, an interesting research direction consists of incorporating our DRL
algorithm in other frameworks aimed at maximizing fuel efficiency and reducing vehicles’
carbon footprint.
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