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Abstract: (1) Background: The accurate diagnosis of periodontal disease typically involves complex
clinical and radiologic examination. However, recent studies have demonstrated the potential of deep
learning in improving diagnostic accuracy and reliability through the development of computer-aided
detection and diagnosis algorithms for dental problems using various radiographic sources. This
study focuses on the use of panoramic radiographs, which are preferred due to their ability to assess
the entire dentition with a single radiation dose. The objective is to evaluate whether panoramic
radiographs are a reliable source for the detection of periodontal bone loss using deep learning, and
to assess its potential for practical use on a large dataset. (2) Methods: A total of 4083 anonymized
digital panoramic radiographs were collected using a Proline XC machine (Planmeca Co., Helsinki,
Finland) in accordance with the research ethics protocol. These images were used to train the
Faster R-CNN object detection method for detecting periodontally compromised teeth on panoramic
radiographs. (3) Results: This study demonstrated a high level of consistency and reproducibility
among examiners, with overall inter- and intra-examiner correlation coefficient (ICC) values of 0.94.
The Area Under the Curve (AUC) for detecting periodontally compromised and healthy teeth was 0.88
each, and the overall AUC for the entire jaw, including edentulous regions, was 0.91. (4) Conclusions:
The regional grouping of teeth exhibited reliable detection performance for periodontal bone loss
using a large dataset, indicating the possibility of automating the diagnosis of periodontitis using
panoramic radiographs.

Keywords: artificial intelligence; deep learning; diagnostic imaging; periodontitis; periodontal
bone loss

1. Introduction

Chronic periodontitis is a leading cause of the loss of teeth and affects about twenty to
fifty percent of the global population [1]. Detecting its progression is important to prevent
and further lessen the burden of public health. The diagnosis of periodontal conditions
is, however, complex and often requires both clinical and radiologic examination [2]. The
diagnosis of alveolar bone loss is determined based on the clinical attachment level, and a
radiologic assessment is carried out accordingly [3]. While periodontal bone loss is one of
the signs of the presence of periodontal disease and the inflammatory condition of adjacent
structures [3], radiographic assessment can provide sufficient information about the pattern
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and extent of bone loss, aiding in the detection and progression of periodontal disease [4–6].
Nonetheless, similar to clinical assessment, radiographic examination is also subject to
interobserver variation (such as between specialists or general practitioners) [7], leading
to potential errors in diagnosis that may affect the timing of treatment initiation and the
prevention of further disease-related issues in adjacent areas.

The emergence of deep learning in medical imaging has led to a growing interest in
the use of convolutional neural networks in the field of radiology. This rapidly advancing
area of research has captured the attention of many researchers worldwide [8]. Machine
learning has been used in medical imaging for decades, and with its growing popularity,
computer-aided detection and diagnosis algorithms have advanced alongside computa-
tional technologies [8]. In medical imaging, the application of deep learning has expanded
beyond organ segmentation to include lesion detection, characterization, and diagnosis.
The widespread use of deep learning has demonstrated its effectiveness and reliability in
many aspects of medical image analysis [8,9].

The incorporation of deep learning in dental radiology has enabled prompt diagnosis
and treatment planning. Recent research has concentrated on segmenting anatomical
structures and detecting dental problems, including caries, periodontal disease, periapical
lesions, sinusitis, cystic or tumor lesions, and anatomical anomalies [7,10–15]. As an
illustration, Vasconcelos et al. compared the detection of periodontal bone loss using
two imaging modalities: intraoral radiographs and cone-beam computed tomography
(CBCT) scans [6]. Additionally, Lin et al. developed an automatic detection system for the
horizontal bone loss of alveolar bone utilizing periapical radiographs [16]. Some studies
have also used dental panoramic radiographs to evaluate periodontal bone loss [4,5]. These
studies varied not only in their algorithmic methodology but also in the use of radiography.

Vasconcelos et al. found no statistically significant differences in the detection of
bone loss patterns between intraoral radiographs and CBCT scans. Nevertheless, the
use of panoramic radiographs is favored since they enable the assessment of the entire
dentition with a single radiation dose [6,15]. Modern panoramic machines are capable of
producing high-quality images that eliminate the need for additional intraoral radiographs,
minimizing exposure in cases requiring a full mouth series [13]. However, the limited
sample sizes used in previous studies indicate that larger training datasets may improve
the performance of deep learning systems [8].

The objective of this study is to develop an automated screening program for detecting
periodontal bone loss using panoramic radiographs and to evaluate its potential for practi-
cal use. The performance of deep learning in detecting periodontal bone loss automatically
on panoramic radiographs will be tested using a large dataset.

The significance of this present study lies in its potential to transform the detection
and diagnosis of periodontal disease. The null hypothesis (H0) suggests that panoramic
radiographs are not a reliable source for identifying periodontal bone loss through deep
learning, while the alternative hypothesis (H1) proposes the opposite. The study aims to
evaluate the validity of H1 and assess the feasibility of using deep learning for identifying
periodontal bone loss. The feasibility criterion is set at an AUC between 0.8 and 0.9,
indicating good performance. If the results demonstrate that deep learning is a reliable
method for detecting periodontal bone loss, it has the potential to significantly alter current
diagnostic practices in the management of periodontal disease.

2. Materials and Methods
2.1. Ethics Statement

This study was conducted with the approval of the Institutional Review Board (IRB)
of Pusan National University Dental Hospital (IRB No.: PNUDH-2020-022).

2.2. Data Set

All patients with periodontal disease who underwent examination and treatment
between January 2010 and December 2015 were identified. A dataset of 5000 panoramic
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radiographs was initially collected, but 917 were excluded due to factors such as pre-
vious maxillofacial surgery, image blurring, or noise. The final dataset consisted of
4083 anonymized digital panoramic radiographs collected using a Proline XC machine
(Planmeca Co., Helsinki, Finland), with a resolution of 2943 × 1435 pixels. The radiographic
images were collected anonymously and in accordance with the research ethics protocol.

The World Health Organization’s standardized Community Periodontal Index (CPI)
classifies the periodontal condition into 4 groups, as shown below [17].

1. Edentulous: the total absence of teeth in the region; the presence of at least one tooth
was used to demonstrate the region.

2. Normal: confined level of bone loss up to CEJ.
3. Moderate: periodontal bone loss extending beyond CEJ but limited up to furcation of

the tooth.
4. Severe: periodontal bone loss extending beyond the furcation of the tooth.

To integrate the WHO CPI into dental panorama images, our study categorized
moderate-to-severe periodontal bone loss as periodontitis, indicating the involvement of
alveolar bone loss from the cemento-enamel junction to furcation and beyond. However, in
the anterior region, we evaluated alveolar bone defects extending beyond two-thirds of the
entire length of a tooth. Once periodontitis was detected in each region, we categorized its
severity into two stages: moderate to severe, indicating the need for treatment.

In our dataset of 48,996 ROIs, 66.57%, 28.79%, and 4.64% of teeth were healthy, peri-
odontally compromised, and edentulous (Table 1).

Table 1. The distribution of three regions of interest (edentulous, healthy, periodontitis).

Class Edentulous Normal Periodontitis Total

Number 2271 32,619 14,106 48,996
Ratio (%) 4.64 66.57 28.79 100

The periodontal condition found on the panoramic radiographs, as shown in Figure 1,
was annotated in three groups (edentulous, healthy, periodontitis) by two dentists to obtain
the ground truth. The experts were trained for two months and asked to draw a rectangular
bounding box to frame each section of the molar, premolar, and anterior region (including
the crown and root of teeth), reflecting three sections of the open flap treatment. To avoid
the overlapping of boxes due to the varying axis of teeth, each section was grouped together.
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2.3. Experiment

The faster R-CNN [18] detector was used for object detection in this study. The Faster
R-CNN detector includes a region proposal network (RPN) that generates region proposals
directly within the network instead of using external algorithm-like Edge Boxes. The RPN
uses anchor boxes for object detection, which have different sizes and ratios compared
to the ground truth. Generating region proposals within the network is faster and better
tuned to the data. When the intersection over union (IoU) between the ground truth and
proposed boxes exceeds a specific threshold, the boxes are recognized as objects without
any class label. The RPN stage generates anchor boxes of various sizes and ratios, which
are then passed on as region proposals. Each box is assigned a classification score and four
coordinates indicating the object’s location. Later, the selected region proposals are fed into
the next phase, as in a fast R-CNN.

To reduce overfitting and compensate for the limited number of available datasets, the
training data were augmented by randomly flipping each image horizontally and vertically
with a probability of 0.5. Additionally, the images were randomly rotated between 0 and
60 degrees before feeding them into the deep learning model. To further enhance the
model’s robustness regarding periodontal structure and radiographic image color, the
images were also augmented by applying random brightness and contrast ranging from
0.9 to 1.1 with respect to the image color.

The performance of the Faster R-CNN was assessed for robustness using a 5-fold
cross-validation approach. For implementation, we used the Detectron2 platform (which
was built by Facebook AI research) and COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml,
which was written in PyTorch, to train and test the deep learning object detection model
on a single Nvidia RTX3080 GPU [19]. The dataset for the train and test was mapped for
the COCO format. Additionally, the training data were transformed for the augmentation
mentioned above. The Faster R-CNN utilized a pre-trained ResNet-101 architecture and
underwent 20,000 iterations of training with a learning rate of 0.001 and optimization
using stochastic gradient descent with a momentum value of 0.9 and weight decay of
0.005. A batch size of image and a batch size of ROI heads per image were set to 4 and
128, respectively. The images were resized to 1400 × 688 pixels. Every 400 iterations, a
model was evaluated on the test dataset, and the best model which showed the highest
AP50 during training was saved. The COCO Evaluator was used for measuring the
model’s performance.

In order to assess the effectiveness of the faster R-CNN object detection method in
identifying periodontally compromised teeth on panoramic radiographs, precision, recall,
and average precision (AP) were calculated by comparing the model prediction with the
correct answer for each class. This process was repeated for all classes, and the final
mean average precision (mAP) was obtained by averaging the AP results. The receiver
operating characteristics and the Area Under the Curve (AUC) were also calculated using
the Map by using the metrics function of the scikit-learn machine learning framework [20].
Additionally, any bounding box with an IoU value less than 0.5 with the ground truth was
considered a false prediction. F1-score was also evaluated in this study as follows:

• Precision = TP/(TP + FP);
• Recall = TP/(TP + FN);
• F1 Score = (2 × (Recall × Precision))/(Recall + Precision);
• TP: true positive, FP: false positive, FN: false negative, TN: true negative.

3. Results
3.1. Inter- and Intra-Examiner Correlation Coefficient

One hundred panoramic radiographs were randomly chosen and independently
measured by two dentists on two occasions within a 2-week interval. The overall inter-
and intra-examiner correlation coefficient (ICC) values were 0.94, indicating a high level of
consistency and reproducibility in this study.
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3.2. Performance Indices and Confusion Matrix

The proposed model exhibited average performance indices (precision, recall, F1-score,
Area Under the Curve) over 0.84 and 0.88 for detecting periodontally compromised and
healthy teeth, respectively. The null hypothesis H0 was rejected because the Area Under
the Curve values for detecting all three classes were over 0.88 (Table 2). All cross-validation
data are listed in Supplementary Table S1.

Table 2. Average performance indices of the 5-fold cross-validation result.

Precision Recall F1-Score AUC

whole 0.90 0.91 0.90 0.91

edentulous 0.97 0.98 0.97 0.99

healthy 0.88 0.89 0.89 0.88

periodontitis 0.86 0.84 0.85 0.88

Figure 2 shows the confusion matrix and Area Under the Curve of the first cross-
validation result, which showed the highest Area Under the Curve value. Among 9804 vali-
dation Regions of Interests (ROIs), 92% were classified correctly, while 19% of periodontitis,
8% of normal, and 4% of edentulous cases were misclassified.
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Figure 2. Confusion matrix (A) and AUC (B) curve of the first cross-validation result.

When excluding the Area Under the Curve values for normal and periodontitis in the
anterior region, the four performance indices showed a tendency to be high in the order of
edentulous, normal, and periodontitis for all regions. Additionally, the total value of the
four performance indices in each region was over 0.89, and each performance index value
showed a similar tendency across regions (Table 3). All cross-validation data with detailed
region and class information are listed in Supplementary Table S2.

Two representative cases of the Faster R-CNN object detection method were randomly
selected to demonstrate the performance of the model. The ground truth bounding box and
raw image are presented in Figure 3A,C, respectively. The results obtained from the Faster
R-CNN object detection deep learning method are illustrated in Figure 3B,D, along with
the corresponding prediction probabilities. As shown in Figure 3B, the periodontal state
of all 12 segments was correctly detected. However, in Figure 3D, the model misclassified
the periodontal state of the Lt. maxillary anterior, bilateral mandibular anterior, and
Lt. mandibular premolar areas.
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Table 3. Average performance indices of the 5-fold cross-validation result with detailed region and
class information.

All Class Precision Recall F1-Score AUC

Anterior

Edentulous 0.96 0.93 0.95 0.96
Normal 0.88 0.88 0.88 0.87

Periodontitis 0.85 0.85 0.85 0.87
Whole 0.90 0.89 0.89 0.90

Premolar

Edentulous 0.97 0.98 0.97 0.99
Normal 0.89 0.91 0.90 0.88

Periodontitis 0.85 0.83 0.84 0.87
Whole 0.90 0.90 0.90 0.91

Molar

Edentulous 0.98 0.98 0.98 0.99
Normal 0.88 0.89 0.88 0.89

Periodontitis 0.87 0.86 0.87 0.88
Whole 0.91 0.91 0.91 0.92

Total 0.90 0.90 0.90 0.91Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 11 
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Figure 3. Two representative cases of Faster-RCNN model in this study. The original panoramic
radiograph with ground truth labelling is shown in (A,C), while the bounding box output from the
faster R-CNN is shown in (B,D). The trained network effectively distinguishes between tooth and
edentulous areas and displays the predicted probability of periodontal condition as a numerical
value. In (B), all 12 segments were correctly detected, while in (D), 9 out of the 12 segments were
correctly detected.

4. Discussion

Acknowledging the presence of periodontitis is a critical step in managing patients and
preventing periodontal disease [21]. Staging and grading periodontitis can further guide
patients to receive individually customized treatment [2,5]. The primary goal of defining
staging in patients with periodontitis is to classify the severity and extent of the disease and
assess its complexity [22]. Therefore, it is appropriate to recognize detectable interdental
and clinical attachment loss greater than 3 mm in more than two teeth [2]. However,
measuring attachment loss is only possible during a clinical examination. In this study,
the assessment of periodontal disease in panoramic radiographs was carried out using the
standard provided by the WHO Community Periodontal Index probe [17], as it is easy to
adapt into X-ray images. Cemento-enamel junction and furcation involvement were used
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as landmarks to measure alveolar bone defects. With the lack of furcation in single-rooted
teeth, the compromised bone level was evaluated with respect to the entire length of the
tooth. Chang et al. [5] used panoramic radiographs to classify the stages of periodontitis
and the extent of the disease by calculating the percentage rate of alveolar bone loss in
relation to its ratio of the intersection length of the periodontal bone level and the other
cemento-enamel junction level. The stages of this study were determined according to
the criteria proposed at the 2017 World Workshop 4 on the Classification of Periodontal
and Peri-implant Disease and Conditions [2]. To effectively communicate and include
the status of the disease, the stage or severity can aid in the management of periodontitis.
Regarding the severity of periodontitis, terms such as mild, moderate, and severe may be
subjective. These descriptions may not be straightforward but can be used in the clinical
interpretation of one’s condition as a whole. In fact, severity is frequently defined based on
the measurement of clinical attachment loss as slight, moderate, and severe. Radiographic
examinations are often used to categorize teeth affected by mild, moderate, or severe
periodontitis in many cases [2]. Therefore, despite its subjectivity, it is adequate to inform
clinicians about the general condition of periodontally compromised teeth.

Numerous studies have been conducted to investigate the accuracy of various imaging
methods in dentistry, which still remain to be controversial [23–26]. Cone beam CT is
necessary for assessing vertical bone height with respect to the lingual and buccal, but
for general bone defect detection, no clear differences were observed between 2D and 3D
images [6]. In dental radiology, a panoramic radiograph is typically used to screen patients
during their initial visit to the clinic. This method provides information about the entire
dentate, alveolar bone, and dentomaxillofacial anatomies of both upper and lower jaws with
minimal time expense. Therefore, when a panoramic radiograph is taken, the assessment
of the general condition of the periodontal bone is invaluable. The amount of alveolar bone
loss and the severity of periodontitis require different therapeutic approaches [13].

Recent studies have proposed that both 2D and 3D X-rays are now being processed
with technological innovations for deep learning in medical therapy [8]. Akesson et al. [26]
compared the accuracy of measuring pocket depth using panoramic radiographs, intraoral
radiographs, and actual probing depth. The study revealed that all images underestimated
bone loss, but the difference between the measurements ranged within 1 mm. Regan and
Mitchell reported their radiographic errors in 115 cases compared to gross measurement.
The largest error between the actual bone height and the radiographic interpretation was
1.6 mm, indicating that the errors were within an acceptable range and justifiable [22].
Therefore, the stage interpreted based on a panoramic radiograph is representative in
the clinical setting to initiate and help guide patients to receive treatment. We aimed to
integrate the WHO CPI with dental panoramic images despite the challenges posed by
the inherent low image sharpness and superimpositions in panoramic radiography. To
achieve more reliable and reproducible results, we decided to classify moderate-to-severe
periodontal bone loss as periodontitis.

The development of a deep learning algorithm for detecting periodontal disease can
be complex due to the unique nature of the oral cavity and dentition [2]. Factors such as the
different numbers of teeth, quadrants of jaws, and various grading systems for periodontitis
can result in different approaches to developing algorithms. Furthermore, the method of
detection may differ in defining the region of the affected area. While some studies focus
on examining each tooth axis and periodontal bone [5], others generate anchor boxes to
define the region of each tooth with respect to the adjacent alveolar bone [21].

To create an efficient and reliable diagnostic dataset, grouping the dentition is often
considered. Grouping the dentition into anterior, premolar, and molar regions or dividing
it into four quadrants is generally used when planning periodontal flap operations [13].
Sectioning of the dentition is also applied to overcome difficulties in taking all varying axes
of the tooth and to increase efficacy in producing a dataset. Therefore, for both efficient
examination and high clinical applicability, we divided the whole dentition into anterior,
premolar, and molar regions.
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According to this classification of regions of interest (ROIs), the best results were
obtained through augmentation according to random rotation between 0 and 60 degrees.
This suggests that the rotation angle of each tooth or ROI is under the range of 60 degrees
from the vertical axis. Thus, this rotational parameter is suitable for building a robust
model in response to augment diverse cases in a real population for the purpose of this
study. In another experiment applying the image transformation of CLAHE (Contrast
Limited Adaptive Histogram Equalization) to overcome the limitations of the study, we
were unable to achieve better results. This may be due to the imbalance in the quality of
individual or entire radiographic datasets. These innate shortcomings cannot be resolved
by this study alone. To deal with higher resolution images, the use of more powerful GPUs
with lots of memory might help to solve this limitation.

The study demonstrated a precision of 0.86 and recall of 0.84 in detecting periodontitis
using the largest dataset comprising of 48,996 ROIs, which is consistent with the findings
of Thanathornwong’s study that showed an average precision of 0.81 and recall of 0.80 [21].
These results indicate that the regional grouping of teeth is a reliable approach for detecting
periodontal bone loss according to the new criteria proposed at the 2017 World Workshop 4.
Furthermore, the high-performance index values over 0.84 for both the edentulous and
tooth areas indicate that the trained network can effectively distinguish and recognize
between the tooth and alveolar bone (edentulous) areas. Additionally, the similar detec-
tion performance of the three classes regardless of the tooth’s location suggests that the
learned network can effectively detect periodontitis, regardless of the tooth’s position. The
results showed high consistency and reproducibility with an inter- and intra-examiner
correlation coefficient (ICC) value of 0.94. The proposed deep learning model demonstrated
high performance indices (precision, recall, F1-score, Area Under the Curve) in detecting
periodontally compromised and healthy teeth. The confusion matrix and Area Under
the Curve showed a high level of correct classification. Overall, the study demonstrated
the potential of deep learning models in accurately detecting periodontal disease from
dental radiographs, but further improvements are needed to reduce misclassifications and
increase the accuracy of the model.

Incorporating panoramic radiographs into the initial screening for periodontal disease
may lead to faster diagnosis. Our deep learning program can save both healthcare providers
and patients time and cost during clinic visits. Further development of the algorithm into
a simple cellphone application can also be considered for the interest of public health.
Individuals with limited time for dental visits can take a panoramic radiograph and
input it into the application to assess their periodontal disease status. This approach may
also increase patients’ awareness of their current status of periodontal disease since they
have access to their own radiographic images. As the public’s dental intelligence grows,
supplementing deep learning algorithms with public access can aid in the detection of
periodontitis and alveolar bone loss, providing a reliable diagnostic tool for dentistry.

The limitation of this study is related to the imaging properties of panoramic radiogra-
phy, which may have an impact on the diagnostic performance for assessing periodontitis
due to the innate low image sharpness and superimpositions [22]. Since periodontitis is a
complex disease that requires attention to multiple aspects of bony defects, accuracy may
also be enhanced by training the AI with the combined training of panoramic radiographs,
cone beam CT scans, or intraoral radiographs. Future studies can improve diagnostic
accuracy by incorporating these modalities of radiographic examinations. Additionally,
supplementing clinically measured levels of attachment loss will enable the AI algorithm
to produce more precise and valid diagnostic information.

5. Conclusions

The detection and management of periodontitis is an essential aspect of patient care,
with staging and grading of the disease enabling personalized treatment plans [13]. The pri-
mary purpose of periodontitis staging is to evaluate the severity, extent, and complexity of
the condition [2]. In contrast to previous studies that have utilized alternative radiographic
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sources, such as cone beam CT and intraoral radiographs [5–7], our study has demonstrated
that panoramic radiographs provide reliable information on the general condition of the
periodontal bone. Furthermore, by categorizing the dentition into anterior, premolar, and
molar regions, it was able to facilitate the creation of an efficient and reliable diagnostic
dataset. Our deep learning algorithm can accurately detect alveolar bone loss, a hallmark of
progressive periodontitis, from panoramic radiographs, improving diagnostic accuracy and
efficiency. While other methods such as dental cone beam CTs and standard radiographs
have improved their ability to detect alveolar bone loss, their cost and time-effectiveness
can pose issues for routine check-ups. In contrast, panoramic radiographs capture all teeth
in a single image and can be a viable option for detecting periodontal disease progression
with the assistance of artificial intelligence. The regional grouping of teeth can also aid in
the detection of periodontal bone loss, further improving diagnosis accuracy and efficiency.
Integrating the deep learning algorithm with panoramic radiographs for periodontitis and
alveolar bone loss detection can provide a reliable diagnostic tool for the dental field.
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