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Abstract: Beam splitters are widely applied in various optical systems as a common beam-splitting
device. The conventional stereoscopic and flat-type beam splitters greatly limit the packaging and
integration of optical systems due to their large size and restricted emitting direction. Recently,
beam-splitting devices made of various transmissive or reflective metasurfaces have shown the
potential to overcome these challenges. However, in optical systems such as machine vision, these
single-ended beam splitters increase the design complexity of the signal feedback link due to the
limitation of the beam-splitting path direction. Here, we proposed and numerically simulated a
transflective all-dielectric metasurface beam splitter by applying incompletely transmissive structural
designs to the metasurface and using the transmission phase modulation mechanism. It can realize
the beam separation for arbitrarily polarized incident light on the same side of the normal at both
transmissive and reflective ends with a single-layer unit cell arrangement structure and has a similar
emergence angle. The results reveal that at 1550 nm, the angular tolerance bandwidth is about 32◦,
the total splitting efficiency is over 90%, and the splitting ratio is approximately 1:1. After comparison
and verification of simulation results, this transflective metasurface beam splitter is hopeful to be
applied in new compact optical systems that require real-time signal feedback, such as coaxial light
sources and photoelectric sensing.

Keywords: all-dielectric; beam splitter; transflective metasurface; signal feedback

1. Introduction

In recent years, with the continuous improvement of the process manufacturing level,
the size of silicon optical waveguides on an insulator base gradually decreased, and the
photonic integrated system has been widely used in fiber optic communication, optical
computing, photoelectric detection, and other fields [1–3]. It could achieve more functions
with a smaller size, but that would also require its components to be miniaturized and
multifunctionalized. A beam splitter (BS), which could distribute the optical beam paths,
performs as one of the most fundamental function blocks in lots of optical systems, such as
interferometers [4], optical communications [5], and optical detection [6]. Beam splitters
can usually be divided into polarization beam splitters (PBS) [7–11] and non-polarization
beam splitters (NPBS) [8–15] by polarization. They have been intensively investigated in
both space and on-chip optical systems. Due to its dependence on the crystal birefringence
effect and the optical path accumulation effect, the conventional cube BS is hard to integrate
into compact optical systems. Furthermore, as more compact alternatives, some flat-type
BSs [16–18] have been recently demonstrated. Although these BSs have significantly smaller
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sizes than cube BSs, they are still unsuitable for integration because of their sensitivity to
the incident angle, fixed emergence angle, and other problems.

Metasurfaces are artificial, sub-wavelength, two-dimensional, planar structural mate-
rials. Due to their significant advantages in compactness, easy integration, and capacity
to arbitrarily modulate electromagnetic waves, which have been extensively employed in
various research fields, including spectrum imaging, neural networks, thermal radiation
cladding, absorbing material, and so on [19–31]. In general, metasurfaces can be classified
into metallic metasurfaces and dielectric metasurfaces according to their constituent mate-
rials. Both kinds of metasurfaces have made considerable contributions to beam-dividing
devices. Not only have many advances been made in PBSs [32–35], but Chen et al. recently
also used a symmetric Si nanoring structure to construct a near-infrared band splitter ratio
tunable (0.5:1~1:1) all-dielectric metasurface BS [36]; Tian et al. demonstrated a free-space
optical multiport amorphous Si metasurface beam splitter with an arbitrarily predeter-
mined output port number (2~7) by a gradient-descent-based iterative algorithm [37].
Compared to metallic metasurfaces, dielectric metasurfaces have easily tunable scattering
and high transmission efficiency while having almost no absorption loss. They make
dielectric metasurfaces an excellent choice for BS designs. Currently, metasurface BSs are
usually designed to act only on transmitted or reflected light, which makes it necessary to
attach additional light path conversion devices when the light path back from the splitting
beam is used as a feedback signal, hindering further integration of optical systems.

In this context, we propose a transflective all-dielectric metasurface beam splitter based
on a single-layer, incompletely transmissive Si nanocolumn structure. It could achieve
a beam-splitting function by sequentially arranging nanocolumns of different radii for
arbitrary polarization lights with a splitting ratio of 59%:41%, a total splitting efficiency
(TES) of 93.3%, and an angular bandwidth of about 32◦. In this work, the light transmitted
through the metasurface and reflected from the nanocolumns and substrate intersections
both pass through the unit cell once, and then the transmitted and reflected lights are
subjected to an isophase modulation. Therefore, it shows a phenomenon in which the
transmitted and reflected light are separated on the same side of the normal at a similar
emergence angle. This transflective metasurface BS can obtain a feedback signal while
splitting the beam to correct the operating parameters of the optical system, which is
hopeful to be used in the design of feedback links for optical detection, interferometers,
and other integrated optical systems.

2. Structural Design and Simulation

The basic working principle of metasurfaces is to introduce phase discontinuity along
the interface by designing the geometry shape of unit cells and arranging them according
to certain rules, which can control the wavefronts of the reflected or transmitted beams.
When the incident light field transmits through the metasurface, it will inspire the Mie
resonance of the all-dielectric unit cell, which will greatly change the effective refractive
index of the unit and lead to a certain phase delay. The process can be described by the
truncated waveguide effect of the unit cell [38,39]:

φtp = k0ne f f H (1)

where φtp is the phase shift introduced by the transmission phase; k0 is the wave vector;
ne f f is the effective refractive index of the metasurface unit waveguide; and H is the
metasurface unit height. According to generalized Snell’s law, the departure angles of
outgoing beams at two ends can be expressed by the following equation [40]:

nt sin(θ1) = nr sin(θ2) = ni sin(θi) +
λ0

2π

dφtp

dx
(2)

where θi is the incident angle; nt, nr, and ni are the refractive indices of the transmissive,
reflective, and incident media, respectively; and dφtp is the phase change. When the beam
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is normal incident on the metasurface in air, and due to the transflective structure of the
metasurface, the θi = 0, nt = nr and Equations (1) and (2) can be written as:

sin(θ1) = sin(θ2) =
τ

ntP
λ0

2π
(3)

where τ = P × dφtp
dx is the phase interval and P is the spacing period. The splitting ratio of

the metasurface BS can be defined as:

SR =
T
R

(4)

Here T and R represent the transmittance and reflectivity of the transflective metasurface BS.
Based on the above theory, each unit cell on the metasurface is built as a circular Si

nanocolumn on a SiO2 (n = 1.44) substrate with a thickness of 6 µm. Si was chosen as
the nanocolumn material because of its high refractive index (~3.48) and low absorption
coefficient (4.44 × 10−16) at the 1.55 µm wavelength, which give a substantial refractive
index contrast with the background and hence improve the ability of phase modulation [41].
The period P of the unit cells is set to 1 µm, the height H of the nanocolumn is set to 3.2 µm,
and the final metasurface beam splitter beam-splitting schematic is illustrated in Figure 1a,b.

We chose to vary the equivalent refractive index by changing the radius of the nanocol-
umn to accomplish the needed phase slope design for deflected beam splitting since the
height of the unit cell is constant. Figure 2a depicts the variation of phase and transmittance
with the radius of the nanocolumn. Due to the relatively stable variation of phase and
transmittance, the range from 0.25 µm to 0.4 µm is selected as the radius variation range of
the nanocolumn. Since the Fabry–Perot resonance generated by the unit cells at a specific
radius will cause the interference extinction phenomenon of the outgoing light, it can
cause significant transmittance troughs, and since the nanocolumns have the same period
but different radii, the transmittance of two adjacent nanocolumns also changes with the
distance as shown in Figure 2b. They both help to reduce the overall transmittance of the
metasurface. The main approach to achieving a transflective metasurface is to reduce the
overall transmittance of the metasurface without significantly impacting its performance,
which is achieved by selecting a small number of specific low transmittance unit cell size
structures and controlling the distance between unit cells. In this paper, we set the phase
spacing between adjacent nanocolumns along the y-axis to π/2 to construct an equal phase
plane with a certain slope to make the incident light positively deflected along the y-axis.
According to Figure 2, we select four values with a relatively stable change in transmittance
and a phase interval of π/2 between them as the radii of the units, and one low trans-
mittance unit cell radius size to reduce the overall transmittance of the metasurface. The
metasurface beam splitter after arranging unit cells from small to large radii is shown in
Figure 1b, with radii of 0.27 µm, 0.33 µm, 0.36 µm, 0.37 µm, and 0.38 µm. Furthermore, the
transmittance and additional phase for the various radii are shown in Table 1.
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Figure 3c,d show the incidence using y-line polarized light (i.e., TM light) of the same 
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Figure 1. (a) The columnar unit cells of the parallel light-splitting metasurface beam splitter. The
materials of the nanocolumn and the substrate are Si and SiO2, the geometric parameters of the cell
are period Px = Py = P = 1 µm, and the height of the nanocolumn is H = 3.2 µm. (b) The schematic of
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the parallel light-splitting metasurface beam splitter, with blue arrows for transmitted light, black for
reflected light, and yellow for incoming light.
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Figure 2. (a) The phase (red line) and transmittance curves (blue line) of outgoing light at 1.55 µm
wavelength when the nanocolumn radius changes from 0.15 µm to 0.45 µm. The radius dimension
points of the selected metasurface unit cell structure are marked in green. (b) The transmittance
curves corresponding to different distances of nanocolumns.

The design was numerically simulated by the Finite Difference in Time Domain (FDTD)
technique method. The light source is a 1.55 µm linearly polarized plane wave incident
on the metasurface along the positive z-axis. The reflected and transmitted light phase
conditions, incidence angle tolerance, and light field intensity distribution were recorded
and evaluated in the incident light direction (reflective end) and the transmitted light
direction (transmissive end) in the Y–Z plane, respectively.

Table 1. The transmittance and additional phase for the various radii.

Radius (µm) 0.27 0.33 0.36 0.37 0.38

Phase 0 0.50π 1.16π 1.48π 1.63π

T(%) 93.74 91.12 94.97 99.75 0.18

3. Simulation Results

When the light source is an x-polarized plane wave incident on the metasurface face
along the positive z direction, the transmissive end and reflective end of the metasurface
beam splitter exhibit an obvious isophase plane tilt phenomenon at 1.55 µm wavelength
x-line polarized light (i.e., TE light) incidence, as shown in Figure 3, while the ratio of
metasurface transmittance to reflectance is measured as 59%: 41%, which is close to the 1:1
splitting ratio.

Figure 3c,d show the incidence using y-line polarized light (i.e., TM light) of the same
wavelength. They demonstrate an effect of isophase plane tilt, like x-line polarized light.
Since the light emission direction of plane waves is generally perpendicular to the isophase
plane, the designed metasurface produces an isophase plane with a certain slope at the
transmissive and reflective ends to make outgoing light emerge at an angle, which in turn
realizes the metasurface design’s deflection beam-splitting function for the incident light
on the positive y-axis.
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Figure 3. The Y−Z plane phase diagrams of the reflective and transmissive ends of the metasurface
beam splitter under two types of line-polarized incident light at 1.55 µm wavelength reflect the
isophase plane of the outgoing light waves, with white arrows in the direction of the isophase plane
vertical line, a black dashed line being the light-emitting surface of the metasurface, and different
color stratifications representing different isophase planes. (a) The isophase plane of the reflective
end under the incident x-line polarized light. (b) The isophase plane of the transmissive end under
the incident x-line polarized light. (c) The isophase plane of the reflective end under the incident
y-line polarized light. (d) The isophase plane of the transmissive end under the incident y-line
polarized light.

In order to show the more intuitive light emission conditions at both ends of the
metasurface under x and y-line polarization light incidence, we obtained the double-ended
light field intensity distribution as shown in Figure 4. We can see the more obvious double-
ended polarized light emission along the positive y-axis and located on the same side of
the optical normal. To demonstrate the polarization-maintaining performance and the
power variation of the BS, the polarization direction of the incident beam was changed
from 0 degrees (x-line polarized light) to 90 degrees (y-line polarized light) in a step of
15 degrees.
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Figure 4. The normalized intensity of the Y−Z plane at the reflective and transmissive ends
of the metasurface beam splitter under the incidence of x-polarized light at 1.55 µm wavelength
demonstrates the deflection of the outgoing light. (a) The intensity of the Y−Z plane at the reflective
end of the metasurface beam splitter under the incoming x-polarized light of 1.55 µm wavelength.
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(b) The intensity of the Y−Z plane at the transmissive end of the metasurface beam splitter under the
incoming x-polarized light of 1.55 µm wavelength. (c) The intensity of the Y−Z plane at the reflective
end of the metasurface beam splitter under the incoming y-polarized light of 1.55 µm wavelength.
(d) The intensity of the Y−Z plane at the transmissive end of the metasurface beam splitter under the
incoming y-polarized light at 1.55 µm.

As shown in Figure 5, the nanocolumn’s additional phase shows almost no change to
different linear polarization lights. Due to the fact that circular and elliptical polarization
lights can be decomposed into two orthogonal linear polarization lights, the nanocolumn
could maintain the polarization characteristics of the arbitrary polarization beam. As
shown in Figure 6, the splitting ratio changes from 59%:41% to 48%:52% with the variation
of the polarization angle. This is due to the fact that although the individual metasurface
unit cell is polarization-independent, the splitting ratio variation arises because of the
spatially polarized difference in the X and Y directions for the overall structure after the
arrangement. It also conforms to the characteristics of the BS device, which is sensitive
to the angle of incident polarization and changes the splitting ratio without changing the
polarization of the outgoing light.
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To investigate the operation of this metasurface under other size conditions, we
used the designed 5 µm × 5 µm metasurface as a benchmark and combined four such
metasurfaces into a 10 µm × 10 µm metasurface array. Eventually, an isophase plane tilt
circumstance appears at the transmissive end of the metasurface, as shown in Figure 7. This
shows that different-sized metasurface arrays are likely to be constructed to match different-
sized application conditions.
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In order to calculate the double-ended outgoing angle, we normalized the intensity
distribution near the maximum of the outgoing light field intensity along the y-axis and
calculated the corresponding emergence angle, and the results are shown in Figure 8.
The angle of emergence at the transmissive end is 9.2◦, and it is 8.8◦ at the reflective end.
According to Equation (3), the expected inclination angle of the isophase plane is 83.6◦,
and the propagation angle perpendicular to the isophase plane is 6.4◦, which is similar
to the simulation measurement results; at the same time, it is known that the maximum
design deflection angle is 26.5◦, which is reached when the additional phase difference is
2π. The maximum deflection angle may be modified in the actual design by considering
the metasurface material, the unit cell period, and the working waveband, all of which
have certain design flexibility.
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The tolerance of incident light angle change is an important performance indicator
of beam splitters. Figure 9 simulates the double-ended isophase plane at various angles
of the metasurface by continuously changing the incidence angle and then determining
its operating angle bandwidth; isophase plane tilt effects are demonstrated at 0◦~15◦ with
the same effects as Figures 3 and 4. When the incident angle increases to 16◦, the reflective
end does not exhibit the expected isophase plane tilt effect, as shown in Figure 9a. In order
to further visualize the variation of the outgoing light at an incidence angle of 16◦, we
calculated the light field intensity distribution in the X−Y plane parallel to the reflective
end of the metasurface at 0◦ and 16◦ incidence angles, respectively, and the final results
are shown in Figure 10. It can be seen that at 0◦, the reflective end basically behaves as a
deflected outgoing light subject to phase modulation. Furthermore, at 16◦, the modulated
outgoing light disappears, and the reflective end completely behaves as directly reflected
light from the metasurface substrate.
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(b) Phase diagram of the metasurface’s transmissive end Y−Z plane under a 16◦ incidence of 1.55
µm x-line polarized light.

The simulation results show that the metasurface beam splitter has a large operating
angle bandwidth of about 32◦ and that the deflection angle of the beam splitter does not
change significantly with the incident angle, expressing strong operating stability.

Based on the planar distribution (like Figure 10) of the light field intensity at the
maximum of the double-ended light field intensity and the light field intensity distribution
near the point of the maximum intensity (like Figure 8), we can calculate the energy not
involved in the deflected beam-splitting. The result is 6.7%, so the total splitting efficiency
is 93.3%.
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Figure 10. (a) The normalized intensity distribution of the light field in the X−Y plane when the
incident light angle is 0◦ has a clear phenomenon of deflection out to the positive y-axis at the
transmissive end. (b) The normalized intensity distribution of the light field in the X−Y plane when
the incident light angle is 16◦; the reflective end completely behaves as directly reflected light from
the metasurface substrate.

Table 2 summarizes some representative data for the diffraction efficiency of previous
reports, including reflective and transmissive metasurface-based BSs (RMBS and TMBS).
Compared to previous reports, our design achieves a similar theoretical TES value with a
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simpler structure, and the structural advantages of the transverse metasurface beam splitter
are demonstrated to a certain extent.

Table 2. Some data for the total splitting efficiency of previous reports.

Reference Year Type TES

2018 [42] RMBS 20.3%

2018 [43] TMBS 60~80%

2021 [36] TMBS 93.21% (theory)

2022 [44] RMBS 62~75%

2023 [37] TMBS 93.6% (theory)
78.3 (actuality)

To verify the above results, we also performed numerical simulation using the Finite
Integration Technique (FIT) method and compared the decisive results obtained (as shown
in Appendix A) with the FDTD method simulation results. Similar unit cell transmittance
and phase variation curves indicate that the complete metasurface composed and char-
acterized by unit cell structures should also have similar operating properties, which is
confirmed by the similar metasurface double-ended isophase plane distribution. There-
fore, we believe that the simulation comparison results in Appendix A can validate the
correctness of the results in this paper.

In our tentative idea, the Si film grows on top of the whole SiO2 region by chemical
vapor deposition (CVD). After spin-coating a layer of negative resist on the sample, electron-
beam lithography (EBL) directly draws the patterns with nanoscale featured sizes and is
followed by induced coupled plasma (ICP) silicon etching. Finally, when the remaining
resist is cleared by the lift-off process, the designed transflective metasurface beam splitter
is completed.

4. Conclusions

In this paper, we built and simulated an infrared all-dielectric metasurface beam
splitter based on the structure of incomplete transmissive unit cells by arranging the
metasurface with varied radii of silicon nanocolumns from small to large along the y-axis.
The simulation confirms that the beam-splitting function is realized in the 1.55 µm infrared
communication band with a splitting ratio close to 1:1, a deflection angle of approximately
9◦, a theoretical total splitting efficiency of 93.3%, and an angular bandwidth of 32◦. The
correctness of the results was verified by comparing the simulation results, which were
generated by two different numerical simulation methods. This double-ended modulated
metasurface also generates a response at the input ends of the metasurface information
compared to the existing single-ended phase-modulated metasurface. Therefore, the
reflected phase-modulated light after beam-splitting can be used as a feedback signal to
make real-time adjustments to the operating parameters of the optical system. Compared to
other single-ended metasurface beam splitters, the use of light path conversion devices can
be reduced, which can further increase the compactness of the optical system. It is hopeful
to provide a new design method for metasurface applications in the fields of machine
vision, optical measurement, and so on.
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Figure A1. The phase (red line) and transmittance curves (blue line) of outgoing light at 1.55 µm
wavelength when the nanocolumn radius changes from 0.25 µm to 0.40 µm. The radius dimension
points of the selected metasurface unit cell structure are marked in green.

The above figure represents the transmittance and phase variation of different radius
unit cells of the metasurface, and the overall results of the final metasurface are also based
on the transmittance and phase characteristics of the unit cell. It can be seen that at several
structural parameters selected in this paper (0.27 µm, 0.33 µm, 0.36 µm, 0.37 µm, and
0.38 µm), the simulation results of the FDTD method and the FIT method have similar
transmittance and phase variation, so the overall metasurface composed of unit cells will
also produce similar results.
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Figure A2. The verification of the polarization-maintaining performance for the nanocolumn.

From the above figure, we can know that the phase of the unit cell under the FIT
method simulation also does not change with the polarization angle of the incident light,
which shows the phase consistency of the metasurface under x-line polarized light incidence
and y-line polarized light incidence.
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beam splitter under two types of line-polarized incident light at 1.55 µm wavelength reflect the
isophase plane of the outgoing light waves, with white arrows in the direction of the isophase plane
vertical line, a black dashed line being the light-emitting surface of the metasurface, and different
color stratifications representing different isophase planes. (a) The isophase plane of the reflective
end under the incident x-line polarized light. (b) The isophase plane of the transmissive end under
the incident x-line polarized light.

As can be seen from the above figures, since the unit cell structure under the FIT
method simulation shows a similar phase change as under the FDTD method simulation,
the FIT method simulation results also exhibit an isophase plane tilt at the transmissive
and reflective ends.
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