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Abstract: Regarding enterprise service management, optimizing business processes must achieve a
balance between several service quality factors such as speed, flexibility, and cost. Recent advances
in industrial wireless technology and the Internet of Things (IoT) have brought about a paradigm
shift in smart applications, such as manufacturing, predictive maintenance, smart logistics, and
energy networks. This has been assisted by smart devices and intelligent machines that aim to
leverage flexible smart Enterprise Resource Planning (ERP) regarding all the needs of the company.
Many emerging research approaches are still in progress with the view to composing IoT and Cloud
services for meeting the expectation of companies. Many of these approaches use ontologies and
metaheuristics to optimize service quality of composite IoT and Cloud services. These approaches
lack responsiveness to changing customer needs as well as changes in the power capacity of IoT
devices. This means that optimization approaches need an effective adaptive strategy that replaces
one or more services with another at runtime, which improves system performance and reduces
energy consumption. The idea is to have a system that optimizes the selection and composition of
services to meet both service quality and energy saving by constantly reacting to context changes. In
this paper, we present a semantic dynamic cooperative service selection and composition approach
while maximizing customer non-functional needs and quickly selecting the relevant service drive
with energy saving. Particularly, we introduce a new QoS energy violation degree with a cooperative
energy-saving mechanism to ensure application durability while different IoT devices are run-out of
energy. We conduct experiments on a real business process of the company SETIF IRIS using different
cooperative strategies. Experimental results showed that the smart ERP system with the proposed
approach achieved optimized ERP performance in terms of average service quality and average
energy consumption ratio equal to 0.985 and 0.057, respectively, in all simulated configurations
compared to ring and maser/slave methods.

Keywords: ERP; services composition; QoS optimization; context-aware; IoT-Fog cloud service
ontology; multi-agent strategies; improved NSGA-II algorithm

1. Introduction

The Internet of Things (IoT) is a technology recently introduced in the industrial
field to provide many services facilities, including data collection for service monitoring
and analysis, control, and maintenance. Thus, this technology is revolutionizing the
ways factories and industrial organizations improve their tasks. With the technological
development in the IoT industrial world, emphasis has been placed on designing advanced
industrial applications, including manufacturing, predictive maintenance, smart logistics,
and energy networks.
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For Enterprise Resource Planning (ERP) [1], the Industrial Internet of Things (IIoT) is
crucial as it can provide support for widespread business tasks, including smart tracking
items, a smart Cloud ERP system using warehouse robotics and drone deliveries, and
so on. With the fast advances of Cloud computing and IIoT, we have witnessed many
paradigms to assure the quality and safety of many business tasks. Those solutions provide
essential advantages for significant quality enhancement of business outputs and services.
Moreover, Cloud and IIoT can provide smart and flexible ERP deliveries, which have
become a great shift for Small and Medium Enterprises (SMEs). Nevertheless, the difficulty
lies in mastering the evolution of customer needs as well as the considerable growth
in the number of IoT devices that include heterogeneous smart sensors. These devices
significantly increase the amount of data exposed to processing. Therefore, it is crucial for
ERP when managing an increased number of IoT devices, including CPU load, latency,
bandwidth, and energy.

On the other hand, a great deal of network latency and congestion is managed through
Fog computing. This is a new computing model, which is placed between the Cloud and
IoT devices, and is a very important solution for facilitating the deployment of relevant
IoT services. Furthermore, it is essential to know that the selection of relevant services is
not a standardized solution. It can vary according to specific enterprise needs [2]. To reach
the goal, more advanced and intelligent techniques might be used via the exploitation of
additional semantic information to effectively select and compose services among a large
number of service candidates.

To this end, researchers shift out to support intelligent QoS-aware service selection and
composition approaches as a solution that could make a significant contribution to deal with
a wide range of IoT, Fog, and Cloud services. Furthermore, selecting and composing services
can be achieved in three main ways: (1) ontologies [3–9], (2) metaheuristic [10–21], and (3) IoT-
Fog enabled services [22,23]. Each one of them has its advantages as well as its drawbacks.
Recently, Polyakov et al. [24] proposed an approach to estimate the QoS of composite
services based on intuitionistic fuzzy sets. The importance of the proposed approach is due
to the fact that it can be applied to all types of service systems. What can be deduced from
techniques mentioned is that none of them can achieve an optimum consensus between
QoS, energy, and execution time. These techniques are not efficient and flexible enough to
support service failures, and none of them can achieve an optimum consensus between
service quality, service speed, service cost, continuous changes of customer’s needs, limited
device energy, etc. In fact, they consume a large amount of processing time to intelligently
find optimal composite services. Furthermore, existing works lack a parallel strategy that
effectively finds relevant services, customizes ERP business processes, and improves the
quality of the solution. A hybrid dynamic multi-agent system that combines both genetic
and cooperative agents can solve the optimization of the service composition problem in an
acceptable amount of time. A multi-agent system can discover and select relevant services
by launching many intelligent agents to potential sites based on the ontology of the IoT-Fog-
Cloud semantic service model in order to optimize when composing business processes
both in terms of QoS and energy. In addition, smart and mobile devices with limited
energy for the deployment of services should not be neglected. The most striking case is the
exponential increase of heterogeneous IoT-based services and the continuous evolution of
various business requirements based on both users’ requirements and preferences. So, it is
difficult to obtain ideal customization results of ERP systems and realize an effective service
selection and composition method for ERP applications. There is thus a requirement to
explore the relative importance of a semantic-based constraint violation strategy to ensure
energy saving in IoT devices.

We focus on semantic web technology, smart devices, and, especially, the fragmented
system process of enterprise departments using cooperative intelligent agents, which are
widely used despite the fact that the advantages of these technologies can help us to build
an effective and efficient business process management model.
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1.1. Research Gaps

Despite the significance of the IIoT for the flexibility of smart ERP, many such tech-
nologies frequently do not include both QoS and energy attributes. This is because both
customer needs and the energy capacity of IoT devices are frequently not considered in
existing smart ERP management approaches. As business tasks are influenced by their
quality energy contexts, it is important to manage such services and energy contexts during
the selection and composition of appropriate services at the runtime.

1.2. Motivations and Contributions

This paper presents an efficient and effective cooperative method for smart ERP IoT-
Fog-Cloud service selection and composition. It extends the CCS-2S component of the
global framework architecture introduced in [25] to enhance the precision and optimize
the execution time of IoT with Fog and Cloud services composition in order to offer useful
and optimal business processes depending on the user’s QoS constraints and contextual
preferences. In particular, we introduce a new QoS energy violation with a leverage energy-
efficient cooperative strategy. Since there exist different types of cooperative strategies for
service composition, we propose a QoS-Energy aware multi-agent strategy, which leverages
relevant services in the selection phase and optimizes energy consumption. The proposed
study is very important because it is carried out in one of the new research fields, especially
in light of the improvement of distributed business processes in Algerian companies, since
semantic-based context-aware strategies can help to filter business services that violate
both energy and customer constraints. An evaluation was undertaken of the proposed
method using several kinds of agents through the IoT business process of the IRIS company
in Setif city in Algeria. The study achieved promising ERP performance in terms of QoS
and saving energy. The contributions to this dynamic and adaptive smart ERP are outlined
as follows:

• We extend the previous model of CxQSCloudSERP ontology [25] with a variety of
industrial IoT concepts such as robotics, drones, I-IoT, etc. for describing rich informa-
tion of ERP services to ensure shifting and business agility. It enables the classification
of services by category, role, QoS, and energy consumption.

• We propose a Semantic Context-aware Agent-based Concrete Composite Service with
three stages (SCwA-CCS-3S) for smart ERP to accelerate the service composition task
and offer customers a flexible personalized smart ERP.

• We propose an improved SCwA-CCS-3S, which provides a three-stage composition
and optimization process. First, we introduced a novel dominance relationship with a
new QoS energy violation degree through NSGA-II (Non-Dominated Sorting Genetic
Algorithm II) [17]. Intelligent cooperative agents aim to quickly discover available
composite services that meet customer’s constraints. We then selected a composite
service (concrete Business Process) among the set of all generated composite services,
according to customer’s QoS preferences. Finally, we adapted a composite service
for managing unpredicted events, such as changes of customers’ QoS needs, critical
sensor events, and low latency that have stopped working.

• The proposed approach targeted the problem of agility and dynamicity of ERP in IRIS
Setif Company of Algeria. It is based on different cooperative multi-agent strategies to
compose business services quickly and inexpensively.

1.3. Organization of the Paper

The organization of this paper is as follows. Section 2 presents a motivating case
study. Section 3 provides a review of different service composition solutions. An extended
CxQSCloudSERP ontology model is introduced in Section 4. Section 5 describes the
problem description. The proposed framework is detailed in Section 6. Section 7 presents
experiments and the interpretation of results. Finally, the last section concludes this work.
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2. Motivating Case Study: IRIS SETIF Company

In order to create a clear scientific vision of the research problem, this section analyses
the IoT services and fog computing to illustrate their utility and effectiveness in distributed
business processes using a real-life scenario. This scenario is based on the production
and transport business processes of IRIS Company of SETIF city, Algeria. This company
manufactures electronic products and provides wheels and mobile IT services to clients.
These services are accessible through the IRIS Web portal. The IRIS services are hosted on
a Cloud provider using the SaaS service type to provide additional support for services
that are not in-house. This is illustrated in Figure 1, which covers the Cloud and the user
application layers. A centralized Cloud ERP proxy selects and composes quality Cloud
services based on IRIS company’s needs and execution context. The Cloud ERP proxy,
however, is in charge of satisfying the company’s needs and preferences, deploying and
maintaining ERP business processes. When the number of requests becomes enormous, it
slows down the execution speed of the Cloud ERP proxy with considerable latency and
can thus influence the QoS.

Figure 1. Cloud-based ERP production business process for IRIS.

Besides, IRIS is facing a continuous increase in business and suffering from resource
limitations that can lead to production delays and significant economic losses to control
raw materials and products in many different sites with different storage conditions of
its growth cycle. Thus, its current traditional Cloud ERP software has become inefficient
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and lacks flexibility and efficiency in production and transport management services. To
overcome these constraints, it is necessary to modernize current traditional Cloud ERP
services and introduce modern technologies, such as industrial IoT services, in this company
to improve production and adopt effective transport. Many of benefits of industrial IoT
that have been identified include: (1) robots to optimize the transport of raw materials
and products on different locations, (2) smart sites equipped with sensors and actuators to
ensure remote control of suitable storage conditions for growing products, (3) production
time and energy cost optimization to effectively transport the appropriate quantity of raw
materials, and (4) synchronization and monitoring of different robots with ERP services.
We aim to dynamically integrate industrial IoT with existing production and transport
management processes. All the challenges faced by integrating industrial IoT with existing
Cloud ERP are as follows:

• How could we integrate different mobile robotics and monitoring services to ERP?
• How to choose reliable IoT services to be used in Cloud business processes to get

better QoS at optimized cost?
• How can we manage the increase in IoT services while increasing the amount of data?
• How would manage data among IoT services and Cloud ERP affect latency and QoS?

As services can be heterogeneous, there will be different data formats. Furthermore,
different types of protocols might be used. Thus, it will be difficult to integrate such robotics
and compose them with existing business processes. To handle these problems, a semantic
ontology model is proposed. The ontology undertakes this problem by hiding a large
amount of heterogeneous IoT data and their different communication protocols. However,
the selection and integration of quality IoT services are still difficult and differ according
to the context of ERP application, time constraints, and evolution of the QoS needs and
preferences of the company (non-functional needs and preferences). For example, an IoT
service that detects incorrect data in real-time can cause a service failure or synchronization
problem detection. Thus, it increases the complexity of IoT integration to the business pro-
cesses. If the complexity of the ERP business processes augments using the semantic model,
the most efficient way to resolve it is to combine IoT-Fog-Cloud services with the semantic
web and multi-agent approach to make the business processes dynamic and optimal for
every QoS and context change. Furthermore, Cloud-based ERP requires a high execution
time to integrate and select quality services from a large candidate service and further
requires both high IoT data processing and transmission time. A slight execution time and
transmission delay mismatches the SLA agreement. To handle such a scenario, fog comput-
ing provides better QoS for production and transports IoT Cloud-based business processes.
Finally, the estimation of the QoS of different services should meet comprehensive model
normalization for appropriate prediction and management of QoS in ERP.

Figure 2 shows the use of an intelligent agents-based ontology to discover and select
relevant services according to customer’s needs, as well as fog components to improve
QoS and transmission delay and reduce Cloud access by delocalizing business services at
decentralized fogs. The proposed research work needs to provide:

1. A description of IoT services with richer semantic information for seamless integration
with ERP business processes. Moreover, they need to integrate mobility-related
features to represent mobile devices and monitor context changes in their locations.

2. The management of business processes efficiently and the optimization of QoS needs
and preferences (i.e., the parallel discovery of services and effectively optimizing
business processes based on context-aware multi-objective QoS attributes using multi-
agent strategies).

3. Context monitoring (e.g., customer’s needs, enterprise, and services) and the manage-
ment of various adaptation tasks on multiple business process parts using a dynamic
parallel strategy (e.g., easy replacement of a service with another equivalent, fast inte-
gration of new composite IoT service, and continuous discovery of available enhanced
services to ensure the quality of ERP).
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Figure 2. Proposed IoT Cloud-based ERP production business process for IRIS.

3. Related Work

In this section, we will review recent ontology models and optimization approaches
related to IoT and Cloud ERPs. Most recent multi-objective optimization approaches can
ensure Cloud ERP services description in general and integrate IoT services in particular.
However, related works suffer from various limitations, including the energy of IoT device
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management and control in the context of business processes. Our work is based on
semantic multi-objective optimization for QoS and energy efficiency for IoT-Fog-Cloud
ERP using NSGA-II multi-agent cooperation.

3.1. Ontology Models for Representation of IoT and Cloud ERP Services

Our work deals with a semantic dynamic approach that produces and optimizes
context-aware IoT business processes for industry 4.0 based on an ontology model and
multi-agent strategies. Many IoT and Cloud ERP ontology models have been proposed
in recent decades [3–9,25,26]. They have been used for different business domains but
do not have enough concepts to manage context-aware constraints, describe all business
changes, and manage quality semantically equivalent IoT services. However, they all share
the following issues: (1) low coverage of business domain-independent semantic service
information that describes the Cloud, Fog, and IoT services; (2) lack of consideration of flow
sharing (e.g., data flow sharing, event flow sharing), sensor mobility, and usage constraints
(e.g., service dependency, energy consumption, and time-space service accessibility), which
helps to reduce the impact of context changes on service composition. We distinguish
three main categories: IoT-based ontology model, Cloud ERP services ontology model, and
combine both ontology models.

Andročec et al. [3] proposed an ontology model for digitalizing different business
activities, including IoT services and Cloud ERP APIs. They aim to integrate IoT with
various Cloud ERP APIs that can be used to add automated functionalities to ERP systems.
They connect various resources with IoT devices and integrate them with Cloud ERP APIs
in one module. However, this model neither includes the semantic concepts of contextual
management constraints and preferences nor the execution context. Moreover, this work
does not consider the classification of Cloud ERP APIs and neglects the semantic grouping
of IoT services by functionality, category, role, and QoS, which is considered very important
in services selection.

In [4], the authors present a new ontology model called OntoSLAM based on au-
tonomous robots for solving simultaneous localization and mapping (SLAM). It described
all aspects related to autonomous robots as well as temporal–spatial movement regions.
They integrated it into the Robot Operating System (ROS) to increase the application
flexibility. The ontology model relies on many ontology models, including ISRO ontol-
ogy [5], POS ontology [6], CORA ontology [7], and KnowRob ontology [8], which leads
to standard robotics metadata. However, the authors wasted most of their work in the
classification of robots and physical things, and hence it neglected significant contextual
and QoS constraints for efficiently managing robotic services.

Authors in [9] used semantic Web and ontologies (OWL-S and SAWSDL) for describing
OPC UA industrial applications to ensure semantic service annotation and interoperability.
The approach builds a common ontology that integrates the production abstract services
with concrete IoT-based services. Concrete services will be used on the shop floor. This
common ontology makes the approach more interoperable in all levels of automation and
infers the potential information. It provides relevant information accurately that helps
to describe business processes. Unfortunately, it suffers from contextual information and
custom conditions at each stage of the production business process.

3.2. Service Cloud Composition and Optimization

The first research domain is related to techniques for the dynamic composition of
Cloud services. Three main categories of approaches are distinguished: constraints-
based [26,27], semantic-based [28,29], and metaheuristic-based [30,31]. Rosenberg et al. [26]
explored constraint specification language to describe rich constraints. The authors con-
clude that service composition is related to explicit user constraints. However, this ap-
proach lacks semantic descriptions of heterogeneous services provided by different service
providers. This heterogeneity raises the problem of the right decision making during the
services selection [32]. In [28], Alti et al. automated the generation of quality composite
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service through context-aware service ontologies and semantic forward chaining. They
grouped equivalent services by category, context, and QoS. However, this work lacks
efficient and consistent quality Cloud services cooperation. Therefore, in such cases, reduc-
ing research time requires an intelligent cooperative strategy to obtain timely and quality
solutions while the constraints are dealt at the right time.

From the above discussions, constraints with semantic models do not provide priority
to the development and implementation of optimized management ERP systems as they
are not aware of the importance of time in decision making. Other researchers recom-
mend metaheuristic-based approaches as iterative methods to solve NP-hard optimization
problems. Usually, two optimization approaches are used, which are outlined below.

3.2.1. Mono-Objective Approaches

Many QoS (time, cost, availability, etc.) are provided by Cloud services. The optimal
composite Cloud service considered multiple QoS based on mono-objective techniques.
It calculates the fitness function of each solution based on certain utilities to choose the
optimal solution among feasible ones [33]. The mono-objective function based on the
weighted sum [34] is used for optimization of multiple QoS with real cloud services using
taboo research [10], GA [11], PSO [12], GWO [13], ACO [14], ICA [15], CHHO [16], and
SMO [35]. However, results showed that the mono-objective function is effective with
respect to the power loss reduction, but penalizes some QoS attributes.

3.2.2. Multi-Objective Approaches

Yao et al. [17] presented NSGA-II to enhance diversity preservation and convergence.
Here, parent and offspring populations were generated and performed non-dominated
sorting, and crowding operators were there to find out valuable non-dominated front. The
Pareto-optimal front is reached with minimal iterations [36]. Wada et al. [19] modeled
the multi-objective optimization problem with E3 for ensuring service quality as well as
effectiveness by employing multiple SLAs. Sadeghiram et al. [21] developed a distributed
knowledge-based repair model to increase the efficiency and QoS satisfiability of NSGA-II.
It considered QoS constraints for composition process and distributed nature of services,
but failed to include industrial IoT and energy model. Peng et al. [37] proposed an improved
multi-objective algorithm to seek a representative set of solutions with a dual strategy to
adjust the usage of different creation operators using neighbor search in order to achieve
a fine-grained search. In our work, we have included both QoS and energy aspects to
enhance system performance.

3.3. IoT and Service-Based ERP

In [22], authors developed a CloudERP platform on which the client company cus-
tomizes an entire ERP system to match their needs. CloudERP provides corporate cus-
tomers with personalized ERP composite services from multiple providers. This work
applied a genetic algorithm with a “rough set theory” and extracted web services from
a web service platform. This purpose proposal stands out from the rest due to several
elements, including the adaptive way that it reacts to changes in the customer context
(customer-evolved QoS constraints and semantic preferences) and the Cloud service context
(QoS) at any time.

Recently, in [23], Bolu et al. developed a task-planning approach for efficient manage-
ment of IoT-based smart warehouses. This approach defines a heuristic model to select
order tasks that are assigned to robots. It used a mathematical model to describe the
spatial and temporal priority level of tasks, allowing multi-robots to perform tasks in less
completion time. However, we noticed that scheduling a large number of tasks increased
costs. Therefore, they can achieve effective results with other techniques such as early
services selection.
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3.4. Discussions

Table 1 presents a comparison between existing ontologies and optimization tech-
niques for ERP semantic description and services composition in terms of (1) reusability,
(2) extensibility, (3) dynamicity, (4) adaptability, (5) usage constraints (time-space con-
straints, services dependencies, energy), and (6) information coverage of thing diversity,
thing mobility, service diversity, and events sharing.

Table 1. Review of existing ontologies, service composition, and IoT Cloud ERPs.
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Taboo [10] × ×
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E3-MOGA [19] × ×
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DWSC [21] × ×
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QoS-Aware [33] × ×
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SMO-MSF [35] × ×
√

×
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Diff-Evolution [37] × ×
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IoT Service based ERP
CloudERP [22]

√ √ √
×

√ √ √
×
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× × ×

Bolu et al. [23]
√

×
√

×
√ √ √

×
√ √ √
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Fuzzy-Estimation [24] × ×

√
×
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Proposed Approach
√ √ √ √ √ √ √ √ √ √ √ √ √ √

These criteria were chosen for several reasons. Reusability refers to how existing
concepts can be reused across multiple applications, as well as the choice of extensibility
criteria that determine whether or not the model is extensible for domain-specific business
models. The choice of dynamicity refers to how existing models monitor context changes
and adapt business processes dynamically. The choice of adaptability refers to how ex-
isting techniques adapt business processes and improves their quality. Usage constraints
refers to how existing models describe spatiotemporal constraints. Limited resources and
device constraints are parameters needed in managing sensor mobility in terms of energy
consumption. We have identified the common limitations of the studied approaches, partic-
ularly for integrating hybrid heterogeneous services providers (IoT, fog, and Cloud) with
a heuristic-based optimization strategy to dynamically compose rich services for ERP in
smart factories.

Most existing works have neglected both energy and QoS optimization when moni-
toring one or more products to ensure their safety. We need to integrate mobility-related
features to represent mobile devices and monitor changes in their locations and cover-
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age area. Moreover, when examining service optimization approaches, we notice that
most works in [10–22,34,36] use bio-inspired and meta-heuristics approaches, enabling
the optimization of QoS criteria for composite Cloud service regardless of their semantics,
such as category, role, energy, spatial temporal constraints, etc. Furthermore, other related
works [3–9,23,25,26,38,39] integrate IoT and Cloud services-related semantic features to
handle service heterogeneity but without optimizing QoS and energy for IoT-Fog-Cloud
ERP. We notice that no approach covers semantic service description for IoT, fog, and Cloud
ERP with QoS and energy optimization under sensor mobility and context changes.

Current works have neglected the management and control of energy of IoT devices
when composing one or more services and do not propose an energy-aware strategy. In
this work, efficient selection of multiple local solutions with a multi-agent approach based
on heuristics that considers QoS and energy is defined. It is used to select IoT, Fog, and
Cloud services in intelligent and dynamic ways.

4. CxQSIoT-Fog-CloudSERP: An Extension of CxQSCloudSERP Ontology Model

We extend Context-aware Quality Cloud ERP (CxQSCloudSERP) [25] to the limit of
its centralized composition of ERP services, even though Cloud ERP services are associated
with great IoT and fog services such as warehouse robotics and drone delivery services.
The extension of CxQSIoT-Fog-CloudSERP aims to dynamically adapt smart ERP systems
to usage contexts of IoT, Fog, and Cloud. The proposed ontology is built based on three
semantic services categories, IoT, Fog, and Cloud services, which are used to describe
business processes. It classifies context-aware IoT, fog, and Cloud services based on
business category, business role, QoS, location, and time.

4.1. Abbreviations

Table 2 summarizes the different abbreviations used in this paper.

Table 2. Abbreviations used in this work.

Abbreviations Description

ACO Ant Colony Optimization
BP Business Process

CCS Concrete Composite Service
CCS-2S Concrete Composition Service with 2 Stages
CHHO Chaotic Harris Hawks Optimization

CxQSCloudSERP Context-aware Quality of Semantic Cloud Service ERP
ERP Enterprise Resource Planning
GA Genetic Algorithm

GWO Grey Wolf Optimization
ICA Imperialist Competitive Algorithm
IIoT Industrial Internet of Things
IoT Internet of things

IoT-BP IoT-based business process
MOGA Multiple Objective Genetic Algorithm

MOMS-GA Multi-Objective Multi-State Genetic Algorithm
NSGA-II Non-dominated Sorting Genetic Algorithm
OWL-S Semantic Markup for Web Services

SCwA-IFCCS-3S Semantic Context-aWare Agents on IoT-Fog Concrete Composition Service
with three Stages

SMA Small and Medium Enterprises
PSO Particle Swarm Optimization
QoS Quality of Service
ROS Robot Operating System

SAWSDL Semantic Annotations for WSDL and XML Schema
SCwA-CCS Semantic-Based Context-aWare Agents for the Composition of Cloud Services

SCwA-CCS-3S Semantic-Based Context-aWare Agents for Composition of Services
SLA Service Level Agreement
SMO Sequential Minimal Optimization

SPEA2 Strength Pareto Evolutionary Algorithm
SWRL Semantic Web Rule Language
VCS Virtual Composite Service‘
VS Virtual Service
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4.2. An Overview of CxQSCloudSERP

CxQSCloudSERP defines Cloud ERP in terms of virtual and concrete services-based
business processes [25]. Figure 3 shows the CxQSCloudSERP ontology model of the
context-aware services responsible for ERP management. The ontology is designed using
the following main classes:

• Customer: Manages requirements and preferences of customers. It is specified with
GUI and stored as ontology individuals. The customer’s requirements are classified
into functional needs and QoS constraints. Each functional needs to have a specific
language based on logical operators (AND, OR, and Not). It is employed to infer
virtual BP. The QoS constraint is split into regular intervals for each QoS attribute
based on three semantic values:

- High: quality values in [qmin High
i , qmaxHigh

i ].
- Medium: quality values in [qmin Medium

i , qmaxMedium
i [.

- Low: quality values in [qmin Low
i , qmaxLow

i [.

The constraint (Ci) of the quality attribute qi is defined as follows:

Ci = qminsemantic_value
i (1)

In CxQSCloudSERP, preferences are defined as an ordered list of QoS attributes that are
assigned with semantic values. Based on this semantic value, automatically generate
the weight wi by using Equation (2):

wi =
ePi

∑n
j=1 ePj

(2)

The computed priority Pi of the QoS qi is:

Pi = explicitPriorityi + constraintRanki × n (3)

where:

– n: Number of QoS attributes.
– ExplicitPriority: A priority level of QoS. It is defined by a value between 1 and n.

The explicitPriority is null when the customer does not specify any preference.
– ConstraintRank: The importance of QoS constraint. There are four priority levels:

high, medium, low, and none.

• Service: The ontology presents unified business concrete services, such as buy, sale,
finance, etc. Each service uses resources and they are linked to other services that
provide or require these resources.

• Business Process (BP): This BP includes a set of business tasks (parallel, iterative, choice,
repeat) delivering the same features with varied QoS.

• Context: Circumstances are defined as execution contexts. Each execution context
responds to a functional need that has a specific language. Execution contexts provide
an efficient solution to filter different services of a business process. In our case, we
divide the context into three categories: service context, environment context, and
customer context.

• QoS: A variety of quality attributes are defined in our ontology during ERP specifica-
tion, design, and execution. QoS attributes are designed and built in such a way that
every service is evaluated in perfect conditions and in a real environment.
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Figure 3. CxQSCloudSERP Ontology model.

4.3. CxQSIoT-Fog-CloudSERP

One of the main benefits of extending CxQSCloudSERP is that the business process
can be made more flexible and interoperable through richer semantic service information
of IoT field and Fog capabilities. It therefore becomes necessary to define entities related to
IoT-based, Fog, and Cloud business processes, as illustrated in Figure 4.

Figure 4. CxQSIoT-Fog-CloudSERP ontology model.

As illustrated in Figure 5, the service is deployed on top of the smart devices (sensors
or actuators) or Fog servers as local hosts or the Cloud. Quality services are selected and
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composed to build intelligent, quality ERP business processes. However, business processes
are mostly triggered by execution context and events.

Figure 5. A semantic model of different hosts.

4.3.1. Modeling IoT, Fog, and Cloud Services

Figure 6 shows the extended ontology of CxQSCloudSERP with IoT sensors/actuators
and Fog computing concepts.

Figure 6. A semantic model of context-aware intelligent services.
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In this model, a Service is divided into three types: context-aware IoT services (CxIS-
ervice), Fog, and Cloud services which have many inputs and outputs. Inputs/Outputs
can be further divided into two types, data flows defined by a “specific data type and data
format”, and an event flow handled by the action of a service. The service is described by
an identifier, name, Uri, role, and category, and it is deployed on various hosts (IoT device,
Fog server, or Cloud).

A service is defined by QoS properties such as reliability, availability, and security and
a set of context quality properties such as energy. IoT-Service may be either CxIEventListen-
erService and CxIActuatingService to define the data collector and event listener and service’s
actions, respectively.

4.3.2. Modeling IoT-Based Business Process

Figure 7 presents a semantic model of context-aware intelligent services. In this model,
an IoT-based business process (IoT-BP) may be modeled to provide automation facilities
using sensors and actuators. Several types of sensors and actuators with different sensing
and actuating capabilities may be included in IoT-based business processes. We define
a new concept of IoT-BP as an extension of business processes as shown in Figure 7. At
a minimum, IoT-BP consists of tasks that may be either Cloud Service, IoT Service, or Fog
Service. A customer (enterprise) has some needs and preferences, such as high availability,
low latency, better automation, and good flexibility. To do this, the Service provider and
the customer agree on high-quality constraints and resource energy saving that define the
services provided to the customer under rigorous conditions within the service and business
process provided. After that, quality IoT-based services are selected, integrated into a
business process, and deployed in IoT devices or Fog while reducing energy consumption.

Figure 7. A semantic model of context-aware IoT business process.

4.3.3. Modeling Context

We extend the Context concept of CxQSCloudSERP with usage context to manage
and save energy by better selecting the most appropriate services when producing and
adapting concrete business processes. As illustrated in Figure 8, we introduce new concepts
to Usage context: service dependencies, service accessibility, and energy consumption. We define
accessibility through time constraints, space constraints, and space-time constraints. High
levels of accessibility are a result of excellent services, which considers reliable and high
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service qualities. Energy consumption describes the average energy rate consumed when
deploying services on top of IoT devices, Fog servers, or Cloud.

Figure 8. Usage context for smart and Cloud services.

5. Problem Formulation

Our work aims to come up with an intelligent multi-agent cooperative strategy to
generate and manage IoT business processes. It aims to improve system performance and
optimize energy when using limited smart devices. The proposed approach must describe
the required and consumed energy of IoT services during the decision-making process.
That will help the system to measure the energy consumption at the run-time and thus
react rapidly to these changes.

5.1. Description of Physical Servers

– We consider three levels of hierarchical infrastructure I , consisting of N physical
nodes. The IoT layer (level 0) regroups a set of T smart devices, sensors, actuators,
and mobile devices. The fog computing layer (level 1) is a set of F Fog servers and
getaways.

– The Cloud layer (level 2) consists of a set of C large-scale data centers.
– The physical infrastructure consists of a set of nodes (or servers) N . Each node

N ∈ [1..T ] has the following features:

• Each node N has a current workload Wcurrent
N .

• CapacityN denotes the energy capacity of the node N.
• If N is a fixed node and continuously powered then its CapacityN = ∞.
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5.2. Description of Business Process

– We consider VBP a virtual business process consisting of m tasks T = {t1, t2, . . . , tm}
described using the proposed ontology.

– Each concrete composite service CCS has m services S. Each CCS is composition of
atomic or composite services from all providers (IoT, Fog, and Cloud) that we have to
select and compose according to a customer’s constraints and preferences.

– Each service Si has a set of QoS attributes qosj
i .

– Each service Si is defined by consumed energy SEnergy
i .

5.3. Problem Description

One problem is finding out an optimal composite service of ERP on IoT-Fog-Cloud
infrastructure for minimizing energy consumption while optimizing customer QoS (i.e.,
response time, reliability, and security). To solve the problem, we use a three stages
approach. First, we generate the virtual composite service (VCS), which includes all needed
functional business tasks. Secondly, a multi-agent intelligence research algorithm gives
all the possible composite service chains providing VCS. The optimal composite service
solution is based on multi-objective QoS and energy-saving functions. Finally, we adapt
the current composite service for incoming new customer’s needs and/or context changes,
including device power consumption. The problem is formalized as follows:

– The required workload Wrequired
N is the total energy to be consumed while Si is invoked

on node N.
Wrequired

N = Wcurrent
N + SEnergy

i (4)

– The consumption rate Ri
N of service Si on node N is defined as follows:

Ri
N =

{ CapacityN

CapacityN−Wrequired
N

i f CapacityN > Wrequired
N

∞ otherwise
(5)

where f i
energy is considered a negative attribute that will be minimized and the service

Si on a node, N is considered infeasible when Ri
N = ∞.

– The energy function of the CCS: fenergy(CCS) = agg
(

f i
energy

)
, is calculated according

to Table 3 where i varies from 1 to m.

f i
energy = SEnergy

i + Ri
N (6)

– Each CCS is evaluated by combining the normalized QoS values of IoT, Fog, and
Cloud services via Table 3. The total QoS are normalized by the following equations:

q′j(CCS) =


agg(qj)−agg

(
qmin

j

)
agg
(

qmax
j

)
−agg

(
qmin

j

) If agg
(

qmax
j

)
6= agg

(
qmin

j

)
1 Otherwise

(7)

q′j(CCS) =


agg
(

qmax
j

)
−agg(qj)

agg
(

qmax
j

)
−agg

(
qmin

j

) If agg
(

qmax
j

)
6= agg

(
qmin

j

)
1 Otherwise

(8)

agg
(

qmax
j

)
: The highest combined score of the jth QoS criterion of CCS,

agg
(

qmin
j

)
: The lowest combined score of the jth QoS criterion of CCS.

agg
(
qj
)
: The combined score of the jth QoS criterion of CCS.
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Table 3. QoS and Energy Process Metrics.

QoS
Dimensions Iterative Flow Parallel Flow Choice Flow Repeat Flow

Time ∑n
j=1 Timej Maxn

j=1Timej Maxn
j=1Timej Timej ∗ k

Security Minn
j=1Secj Minn

j=1Secj Minn
j=1Secj Seck

Availability ∏n
j=1 Avj ∏n

j=1 Avj Minn
j=1 Avj

(
Avj

)k

Cost ∑n
j=1 Costj ∑n

j=1 Costj ∑n
j=1 Costj Costj × k

Energy ∑n
j=1 Energyj ∑n

j=1 Energyj ∑n
j=1 Energyj Energyj × k

We define multi-objective functions ( fenergy, fQoS) to minimize the total energy and
maximize the total quality of service of the CSS as follows:

Find CCS with
{

min fenergy(CCS)
max fQoS (CCS)

(9)

where fenergy(CCS) and fQoS(CCS) are the energy aggregated function of the CCS and QoS
aggregated function respectively.

And fQoS(CCS) =
nb
∑

j=1
wi × qosj

ccs where: the dimension of QoS.

Equation (10) defines the final score by combining the energy and QoS of each CCS:

score(CCS) =
nb

∑
j=1

wi × qosj
ccs + wenergy × energyccs (10)

6. The Framework

To develop an efficient service selection and composition approach that can provide
minimum energy costs and optimal QoS for customers, we propose a new adaptive and
dynamic system based on NSGA-II for multi-objective optimization and cooperative agents
with more capacities like intelligence, scalability, and efficiency. Our goal is to ensure
coordination between different agents of the IoT-Fog-Cloud ERP system. Such a method
discovers relevant services based on customer needs while selecting services with high
QoS and optimal energy cost, and provides a continuously optimized composite service
based on context changes and/or customer preference changes. To achieve this goal, we
use CxQSIoTFogCloudSERP ontology, the multi-agent approach, and multi-objective opti-
mization NSGA-II. Using both QoS and energy saving and modified NSGA-II multi-agents
improves the solution accuracy, minimizing the execution time and energy consumption,
and it is effectively used in remote controlling smart services ERP appliances, monitoring
the state of the products with an exact angle measurement.

We present a new multi-objective function based on both QoS and energy consumption
for selecting the optimal personalized composite service and saving energy with satisfactory
accuracy and minimal execution time. To exploit this new multi-objective function, we
propose two modes: dynamic and adaptive. The dynamic mode consists of three service
management layers, IoT, Fog, and Cloud. The adaptive mode allows adaption of some
business process parts according to different context changes and customer preferences
to integrate IoT and Fog services and compose them with Cloud services. Such dynamic
and adaptive modes are believed to efficient and economical, to be (potentially) utilized
in several virtual services and their corresponding concrete services. They are stored,
respectively, in distributed virtual service registries and concrete service registries of smart
interactive devices, Fog servers, and Cloud. We leveraged the advantages of ontology-
based agents by forming a well-hierarchical service management model to reduce the
discovery time of appropriate services and to target potential service providers.

The work presented here focuses on a typical scenario, production, and transport
process in a wheel production domain, as described in Section 2, and on different agents
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to generate an optimized smart ERP business process, as illustrated in Figures 1 and 2. In
this work, we have used the multi-agent platform Jade [40] for cooperative IoT, Fog, and
Cloud services composition. The CxQSIoTFogCloudSERP ontology is implemented using
Protégé [41] to match customer needs to virtual services using inference rules.

6.1. General Architecture

Our system architecture of the SCwA- CCS (Semantic-Based Context-aWare Agents for
the Composition of IoT with Fog and Cloud Services) is a semantic multi-agent architecture
that is composed of the following agents (as illustrated in Figure 9): Customer, Semantic
Context Broker, Context Supervisor, Knowledge, and SCwA-CCS Agent.

Figure 9. An overview of the proposed approach.

• Customer: The enterprise that wants a personalized IoT-ERP, which communicates
with the system through GUI developed in Java.

• Semantic Context Broker: Acts as a semantic mediator between a customer and
different service providers, with six kinds of agents interacting and collaborating to
realize and manage concrete composition processes. The context broker is composed
of the following four main agents:

a. SCwA-CCS Agent: Allows the customer to specify their requirements and
receive their responses. This agent calls the following agents:

– Virtual Business Process Planner: Agent generates virtual business process. It is
implemented using JESS as an inference engine and SWRL as an inference rule.
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– SCwA-IFCCS-3S: Agent discovers IoT, fog, and Cloud services in terms of
customer preferences and energy constraints.

– ERP–CCS-3S Agent: Finds the optimal concrete composite service.
– Context Supervisor Agent: Monitors context changes (customer context, service

context, IoT devices context, environment context, and usage context).

b. ERP–CCS-3S Agent: Generates an optimal business process in the form of
a Concrete Composite Service (CCS) based on QoS and energy constraints,
costumer’s preferences, and description of IoT, Fog, and Cloud services.

c. SCwA-IFCCS-3S Agent: Discovers local and Cloud services with respect to
a customer’s needs and energy constraints, and generates possible composite
services. It calls ERP-ICS and ERP-FCS Agent for discovering IoT Fog services,
respectively, and calls ERP-CCS Agent for discovering Cloud services.

• Context Supervisor Agent: Monitors customer’s context in real-time by reading the
data from the sensors. It also enables service context monitoring (network connection,
Cloud server load rate, available service provider, QoS, etc.) and the IoT context
(availability, energy capacity, etc.) to provide the desired services for the customer.

• Knowledge Agent: Manages Cloud services and customer profiles that are defined
by the user. It also ensures continuous updates of the ontology model.

• Service Executor Agent: Calls composite services and execution context management.
It also takes over the management of IoT, Fog, and Cloud services.

• The Services and Client Repository: Made up of five sets of data descriptions: data
from the sensor network, definition of IoT services for all smart interactive devices,
definition of Fog service providers, and Cloud service providers, and a description of
customer profiles using our ontology.

6.2. Functional Model

Initially, a customer sends their request, which consists of a customized ERP business
process in terms of functional and QoS needs to a Semantic Context Broker Agent who plays
the role of a mediator. Here, the Semantic Context Broker Agent is a core agent that calls
the SCwA-IFCCS-3S Agent that is responsible for launching several ERP-ICS and ERP-FCS
agents, which can migrate to IoT devices and Fog servers to look for the requested services.
These agents search for local IoT and Fog services with the help of a knowledge-agent able
to make partial or full services compositions of requested ERP business processes.

The ERP–CCS-3S Agent, from all the possible composite services, selects the best
solution (single composite service or a set of composite services) that optimizes service
qualities and energy cost. The ERP–CCS-3S Agent uses a customer’s preferences to select
an optimal composite service. Once the optimal composite service has been selected and
the ERP business process has been deployed, the deployment results are sent back to
the customer. If the SCwA-IFCCS Agent does not find any local services that match the
customer’s needs, it transmits the customer’s query to the ERP-CCS Agent to discover and
compose services involved in the business process on Cloud servers.

The Context Supervisor Agent is responsible for handling the problems encountered
during the execution of the various services (such as changes of user’s needs and/or cus-
tomer preferences) and incoming new customer’s needs in order to continuously provide
an optimal composite service.

• If it is a simple service update (replacing Cloud service by another IoT service), a
SCwA-IFCCS-3S Agent will replace it with another equivalent IoT/Fog service based
on the Knowledge agent.

• If it is about more than one Cloud service, he calls ERP-ICS and ERP-FCS agents. It
moves towards IoT devices and Fog servers, and then sends discovered services to
ensure adaptation of business processes. The discovered services will be transmitted to
the ERP–CCS-3S Agent. The ERP–CCS-3S Agent composes these services and selects
the optimal composite service.
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6.3. Detailed Algorithms

The proposed SCwA-IFCCS-3S agent consists in dynamic and adaptive modes. The
flowchart of SCwA-IFCCS-3S is illustrated in Figure 10. The algorithm for establishing an
optimal composite service for IoT, Fog, and Cloud environments changes over time due
to context changes (processing load, change of customer’s needs, low latency, insufficient
energy of devices, and other factors). As a result, it is critical to adapt the actual composite
service while taking into account a variety of management elements. The algorithm consists
mainly of three main stages: virtual business process generating, parallel multi-objective concrete
composite service optimization, and adaptation of concrete composite service. The stages involved
in the implementation of SCwA-IFCCS-3S is given below:

Figure 10. SCwA-IFCCS-3S functional model.

Stage 1. Generate virtual business process: In this stage, the research before the
algorithm is used to systematically generate virtual IoT-BP according to the client’s func-
tional needs. Virtual services (e.g., tasks) are generated and optimized based on semantic
relationships between VSs [28] and the reputation of each virtual service [42]. We automate
this process to ensure dynamic changes in functional needs of the customer and his context.

Stage 2. Find local optimal solutions: We focus on dynamic multi-objective service
selection and composition problems, we target each service provider, and the discovery
agent closes in towards it. Each service provider, whether IoT, Fog, or Cloud, is modeled by
ERP-ICS, ERP-FCS, and ERP-CCS agents, respectively, that cooperate to share local services.
Therefore, each service provider has a set of services Si which is a subset of the set S. The
service provider agents create a set of NSGA-II agents to select the best Concrete Composite
Service (CCS). It initializes them by a subset Si and the energy cost and aggregated QoS to
its composite service. Simultaneous use of penalties for energy consumption and penalty
for QoS violation may hamper the reliability of service selection as well. The NSGA-II agent
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finishes when finding the local optimal composite service for a set of service providers, thus
ERP-ICS and ERP-FCS end by sending a set of optimal composite services to ERP–CCS-3S
Agent. The collaborative mechanism between different agents via messages allows us to
find the best optimal composite service.

• Step 1. Each individual (composite service) is encoded by an array of n concrete
services, called chromosome.

• Step 2. Evaluation: Each individual is evaluated using the aggregated fitness function.
• Step 3. Selection: To pick the optimal individual, tournament selection is used. In the

proposed approach, the relationship of non-domination has been adapted by adding
a constraint violation criterion of selection to respect the customer’s constraints and
energy consumption. The new CSS violation degree (degv_CCS) is evaluated to penalize
IoT, Fog, and Cloud services that do not agree with both QoS and energy constraints.
This degree is calculated as follows:

degv_CCS = wQos × degQoS
v_ccs + wenergy × degenergy

v_ccs (11)

With degqos
v_ccs =

{
Cqos − qos If Cqos > qos

0 Otherwise
and,

deg energy
v_ccs =

{
Cenergy − energy If Cenergy > energy

0 Otherwise
.

(12)

– Here wQos and wenergy denote weights of the QoS and energy, respectively, which
is increased when the use of IoT services is greater than the Fog and Cloud
services;

– qos: Aggregated value of QoS.
– energy: Aggregated value of energy.
– CQos: The QoS constraint.
– Cenergy: The energy constraint.
– For every CSS and its new dominance relation, we select the CSS based on the

lowest dominance value.

• Step 4. Merge and evaluate local optimal business process. Merging and comparing
the fitness value of local BPs of each agent with the other BPs of another agent. Based
on largest fitness value, the global composite service is selected.

Stage 3. Adaptive Strategy for re-composition of services: Generally, the proposed
approach is designed to be able to perform in two modes: Dynamic or Adaptive cases when
context changes are present or not. We compute the adaptation cost in terms of energy and
QoS difference between the current optimal CCSt and new CCSt+1, with desired services to
be added or deleted in order to manage context changes. More precisely, the list of services
to be added is Sadd and the list of services to be deleted is Sdel . The next CCSt+1 contains
CCSt ∪ Sadd) ∩ Sdel . So, the multi-objective function of Equation (13) will include the third
objective, which is the adaptation cost of newly added services and/or the cost of removed
existing services in terms of energy and QoS. The new multi-objective function is defined
in Equation (13).

Find CCS with


min fenergy(CCSt+1)
max fQoS (CCSt+1)
min fcost(CCSt+1 − CCSt)

(13)

where CCSt+1 − CCSt is the difference between the current optimal CCS and new CCS
according to the same VBP, since the existing optimal VBP does not change.

The detailed process is described as Algorithm 1 and illustrated in Figure 10.
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Algorithm 1: Parallel NSGAII strategy for dynamic Cloud services composition
Inputs: agent_pop_size, max_itr, populations
Outputs: P_OP: Pareto optimal solutions
Begin

1 : Generate initial agent populations as a set of CCS;
2 : P_OP←∅
3 : Iteration←0;
4 : while (Iteration ≤max_itr ) do
5 : Fork (agent using agent_pop in populations)
6 : Evaluate the objective functions (QoS and Energy) for each individual;
7 : Local Pareto optimal← Select best individuals by agent_pop;
8 : P_OP← P_OP U Local Pareto optimal
9 : s← 0
10 : while (s ≤ agent_pop/2) do
11 : (P1,P2)← select two individuals parents of current agent_pop;
12 : (C1,C2)← Crossing both parents (P1,P2) to obtain two children;
13 : agent_pop.add(C1); agent_pop.add(C2);
14 : s← s + 1;
15 : end
16 : s← 0
17 : while (s ≤ agent_pop/2) do
18 : new_ind←mutate children(ind);
19 : agent_pop.add(new_ind);
20 : s← s + 1;
21 : end
22 : end
23 : P_OP← Selection of optimal solution from all local Pareto-Optimal;
24 : Update new global Pareto optimal solutions for all agents;
25 : Iteration++;
26 : end

End
Return POPTIMAL;

The pseudo-code of the semantic context broker algorithm in adaptive intelligent
strategy is illustrated in Algorithm 2. At first, the semantic context broker keeps up with
the context changes. It then calls the SCwA-IFCCS Agent, which in turn calls ERP-ICS
and ERP-FCS agents for discovering services. It ends with sending the services list to the
ERP–CCS-3S Agent. The ERP–CCS-3S Agent selects the optimal composite service as the
optimal fragment according to the customer’s preferences, and then recomposes it with
the current composite service, subsequently sending it to the service deployer. Finally, the
optimal composite service fragment is deployed and results are returned to customer.

Considering an existing production CCS while monitoring services as a fragment of
BP (see Figure 2) and the new monitoring IoT-BP generated by the adaptive multi-agent and
NSGA-II algorithm (Figure 11), the adaptation cost is the cost of adapting existing BP to IoT-
BP while considering only such a fragment. In this case, we need to add three services: new
sensed temperature service (S1), receive temperature service (S1), and control temperature
service (S3) of final products, and remove service monitoring (S’3). The adaptation cost
will then equal the energy and time cost of deploying S1 and S2.
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Algorithm 2: Adaptive composite service algorithm based on Multi-agent and NSGAII
Inputs: IoT-Business-Process, context, preferences, energy evolution
Outputs: Optimal adaptative IoT-Business-Process
Begin

1 : Acquisition of context features
2 : Calculate new constraints parameters
3 : Recalculate the energy capacity of IoT-Devices
4 : For each service sij in IoT-Devices Do
5 : If energy capacity of device dij ≤ energy of service sij Then
6 : Delete service sij from the available services
7 : Foreach service sik in N Do
8 : select services sik from N with minimal fcost(CCSt+1 − CCSt)
9 : End
10 : Endif
11 : If number of services = 1 Then
12 : Use ontology to find next equivalent service
11 : Else
12 : Find the optimal IoT-BP with new changes according to the algorithm 1;
13 : Endif

End
Return Optimal IoT-BP;

Figure 11. Dynamic semantic-based multi-agent flowchart for services composition.
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7. Result and Discussion

This proposed work is implemented in Eclipse and compared with different coopera-
tive strategies (Master/Slave, Ring, and Hybrid). The aim is to determine which strategy
performed best in terms of QoS and energy for dynamic composition and adaptation of
composite services. All experiments are conducted on a personal laptop that has the fol-
lowing configurations: 6th Generation Intel® CoreTM i5-8250U processor, 128 SSD with
12GB of RAM with Eclipse, and Matlab 2020 running on Windows 10 OS.

7.1. Dataset

To explore the strategy of parallel dynamic IoT Fog and Cloud services composition
for ERP via intelligent agents, a random dataset has been used to record the QoS attributes
and devices configuration that are depicted in Figure 11. The dataset comprises 10 different
virtual services performed by 100 different concrete IoT, Fog, and Cloud services. We
consider 333 IoT services, and 667 Fog/Cloud services. Each service contains QoS values
for five attributes. Each QoS is scored by the weighted sum of their normalized values,
and the energy of each service is scored by its normalized value. QoS values are generated
randomly to ensure that the results of our experiments are not biased by a specific dataset.
The comparisons are carried out between different strategies (NSGA-II Standard, NSGA-
II Ring, NSGA-II Master/Slave, and hybrid strategy) based on Equation (10) of each
evaluated solution. It should be noted that each experiment is evaluated through the
following parameters: Max-Generation, Population-Size, Mutation-Ratio fixed to 0.3, and
Agent-Number.

The effectiveness and energy saving of our proposal has been validated and evaluated
through multiple experiments on random datasets. To show how our validation works, we
detail its validation procedure as follows:

1. The user specifies their preferences in terms of QoS and required functionalities.
2. All performance metrics are evaluated and recorded by different concrete configura-

tions on three multi-agent models: ring, master/slave, and hybrid using simulations
of the different number of services.

3. These simulations include results obtained from four performance metrics (violation
QoS degree, normalized average execution time, average energy consumption rate,
and cost) with different multi-agent models through several simulated configurations.

7.2. The Accuracy Solution’s Comparison

The contribution to smart ERP is evaluated within the NSGA-II algorithm with-
out agents and the NSGA-II algorithm using different multi-agent strategies (Ring, Mas-
ter/Slave, and Hybrid). These strategies are described as follows:

• Master/Slave strategy: The first strategy is focused on determining optimized global
solutions from local best solutions. This strategy involves the services’ local discovery
and solution local evaluation using slaves, while the master agent chooses the best
global solution from the selected best local solutions.

• Ring strategy: The second strategy explores some sub-populations in parallel to find
the best solution. Each agent shares its optimal solution with its neighbor.

• Hybrid Strategy: To explore the advantages of both previous strategies and ensure
further improvement, each slave sends its optimal solution to the master agent. Each
slave shares his optimal solution with his neighbor. Finally, the master agent returns
the global solution.

All three strategies are involved in determining quality solutions in an acceptable
execution time. The results of Equation (10) are crucial in determining the most efficient
solution in terms of QoS and energy. The obtained results on NSGA-II with/without agents
are tabulated in Tables 4 and 5. It is quite remarkable that the inclusion of the multi-agent
approach performed by both QoS and energy violation degree reached about 97% accuracy,
which is perfect compared to the strategy without agents.
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Table 4. NSGA-II without Agents in different Population Sizes and Generation Sizes.

Agents Number
Number of Generations

50 100 150 200 250 300 400 500 700 1000

20 0.799 0.774 0.761 0.746 0.792 0.905 0.766 0.771 0.859 0.779
40 0.774 0.811 0.849 0.834 0.845 0.820 0.851 0.880 0.847 0.782
60 0.881 0.934 0.876 0.895 0.874 0.872 0.910 0.869 0.849 0.905
80 0.931 0.875 0.915 0.91 0.977 0.941 0.912 0.941 0.977 0.905
100 0.808 0.909 0.939 0.939 0.972 0.925 0.977 0.888 0.946 0.974

Table 5. NSGA-II using different strategies Agents (Ring, Master/Slave, and Hybrid).

Agents Number
Number of Generations

50 100 150 200 250 300 400 500 700 1000

Ring
2 0.78 0.884 0.895 0.911 0.921 0.943 0.971 0.973 0.975 0.976
4 0.913 0.94 0.939 0.971 0.967 0.97 0.973 0.972 0.975 0.975
6 0.912 0.941 0.949 0.969 0.971 0.972 0.972 0.973 0.975 0.977

M/S
2 0.796 0.821 0.811 0.856 0.861 0.849 0.851 0.859 0.964 0.975
4 0.931 0.957 0.968 0.969 0.972 0.974 0.976 0.976 0.976 0.977
6 0.937 0.945 0.966 0.973 0.975 0.977 0.977 0.977 0.977 0.977

Hybrid
2 0.856 0.895 0.932 0.868 0.948 0.975 0.977 0.977 0.974 0.977
4 0.946 0.957 0.977 0.972 0.977 0.977 0.976 0.977 0.977 0.977
6 0.961 0.945 0.977 0.977 0.975 0.977 0.977 0.977 0.977 0.977

Figure 12 depicts the scores of different strategies. It was evaluated using Equation
(10) to measure how accurately the solution was made by each strategy, with a higher score
indicating better performance. It appears that in general, the hybrid strategy has the highest
scores across most of the cases, indicating that is the most accurate model. However, it is
important to note that the results of the hybrid strategy vary depending on the number of
generations. Some solutions are better determined by different strategies.

Figure 12. Scores of different strategy agents (Ring, Master/Slave, and Hybrid).

7.3. Performance Comparison

Figure 13 shows the execution time comparison for different strategies and different
numbers of agents. Execution time is the measure of how the strategy performs the service
dataset, where a minimum execution time means a perfect performance. From the results,
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it appears that the hybrid strategy has the minimum execution time. A practical increase of
agents increased the volume of exchanged messages.

Figure 13. Execution time of different strategy agents (Ring, Master/Slave, and Hybrid).

7.4. The Energy Consumption in Dynamic and Adaptive Cases

For the dynamic case, we compared the proposed semantic-based parallel NSGA-II on
three different multi-agent strategies (Ring, Master/Slave, and Hybrid) in terms of energy
consumption and QoS. Figure 14 shows the results obtained by the two objective functions
fenergy and fQoS using the three agents’ strategies. From the obtained results, we notice
that the proposed dynamic agent-based NSGAII with hybrid strategy is better than other
strategies in terms of optimized energy consumption and QoS scores.

Figure 14. Pareto Optimal for Qos score and energy consumption in different strategies agents
(a) Ring; (b) Master/Slave; (c) Hybrid.
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For the adaptive case, we use three objective functions fenergy fQoS and fcost on incremen-
tal changes of workload, energy device capacity, and changes in customer needs/preferences.
The strategy adopted is hybrid because the results in Figures 12–14 show that it is the best
strategy compared with Ring and Master/Slave strategies. From the obtained results of
Table 6, we can observe that the adaptation cost is correlated with the number of rejected
services (infeasible services). This is due to the number of deleted services from the current
CCS that should be replaced with other services having enough energy capacity. On the
other hand, when the needs/preferences of the customer change, the new CCS replaces the
majority or the totality of its services, so the adaptation cost increment changes considerably.

Table 6. Different adaptations of CCS with context changes.

CCS
fenergy fQoS fcost

Number
of UnfeasibleMin Max Min Max

CCSt 0.0473 0.2481 0.8386 0.9827 0 6
CCSt+1 0.0521 0.2672 0.8290 0.9844 0.22 29
CCSt+2 0.0677 0.2581 0.8306 0.9879 0.37 41
CCSt+3 0.0572 0.2509 0.8424 0.9883 1 73
CCSt+4 0.0653 0.2618 0.8532 0.9811 1 112

Table 6 shows the different adaptations of CCS with context changes. The CCSt+1
is the composite service when the global workload of nodes changes. The CCSt+2 is the
composite service adapted to new device’s capacity after a lapse of execution time. CCSt+3
is the adapted composite service to the new needs of the customer. CCSt+4 is the new
composite service when the needs of the customer change and the capacity of many devices
are incapable of executing their elementary service (infeasible services). In the case of
CCSt+3 and CCSt+4, fcost equal to 1 because all services of the current composite service
are replaced.

7.5. Discussion

The above results show that the hybrid strategy is faster and more precise than
Master/Slave and Ring strategy. This is due to the benefit of the advantages of both
strategies while avoiding some of their disadvantages. In the Master-Slave strategy, it is
hard to predict the behavior of the agents or the waiting time by the master to get the Pareto
from his slave. In the ring strategy, the failure of one agent will break the chain and does not
invoke the other Agent, which means breaking the whole topology. In the adaptive mode,
practical increase of replaced services increased the cost function. In addition, simultaneous
inclusion of agent-based approaches along with the ontology approaches and inheritance
context domain adaptation techniques can be a promising remedy to the changes in the
energy consumption problem.

8. Conclusions

This paper presents an adaptive and dynamic solution in IoT, fog, and Cloud en-
vironments. Semantic multi-agent intelligence features have been exploited to quickly
compose IoT-Fog-Cloud services concerned by QoS and energy constraints, which help
us to obtain a personalized ERP and highlight advantages regarding related works. The
approach consists of guiding the dynamic services composition process by generating
IoT virtual business processes that meet the customer’s functional needs based on the
ontology model and inference rules. A multi-agent approach using a three-stage algorithm
has been proposed for the optimization of the IoT business process (IoT-BP) in terms of
QoS and energy. Simultaneous inclusion of agents with QoS constraints’ violation and
energy device capacity can be a promising remedy to changes in customer needs and
preferences. Another promising factor of this proposed article is the adapted IoT-BP to
context changes and energy degradation on IoT devices. The Fog is a layer used in our
work to select local services for reducing communications to the Cloud and performing
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global IoT-BP. An executable prototype is developed using the Protégé and Jade tools,
subsequently displaying the overall optimal smart business process. Finally, we conclude
that the proposed approach gives satisfactory performance on a random dataset involving
multiple context change scenarios. It shows remarkable effectiveness through an intelligent
adaptation mechanism for energy saving on IoT devices. The works presented use the
deterministic measurement of QoS. In future work, an indeterministic measurement of
QoS would be considered, as it has significant potential to improve the accuracy of smart
factories, smart transportation systems, and smart production systems.

Author Contributions: Conceptualization, H.R. and A.A.; methodology, H.R. and A.A.; software,
H.R. validation, H.R. and A.A.; formal analysis, H.R. and A.A.; investigation, H.R. and A.A.; re-
sources, H.R. and A.A.; data curation, H.R. and A.A.; writing—original draft preparation, H.R.;
writing—review and editing, A.A.; visualization, H.R.; supervision, A.A.; project administration,
H.R. and A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is available on request due to restrictions.

Acknowledgments: The researchers would like to thank the Deanship of Scientific Research, Qassim
University for funding the publication of this project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Olsen, K.A.; Sætre, P. ERP for SMEs–is proprietary software an alternative? Bus. Process Manag. J. 2017, 13, 379–389. [CrossRef]
2. Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Jue, J.P. All one needs to know about fog computing

and related edge computing paradigms: A complete survey. J. Syst. Archit. 2019, 98, 289–330. [CrossRef]
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