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Abstract: In recent years, the end-to-end speech recognition model has emerged as a popular alterna-
tive to the traditional Deep Neural Network—Hidden Markov Model (DNN-HMM). This approach
maps acoustic features directly onto text sequences via a single network architecture, significantly
streamlining the model construction process. However, the training of end-to-end speech recognition
models typically necessitates a significant quantity of supervised data to achieve good performance,
which poses a challenge in low-resource conditions. The use of unsupervised representation signifi-
cantly reduces this necessity. Recent research has focused on end-to-end techniques employing joint
Connectionist Temporal Classification (CTC) and attention mechanisms, with some also concentrating
on unsupervised presentation learning. This paper proposes a joint supervised and unsupervised
multi-task learning model (JSUM). Our approach leverages the unsupervised pre-trained wav2vec
2.0 model as a shared encoder that integrates the joint CTC-Attention network and the generative
adversarial network into a unified end-to-end architecture. Our method provides a new low-resource
language speech recognition solution that optimally utilizes supervised and unsupervised datasets by
combining CTC, attention, and generative adversarial losses. Furthermore, our proposed approach is
suitable for both monolingual and cross-lingual scenarios.

Keywords: end-to-end speech recognition; multitasking learning; supervised learning; unsupervised
learning

1. Introduction

Recent advances in deep learning architectures with a high degree of parameterization
have led to the development of end-to-end approaches, which have demonstrated their
effectiveness in achieving state-of-the-art performance in automatic speech recognition
(ASR) tasks, as shown in several studies [1–3]. However, end-to-end speech recognition
technology is fundamentally data-driven and necessitates a significant amount of super-
vised data to achieve satisfactory performance. Unfortunately, collecting such data is a
time-consuming and expensive process, making it difficult to leverage this architecture for
training speech recognition systems in low-resource languages.

Current work on end-to-end speech recognition focuses on two approaches: CTC [4–6]
and attention-mechanism-based encoder–decoder [7–9]. CTC is advantageous as it permits
duplicate and blank labels, does not necessitate exact alignment between input and output,
and utilizes both forward and backward algorithms. However, CTC assumes independence
between the outputs of different time steps, which may not be true for some sequential
problems. On the other hand, attention-based encoder–decoders directly learn the mapping
from acoustic frames to character sequences by utilizing encoders to convert input acoustic
features into sequences of high-level hidden features. The attention module calculates
attention weights between the previous decoder output and each frame of the encoder
output, allowing the decoder to generate its output from previous output labels along
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with context vectors. At each output time step, the model emits a character based on
the input and target characters’ historical context. Attention-based codecs do not rely on
assumptions of conditional independence and generally outperform CTC without the need
for language models. Nonetheless, the model’s training is challenging due to misalignment
issues in long input sequences, and the estimated alignment in the attention mechanism is
susceptible to noise.

In the realm of computer vision and natural language processing, researchers have
been investigating various hybrid architectures [10–12] that join CTC and attention mecha-
nisms. These hybrid architectures have been shown to be effective in improving alignment
errors and accelerating convergence in speech recognition tasks [13,14]. Several studies
have successfully applied these hybrid models to such tasks. Compared to single-task
models, multi-task learning methods can train multiple subtasks of a high-level task by
sharing parameters between tasks to some degree, which enhances the generalization
ability of the original task.

This paper proposes an end-to-end system (JSUM) based on multi-task learning using
a joint loss approach inspired by previous research. In this approach, supervised learning
and unsupervised adversarial learning are considered separate tasks, and their joint loss is
used for multi-task learning. The supervised learning task uses a hybrid architecture of CTC
and attention mechanisms, while the unsupervised learning task segments unlabeled audio
using self-supervised phonetic representations and learns to map these representations to
phonemes via adversarial training. The experimental results demonstrate that the proposed
multi-task learning model can effectively utilize both supervised and unsupervised datasets
within a unified end-to-end framework, which is beneficial for improving the use of limited
data. Additionally, the results indicate that unsupervised cross-language representation
learning in shared encoders can influence the multi-task learning model’s performance and
demonstrate its effectiveness in both single-language and cross-language scenarios.

2. Related Work

In this section, we will briefly review the work related to this paper in three sections:
multilingual pre-training for speech recognition, joint CTC-Attention architecture, and
unsupervised adversarial training.

2.1. Multilingual Pretraining of Speech Recognition

A common way to improve speech recognition in low-resource languages is to train
multilingual speech recognition models. A. Stolcke et al. [15] trained features for phoneme
classification in different languages and studied the portability of these features across
domains and languages. L. Burget et al. [16] shared the parameters of a Gaussian mixture
model for multilingual speech recognition, especially in low-resource conditions, which
can be well achieved for cross-language sharing. Some work uses feedforward neural
networks [17,18] or Long Short-Term Memory (LSTM) [19] to share the parameters of a
neural network encoder to successfully apply multilingual acoustic models to low-resource
speech recognition. Facebook proposed XLSR-53 [20], a large audio pre-training model pre-
trained with unsupervised speech data in 53 languages, and demonstrated its effectiveness
in speech recognition in low-resource languages. CLSRIL-23 [21] is an audio pre-training
model based on self-supervised learning that learns cross-lingual speech representations
from the original audio of 23 Indian languages to facilitate research on speech recognition
in low-resource Indian languages.

2.2. Joint CTC-Attention Architecture

Due to CTC and attention having excelled in end-to-end speech recognition, many
researchers have thought of combining the best of the two. Then the joint CTC-Attention
architecture emerged in the work of Kim et al. [22], as shown in Figure 1. It alleviates
alignment problems using the joint CTC-Attention model within a multitasking learning
framework to improve robustness and fast convergence. This architecture outperforms the
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CTC and attention model in speech recognition tasks under real noise and clean conditions.
Deng K. et al. [14] propose a pre-trained Transformer (Preformer) S2S ASR architecture
based on joint CTC/attention end-to-end models to fully utilize the pre-trained acoustic
models (AMs) and language models (LMs). S. Liang et al. [23] used multi-language datasets
based on the joint CTC-Attention architecture for end-to-end speech recognition.

1 

 

 

Figure 1. Joint CTC-Attention architecture.

2.3. Unsupervised Adversarial Training

DR Liu et al. [24] first implemented unsupervised phoneme recognition on TIMIT [25],
a small, clean English data set for proof-of-concept experiments. Their system takes the Mel-
scale Frequency Cepstral Coefficients (MFCC) representation of speech as input. It performs
pre-processing steps that combine speech segmentation with word2vec [26] for (separately
trained) segmented audio and feature discretization with k-mean clustering. The phoneme-
based ASR system is trained by generating an adversarial network (GAN) [27] inspired
by adversarial training using discrete features of segments. In the adversarial training
framework, the ASR model acts as a generator that transcribes discrete indexed sequences
into phoneme sequences with learnable embedded tables, which are then activated by
softmax. A discriminator based on 2-layer convolution is trained to distinguish the output
of a generator from the real phoneme sequence. The goal of a generator is to output a
sequence of phonemes that is indistinguishable by a discriminator. By iteratively training
these two modules, the generator can learn to map the pre-processed feature sequence to
the phoneme sequence unsupervised.

3. Methods
3.1. Model

The multi-task learning model JSUM proposed in this paper is shown in Figure 2,
which consists of a shared encoder and two decoders. The shared encoder is wav2vec2.0,
pre-trained with unsupervised data from different languages. Each decoder tries to mini-
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mize the loss of its own task. Given an unsupervised dataset and a finite supervised dataset,
Decoder-1 and Decoder-2 can train both in our proposed model. The Decoder-1 uses super-
vised data for ASR training. The Decoder-2 uses unsupervised data for adversarial training
to reconstruct the input features for better parameter learning in the shared encoder. This
gives Decoder-2 the flexibility to leverage the large unsupervised datasets available for
better representation learning in low-resource settings.
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3.2. Loss Function
3.2.1. Joint CTC-Attention Loss

(1) LCTC

CTC is well suited for sequence modeling, and its training samples do not need to be
aligned. By introducing a blank placeholder ε, the problem of the alignment of input and
output labels in speech recognition is solved. The core idea of CTC is to allow repeated
characters and blank characters. Given an input speech sequence x = (x1, . . . , xT) and the
corresponding tag sequence y = (y1, . . . , yU), the tag sequence becomes y’ = (y1, . . . , yU)∪{ε}.
For example, if y = (d, o, g), then y’ = (ε, d, ε, o, ε, g, ε). A CTC training model to maximize
P(y|x), namely in all possible tags sequence Φ(y’) on the probability distribution of:

P(y|x) = ∑
π∈Φ(y′)

P(π|x) (1)

CTC is usually applied on top of the Recurrent Neural Network (RNN). Each RNN
output cell is interpreted as the probability that the corresponding label will be observed at
a particular time. Tags sequence P(π|x) probability output is independent of the network
and is modeled as a condition of the product of the:

P(π|x) ≈
T

∏
t=1

P(πt|x) =
T

∏
t=1

qt(πt) (2)

where qt(πt) represents the softmax of πt label in the output layer q of the RNN at time t.
The loss of CTC is minimized by the negative log-likelihood value of the true character

sequence y*:
LCTC , − ln P(y∗ | x) (3)

The probability distribution P(y|x) could be calculated before and after using the
algorithm effectively:

P(y|x) =
|y′ |

∑
u=1

αt(u)βt(u)
qt(y′u)

(4)

where αt(u) is a forward variable, representing the total probability of all possible prefixes
(y′1:u) ending with the u-th label, and βt(u) is a backward variable of all possible suffixes
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(y′u:U) beginning with the u-th label. The network is then trained with standard backprop-
agation by taking the derivative of the loss function with respect to qt(k) for any k labels,
including whitespace characters.

(2) LAtt

Unlike the CTC method, the attention model predicts each of the targets directly,
without the need for intermediate representation or any hypothesis, and based on the
probability chain rule according to the following recursion equation, directly estimates the
a posteriori probability P(y|x):

P(y|x) = ∏
u

P(yu|x, y1:u−1) (5)

h = Encoder(x) (6)

yu ∼ AttentionDecoder(h, y1:u−1) (7)

The framework of the attention mechanism consists of two RNN layers: an encoder
and an attention decoder, so it can learn sequences of two different lengths based on cross-
entropy criteria. The encoder converts x to a high-level representation h = (h1, . . . , hL) in
Equation (6). Then, the AttentionDecoder generates a probability distribution over the
character yu on h and all the characters seen previously, y1:u−1 in Equation (7). L (L < T) is
the number of frames output by the encoder. Here, a special start of the sentence (sos)/end
of the sentence (eos) flag is added to the target set so that when (eos) is issued, the decoder
completes the generation of the hypothesis. The loss function of the attention mechanism
is computed from Equation (5) as follows:

LAtt , − ln P(y∗ | x) = −∑
u

ln P
(
y∗u | x, y∗1:u−1

)
(8)

where y*1:u−1 is the correct value of the previous character.

(3) LCTC+Att

The idea of the joint CTC-Attention architecture is to train the attention model encoder
using the CTC objective function as an auxiliary task within the framework of multi-task
learning (MTL). The overall architecture of the framework is shown in Figure 1, where
the same Bidirectional-LSTM (Bi-LSTM) is shared by the CTC and the attention encoder
network. The advantage of CTC over the attention model is that its forward-reverse
algorithm can realize the monotonic alignment between the speech sequence and the label
sequence and can make the learning of the model faster. Therefore, the objective function
of the joint architecture is represented as follows by using both CTC in Equation (3) and
the attention mechanism in Equation (8):

LMTL = α1LCTC + α2LAtt (9)

where α1 + α2 = 1, and α1 and α2 are adjustable hyperparameters.
For Decoder-1, we use Equation (9) to train on the available supervised dataset to

obtain the joint CTC-Attention loss LCTC+Att.

3.2.2. Generative Adversarial Loss

In order to carry out unsupervised representation learning for Decoder-2, we use
Equation (10) to train on unsupervised data to obtain the generative adversarial loss
LGan. In the setup of this article, the original GAN target with gradient penalty, fragment
smoothing penalty, and phoneme diversity penalty is used:

LGan = min
G

max
C

E
Pr∼P r

[log C(Pr)]− E
S∼S

[log(1− C(G(S)))]− λLgp + γLsp + ηLpd (10)
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where Pr ∼ P r is the phonemized unlabeled text, G(S) is the transcribed output of the
generator representing S for the input segment of some unlabeled speech audio. The
first one trains the discriminator to assign a high probability to the true transcript, and
the second one encourages the discriminator to assign a low probability to the generator
output, where Lgp is a gradient penalty, Lsp is a smoothing penalty, and Lpd is a phoneme
diversity loss.

For gradient penalty Lgp, the training is stabilized by punishing the discriminator
with respect to the gradient norm of the input. Calculate the penalty for random samples
P̃ ∼ P̃ , which are linear combinations of real and pseudo-sample pairs of activation:

Lgp = E
P̃∼P̃

[
(‖ ∇C(P̃) ‖ −1)

2]
(11)

For the segmented smoothness penalty Lsp, k-mean segmentation of speech audio is
more fine-grained than typical phonemized transcription, and adjacent representations are
highly correlated:

Lsp = ∑
(pt ,pt+1)∈G(S)

pt − pt+1
2 (12)

For phoneme diversity loss Lpd, it helps to punish the generation network’s low usage
of some phoneme words and maximizes the entropy of the generator’s average softmax
distribution HG(G(S)) on the phoneme vocabulary of a batch of (B) utterances:

Lpd =
1
|B| ∑

S∈B
−HG(G(S)) (13)

3.2.3. Multitasking Learning Loss

For the generative adversarial loss, we only consider the loss of an unsupervised data
set, and combine the joint CTC and attention loss with the generative adversarial loss as
the loss of multitasking learning LMTL:

LMTL = α1LCTC + α2LAtt + α3LGan (14)

where α1 + α2 + α3 = 1, α1, α2, and α3 are all adjustable hyperparameters.

4. Experimental Setup
4.1. Datasets

Several corpora and languages are considered to evaluate the validity of the
proposed approach.

CommonVoice [28] is a multilingual reading speech corpus that currently has 17,127 h
of speech data in 104 languages, including English, French, German, Dutch, and Chinese,
and allows anyone to contribute their voice to it. The amount of data for each language
ranged from 2 h for Kazakh (“low resource”) to 3209 h for English (“high resource”).
For Kazakh, the Kazakh data set in CommonVoice contains 2 h of 1400 pieces of speech
data and their labels. Additionally, using the KSC dataset [29], which contains more than
330 h of Kazakh speech sounds and tags crowdsourced over the Internet, volunteers from
different regions and age groups were asked to read sentences presented through a web
browser. In total, there are 153,000 recordings from more than 1600 different devices. The
recordings were collected by people from different regions and age groups who completed
the recordings by reading sentences presented in web browsers, and all accepted recordings
were manually checked by native Kazakh speakers. Additionally, all annotations are in the
Cyrillic alphabet, and the voice is stored in WAV format. In this paper, 20 h speech data
randomly selected from the training set is used as the voice data to generate adversarial
training, and 10,000 unmatched texts from the training set are used as the unlabeled
text data. An hour’s worth of randomly selected data from KSC’s test set was used for
the evaluation.
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For unsupervised pretraining of encoders, consider 960 h of untagged data using
Librispeech [30] and 792 h of untagged data from CommonVoice in ten languages includ-
ing Kazakh: Kazakh (kk), Turkish (tr), Kyrgyz (ky), Tatar (tt), Dutch (du), Chinese (zh),
Russian (ru), Italian (it), Spanish (es), and French (fr). In keeping with the Kazakh lan-
guage, The supervised data duration for each language trained by Decoder-1 is set to
2 h, and the audio and transcription of the same data are used as unlabeled data to train
Decoder-2. The assessment duration is set according to the partitioning method proposed
by Riviere et al. [31]. The data duration for each language is shown in Table 1.

Table 1. Data duration of 10 languages in CommonVoice.

Lang kk tr ky tt du zh ru it es fr

Unsup.pretrain (h) 2 11 17 17 29 50 55 90 168 353
Sup.train (h) 2 2 2 2 2 2 2 2 2 2

Evaluation (h) 1 1 1 1 1 1 1 1 1 1

For Decoder-1 and Decoder-2, TIMIT is first used to explore the most appropriate α

setting for calculating joint loss LCTC+Att. Next, in order to explore the effectiveness of the
JSUM in the use of supervised and unsupervised learning under low-resource conditions,
experiments were conducted on several other corpora. LibriSpeech, KSC, TIMIT, and
THUYG-20 data set specifications are shown in Table 2.

Table 2. Specifications of LibriSpeech, KSC, TIMIT, and THUYG-20 data sets.

Dataset
Duration

Train Dev Test Total

Librispeech 960.9 10.7 10.5 982.1
KSC 318.4 7.1 7.1 332.6

TIMIT 2.9 0.3 0.2 3.4
THUYG-20 20.2 1.1 2.4 23.7

The TIMIT dataset contains about five hours of recordings and time-aligned phoneme
labels, a total of 6300 sounds and corresponding labels, including SX (sentences with tight
phonemes), SI (sentences with divergent phonemes), and SA (dialect sentences), with
both “match” and “do not match” settings. The training set, development set, and test set
in the “match” setting contain 3696, 400, and 192 voices and their corresponding labels,
respectively. Only SX and SI are included in this setting. For the “mismatch” setting, there
are 3000 speeches and 1000 labels separated from the training portion of the complete data
set, but these unlabeled text labels do not contain transcripts of audio data. In this paper,
the standard “matching” setting is used to explore different alphas to calculate the joint
loss LCTC+Att.

For the Uygur language, use THUYG-20 [32], an open Uygur speech database jointly
created by Tsinghua University and Xinjiang University. The database includes about 20 h
of training data and 1 h of test data. The full audio training data is used as unsupervised
data to generate adversarial learning to explore the effectiveness of the proposed multi-
tasking learning model in a cross-language setting.

4.2. Model Configuration

The encoder–decoder module of the ESPNET toolkit [33] is used to develop the
proposed JSUM that blends supervised and unsupervised adversarial learning, as shown in
Figure 2. The shared encoder uses the unsupervised, pre-trained wav2vec 2.0 model. This
pre-training process is implemented in fairseq [34]. In the wav2vec 2.0 model [35], there
are two transformer architectures: (1) Base model, with 12 layers of transformer, model
dimension is 768, internal dimension is 3072, and with 8 attention heads; (2) Large model,
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with 24 layers of transformer, model dimension is 1024, internal dimension is 4096, and
with 16 attention heads. This paper uses the Base model to pre-train the encoder. Decoder-1
consists of a single layer GRU containing 300 cells, as shown in Figure 3.
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Figure 3. Schematic diagram of Decoder-1.

Decoder-2 consists of a generator and a discriminator, as shown in Figure 4. The gen-
erator is a single non-causal convolution with a kernel size of 4. The input is a segment of
dimension 512 representing S, and the output is a |O| dimensional vector, which represents
the probability distribution on the phoneme vocabulary. The subsequent generator predic-
tions are combined and then fed into the discriminator, and the softmax normalization is
applied. The discriminator consists of three causal convolutional blocks with a kernel size
of 6 and a hidden size of 384. The input to the discriminator is the output of the generator.
The output is a single logit for each time step, indicating the likelihood that the sample came
from the distribution of the data. The generator and discriminator were optimized by Adam
using β1 = 0.5 and β2 = 0.94, respectively. The discriminator and generator were optimized
alternately during this training. The discriminator’s weight attenuation is 1 × 10−4, while
the generator does not use heavy attenuation. The discriminator’s weight decay is set to
1 × 10−4, while the generator does not use weight attenuation. The learning rates of the
generator and discriminator are set to 1 × 10−5 and 1 × 10−4, respectively, and remain
constant throughout the training process.
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In each training batch, a joint CTC-Attention loss for supervised data and a generative
adversarial loss for unsupervised data were calculated using mixed samples from both
supervised and unsupervised data sets. A total of 150 k steps were trained. In each training
step, Decoder-1 used 80 pairs of paired samples randomly selected from the supervised
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data, and Decoder-2 used 80 samples randomly selected from the unlabeled audio data
and 80 text samples randomly selected from the unlabeled text data. The entire training
process was performed on a single V100 and took about 18 h.

4.3. Unsupervised Pre-Training

For the shared encoder wav2vec 2.0, an English model (LS960h) is first pre-trained using
Librispeech’s 960 h of unlabelled audio. For comparison, a multilingual pre-training model
uses unlabelled audio in 10 languages plus 167 h of English audio training (ML960h-10).

4.4. Phonemized Unlabeled Text

TIMIT provides phonetic transcription aligned with time and annotates a set of
60 phonemes adapted from the ARPAbet system, which treats silence as a phoneme.
In addition, it includes mappings from 60 phoneme tables to 48 and 39 phoneme tables.
Phoneme error rates are usually calculated on 39 phoneme tables, and it is common practice
to map phonemic tags to 39 phoneme tables for training.

For other languages, use the multilingual text-to-phoneme conversion tool Phonem-
izer [36], which supports phoneme conversion in a large number of different languages.

In order for shared encoder representations to jointly support supervised learning
tasks and unsupervised adversarial learning tasks, Decoder-1 and Decoder-2 joint losses
are trained to predict phonemes rather than characters or words. Therefore, phoneme error
rate (PER) was used as an evaluation index in this study.

5. Results
5.1. Multitasking Learning Based on TIMIT

In the multi-task learning based on TIMIT, a shared encoder is selected to pre-train
wav2vec2.0 with 960 h of Librispeech unsupervised audio. As shown in Table 3, compared
with the situation where only CTC and attention joint loss LCTC+Att were used as the
total loss LMTL for supervised learning without the addition of generating adversarial loss
(α1 = α2 = 0.5, α3 = 0), adding generative adversarial losses (α3 increased from 0 to 0.5)
reduces the phoneme error rate.

Table 3. PER% observed for supervised training with TIMIT, with different α’s considering generative
adversarial for training Decoder-2.

α1 α2 α3 PER

0.5 0.5 0 22.8
0.6 0.2 0.2 21.9
0.2 0.6 0.2 21.4

0.33 0.33 0.33 21.1
0.25 0.25 0.5 22.6

Through the experiments with different weights of CTC, attention, and generative
adversarial loss, the phoneme error rate is 22.8% without taking generative adversarial loss
into account. With the increasing generative adversarial loss weight, the phoneme error
rate is reduced to different degrees. When the same weight α1 = α2 = α3 = 0.33, the phoneme
error rate was 21.1%, which decreased by 1.7% compared with the best α combination with
the same weight. Therefore, it can be inferred that unsupervised generative adversarial
learning as an additional task can prevent the overfitting phenomenon of the model on a
given small, supervised data set.

5.2. The Effect of Unsupervised Cross-Linguistic Representation Learning on JSUM in
Shared Encoders

For the ten CommonVoice languages selected, the pure English pretraining model
LS960h and the multi-language pretraining model ML960h-10 are used as shared encoders,
respectively. For each language, Decoder-1 is trained with 2 h of the supervised data set,
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and audio and text of the same data set are respectively used as unsupervised training data
for Decoder-2 for adversarial learning.

When using the pure English pretraining model and the multilanguage pretraining
model as shared encoders, experiments are carried out in 10 languages, respectively, by
using the JSUM. In order to be consistent with the Kazakh language, all languages used
2 h of supervised data to simulate the setting of low resources. The experimental results
are shown in Table 4. Compared with previous work, the multi-tasking learning method
proposed in this paper has significantly reduced the phoneme error rate in all languages.
Moreover, the selection of unsupervised cross-linguistic representation learning in shared
encoders also has a significant impact on the recognition effect of the proposed multi-
tasking learning model. It can be observed that the phoneme error rates of ML960h-10 and
LS960h are 0.6% and 2.2% lower than those of low-resource languages such as Kazakh and
Turkish, respectively.

Table 4. PER% of multi-tasking learning for ten languages with LS960h and ML960h-10 as
shared encoders.

Model Language
kk tr ky tt du zh ru it es fr

Baselines from previous work (Unsupvised pretraining)

m-CPC [28] - 49.7 40.7 44.0 44.4 55.5 45.2 42.1 38.7 49.3
m-CPC [28] - 47.3 41.2 42.0 42.5 55.0 43.7 40.5 38.0 47.1

Fer et al. [37] - 43.4 38.7 42.5 47.9 54.3 45.2 39.0 36.6 48.3

Our monolingual and multilingual models

Encoder
LS960h 22.3 16.3 13.8 12.3 20.6 29.9 19.7 20.2 13.7 22.4

ML960h-10 21.7 14.1 11.2 10.4 18.9 27.6 15.8 16.5 10.8 18.3

5.3. Speech Recognition for Kazakh under Low Resource Conditions

This paper explores the effectiveness of the JSUM in using supervised learning and
unsupervised learning under the condition of low resources and uses ML960h-10 as a shared
encoder. Using 2 h of Kazakh language data from CommonVoice (Kk-Sup2h) as supervised
data, all experimental results were conducted on 1 h of randomly selected data from the
KSC test set.

As shown in Table 5, when training the model using only supervised data, the
phoneme error rate is 22.8%. When generative adversarial loss is added, the phonemic
error rate decreases by 1.1%, which is consistent with the experimental results in Section 5.2.
At this time, supervised data Kk-Sup2h is also used for generative adversarial learning, but
text labels are scrambled and phonemized to be the text data required for unsupervised
adversarial learning. In each training batch, a mixture of samples from both supervised and
unsupervised data was used. For supervised data, only joint CTC and attention losses are
calculated, and for unsupervised data, only generative adversarial losses are considered.

Table 5. PER% of multi-tasking learning for Kazakh under low resource conditions in single-language
and cross-language settings.

α1 α2 α3 Supervied Train Unsupervied Train PER

0.5 0.5 0 Kk-Sup2h - 22.8
0.33 0.33 0.33 Kk-Sup2h Kk-Sup2h 21.7
0.33 0.33 0.33 Kk-Sup2h KSC-Unsup20h 21.2
0.33 0.33 0.33 Kk-Sup2h THUYG-Unsup20h 21.4

In the monolingual environment, unsupervised data from other data sets are considered
to improve the model’s performance. Additionally, 20 h Kazakh voice frequency data (KSC-
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unsup20h) is randomly selected from the training set of KSC as unsupervised data, and 10,000
unmatched training set texts are used as unlabeled text data. In this setting, the phoneme
error rate was 21.2%, 0.5% lower than without any additional unsupervised data set.

In order to demonstrate that the JSUM can be adapted to cross-language settings, un-
supervised data with phonemically similar features to Kazakh are used. Uygur and Kazakh
belong to the Turkic language family of the Altaic family. To do this, consider training the
model with THUYG-Unsup20h as unsupervised data and Kk-Sup2h as supervised data.
It can be seen that, although the recognition effect is slightly worse than using additional
same-language data, the phoneme error rate is reduced by 0.3% compared with using only
the supervised data set, indicating that the JSUM is effective in cross-language settings
under the condition of low resources.

6. Conclusions

In this paper, we propose JSUM, a multi-task learning ASR model that joins supervised
learning and unsupervised learning. It can leverage data from supervised and unsupervised
sources to maximize available resources. In the experiment of this paper, unsupervised pre-
training and multi-task learning methods are preliminarily combined. As for the proposed
joint learning method, it includes CTC, attention, and generative adversarial losses. First,
we explore the most appropriate weight allocation between losses in JSUM. Then the shared
encoder is pre-trained using single-language and multi-language settings, respectively. We
also used ten languages in CommonVoice to simulate low-resource settings. Experiments
have shown that JSUM can effectively reduce the phoneme error rate in these ten languages
under low-resource conditions. Unsupervised cross-language representation learning in
shared encoders also significantly impacts the multi-tasking learning model. The multi-
language shared encoder can achieve a lower phoneme error rate than the pure English
shared encoder. Finally, through the experiment with the Kazakh language under the
condition of low resources, we find that using additional unsupervised datasets in JSUM
can also improve the recognition effect. By using unsupervised data sets of languages
with language similarity, we further demonstrate that using similar language data in a
cross-language setting can enhance the performance of our model. In future work, we will
investigate different architectures that are likely to improve performance.
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