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Abstract: In the operation and maintenance of planetary gearboxes, the growth of monitoring data is
often faster than its analysis and classification. Careful data analysis is generally considered to require
more expertise. Rendering the machine learning algorithm able to provide more information, not just
the diagnosis conclusion, is promising work. This paper proposes an analysis and diagnosis two-stage
framework based on time-frequency information analysis. In the first stage, a U-net model is used for
the semantic segmentation of vibration time-frequency spectrum to highlight faulty feature regions.
Shape features are then calculated to extract useful information from the segmented image. In the
second stage, the decision tree algorithm completes the health state classification of the planetary
gearboxes using the input of shape features. The real data of wind turbine planetary gearboxes
and augmented data are utilized to verify the proposed framework’s effectiveness and superiority.
The F1-score of segmentation and the classification accuracy reach 0.942 and 97.4%, respectively,
while in the environmental robustness experiment, they reached 0.747 and 83.1%. Equipping the
two-stage framework with different analytical methods and diagnostic algorithms can construct
flexible diagnostic systems for similar problems in the community.
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1. Introduction

Planetary gearboxes are widely used in many industrial categories such as wind power
generation, mining, metal forming, etc., due to their compact structure, large transmission
ratio, and stable operation [1,2]. In these applications, planetary gearboxes are usually
installed in the transmission chain transmitting large torque and are subject to harsh
working environments such as dynamic load and extreme temperature. Hence, they are
prone to various failures [3]. It is important to ensure the safe operation of equipment to
detect faults as early as possible through the analysis of sensor data to avoid unplanned
shutdowns or catastrophic failures [4–6].

As a well-established field, the vibration analysis-based fault diagnosis method has
been widely used in planetary gearboxes. The representation methods of vibration sig-
nals can generally be summarized into three categories: time domain, frequency domain,
and time-frequency (T-F) domain [7]. T-F domain analysis is a powerful tool for dealing
with non-stationary signals. Chen and Feng [8] proposed an iterative generalized T-F
reassignment method by exploiting the uniqueness of iterative generalized demodulation
to decompose nonstationary, multi-component signals into mono-components of constant
frequency, thus, meeting the requirement of mono-component with linear instantaneous
frequency by T-F reassignment and improving the T-F readability in planetary gearbox
fault diagnosis. With consideration of the time-varying characteristics of planetary gear-
boxes, Han and Feng [9] used the local maximum mean discrepancy to evaluate the data
distributions between relevant subclasses in source and target tasks and proposed a deep
residual joint subclass alignment transfer network based on T-F features. Yuan et al. [10]
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extracted fault features from wavelet T-F images from the perspective of image texture
analysis and proposed a novel fusion fault diagnosis framework of gray level co-occurrence
matrix and label consistent K-SVD. Tu et al. [11] developed a new method termed as
generalized wavelet-based synchro squeezing transform to deal with a strong, modulated
non-stationary signal, which has better performance as compared with traditional ap-
proaches in the energy concentration of T-F representations and accuracy of the mode
reconstruction. In [12], Dhamande and Chaudharicon considered a more complex but real
situation: compound gear-bearing fault and proposed a fault diagnosis method based on
T-F statistical features of the discrete wavelet transform and continuous wavelet transform.

T-F segmentation is one of the crucial means of analyzing T-F distribution. Limited
by computer calculation levels, early investigations mainly focused on threshold segmen-
tation methods represented by the Otsu method [13], edge detection [14], and gray level
histogram [15]. With the development of computer technology and machine learning,
researchers have put forward many new ideas and methods for T-F analysis. Medical
Informatics is the field where early T-F analysis technologies have achieved fruitful re-
sults. For example, Zhang et al. [16] combined the Hilbert transform with the Wigner-Ville
distribution to bring about hybrid T-F analysis and used ResNet to analyze cardiac ar-
rhythmia via heartbeat classification. Cheng et al. [17] proposed a novel method based on
T-F analysis and the CNN-LSTM cascade model to automatically detect atrial fibrillation,
solving the problem of burst atrial fibrillation detection based on electrocardiograms. In
the field pf mechanical fault diagnosis, Yan et al. [18] proposed a fusion method based on
multi-resolution T-F spectrum segmentation and sparse decomposition of vibration signals.
Compared with traditional Gabor T-F atoms, the new method has a faster pursuit speed of
the best atom and higher approximation precision. Saulig et al. [19] combined K-means
clustering with local Rènyi entropy to distinguish the basic structural differences between
helpful information content and noise component in the T-F plane, developing an unsu-
pervised adaptive T-F analytical algorithm. In fact, the T-F analysis task of the planetary
gearbox is particularly challenging. Because of the complex structure and time-varying
characteristic of the planetary gearbox, the characteristic regions in the T-F spectrum are
often intertwined with the background, or the contrast and sharpness may be very low.
Therefore, traditional image processing methods are difficult for achieving satisfactory
performance of such tasks.

Previous works have applied deep learning to planetary gearbox fault diagnosis based
on T-F analysis. However, these studies usually regard T-F analysis and fault diagnosis
as two separate tasks. Other works focus on developing an indivisible intelligent system
to accomplish the gearbox fault diagnosis task based on T-F information [20–24]. This
paper aims to incorporate T-F spectrum analysis and fault diagnosis based on T-F feature
information into a continuous but stage-by-stage diagnosis framework. This is more
similar to manual diagnosis processes. The specific indications of fault feature regions
and the high-accuracy fault classification diagnosis can improve confidence in the fault
diagnosis conclusion for operators because it provides richer and more comprehensive
diagnosis information about the health status of equipment, making the diagnosis results
more reliable.

Based on the above views, this paper proposes a two-stage diagnosis framework for
planetary gearboxes. Because the traditional threshold-based algorithms are error prone
for high-resolution T-F spectrum, we implement a fully convolutional network U-net for
semantic segmentation; that is, to label the regions of interest (ROI) pixel by pixel. The
U-net model highlights the pixels belonging to fault feature regions from the background.
Then, the shape features are utilized to extract valuable information from the feature region
distribution. Finally, the decision tree algorithm is used to determine the health status of
the planetary gearbox.
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The main contributions of this paper are summarized as follows:

1. Compared with previous studies that considered T-F analysis or fault diagnosis alone,
a more comprehensive two-stage framework is proposed to combine the two tasks.
To the best of our knowledge, we are the first paper to discuss planetary gearbox fault
diagnosis based on T-F information from the perspective of an analysis and diagnosis
two-stage task.

2. The modified U-net model is adopted to process T-F image, which can utilize large-
range context information to improve the segmentation accuracy and enhance the
robustness against environmental variations.

3. The effectiveness of the proposed method is verified by using the real data of in-service
wind turbines. T-F images and ground truth labels are available online [25].

The remainder of this paper is organized as follows. Section 2 briefly introduces
the U-net, feature extraction method, and decision tree algorithm used in the research.
Section 3 introduces the two-stage gearbox fault diagnosis framework proposed in this
paper. Section 4 describes the experimental dataset and analyses the results of running our
method on this dataset. Conclusions are outlined in Section 5.

2. Preliminaries
2.1. U-Net

In 2015, Ronneberger et al. [26] first proposed the U-net model for the problem of cell
image segmentation. As an important variant of fully convolutional neural network, U-net
does not contain fully connected layers but uses symmetrically arranged convolutional lay-
ers to compress and reconstruct feature information, thereby exploiting context information
at multiple scales and generating pixel-level image segmentation results. So far, U-net and
its variants have seen the most applications in the field of medical image processing [27]
and are expanding into machine vision [28], image-based fault detection [29], etc. Figure 1
illustrates the modified U-net architecture used in this paper.

Figure 1. U-net structure.
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The left half of the U-net is the contracting path, also known as the encoding path,
which consists of four repeated contracting operators. The contracting operator has the
typical structure of a convolutional neural network, including a 3 × 3 convolutional layer,
a batch normalization layer, followed by a rectified linear unit (ReLU), and a 2 × 2 pooling
layer. The right half of the U-net is the expanding path, also known as the decoding path.
Its overall structure is very similar to the contracting path, except with its more complex
expanding operators. Some of the most crucial changes include deconvolution instead of
convolution and the addition of concatenation from the contracting path. Based on the
above design, U-net presents a simple and elegant U-shaped structure, which is also the
origin of its name.

In order to explain the U-net structure in more detail, several critical components in
the network are described next:

1. The convolutional layer is composed of a set of convolutional kernels that can be set
high and wide. The learnable convolutional kernel enables the convolutional layer to
generalize the feature information in the input and map it into a new feature space. In
addition, the setting of shared weights enables the convolutional layer to have lower
computational complexity than the fully connected layer. For each convolutional
kernel, its output can be expressed as:

Oi = f

(
∑

j
ωij × Xj + bi

)
(1)

where Xj is the jth input channel, Oi is the ith channel of the feature map, and f (•) is the
activation function. ωij and bi denote convolutional weight and bias term respectively, both
of which are trainable parameters.

2. Deconvolution is also known as up-convolution or transposed convolution. Its func-
tion in the U-net model is to increase the resolution of feature maps rather than
computing the true inverse of convolution. In order to obtain an appropriate expan-
sive capability matching the contracting path, we use a 2 × 2 deconvolutional kernel
and set the deconvolutional stride to 2.

3. Activation functions enable convolutional neural networks to model nonlinear map-
ping hidden in data. Common activation functions include Sigmoid, Tanh, ELU,
ReLU [30], etc. As a non-saturated activation function, ReLU can alleviate the prob-
lems of gradient vanishing and exploding while accelerating model learning. There-
fore, ReLU is selected as the activation function in the contracting operator and
expansive operator.

ReLU(x) = max(0, x) (2)

4. Batch normalization is an effective tool to deal with the problem of feature distribution
drift during batch training. Severe feature distribution drift will reduce the stability
of neural network training and aggravate the over-fitting issue, which is particularly
obvious in deep neural networks. Batch normalization transforms the distribution of
neuron activations into the standard normal distribution. For batch training data [x1,
x2, . . . , xm], the normalized result is calculated as follows:

µB =
1
m

m

∑
i=1

xi (3)

σ2
B =

1
m

m

∑
i=1

(xi − µB)
2 (4)

x̂i =
xi − µB√

σ2
B + ε

(5)
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yi = γx̂i + β (6)

where µB and σ2
B denote the mean and variance of batch training data, respectively. x̂i is

the normalized result after subtracting the mean and variance of batch training data, and yi
is the normalized result calculated based on the scaling factor γ and translation factor β.

2.2. Shape Feature

The segmented T-F image can be regarded as a binary image. It has the same resolution
as the input image, so there is a data redundancy for the subsequent fault classification
algorithm. Therefore, this paper innovatively uses a region-based shape feature extraction
method to reduce the dimensionality of the data.

Geometric moment [31] is a concise and effective region-based shape feature. For a
general function f (x,y), its (p,g)-order geometric moment is defined as follow:

Mpq =

∞∫
−∞

∞∫
−∞

xpyq f (x, y)dxdy, p, q = 0, 1, 2, . . . (7)

Some important properties of shapes can be derived from geometric moments:
M00 defines the mass of a shape.
(M10/M00, M01/M00) defines the centroid of a shape.
(M20, M02) defines the moments of inertia of a shape, which describes the mass

distribution of the shape relative to the coordinate axes.
The above properties are useful for representing the distribution of characteristic

patches in the segmented T-F image.

2.3. Decision Tree

The decision tree method introduced by Quinlan [32] is a powerful machine learning
algorithm that constructs a knowledge-based leaf-branch system by inductive inference
from historical data. So far, researchers have proposed various algorithms to induct the
decision tree-based diagnosis model, such as CART [33], BOAT [34], and SPRINT [35]. This
paper selected CART because of its popularity and simplicity. Generally, developing a
fault classifier with CART can be summarized into two phases: the building phase and the
pruning phase.

1. Building phase: The CART-based decision tree is a binary tree. Namely, each split
generates exactly two branches. A test attribute x and a test threshold tx can divide
the training set into two subsets. In the CART model, the attribute-threshold domain
(X, T) is searched to obtain the combination that produces the purest subset. This
process is repeated many times to segment subsets and subsets of subsets until the
algorithm cannot put forward a new segmentation to obtain higher purity subsets
or the preset maximum depth is reached. A fully grown, binary, tree-like structure
makes the identification of crucial variables quite easy.

2. Pruning phase: If the decision tree grows to the maximum size without restriction,
developing as a nonparametric model, there will usually be an overfitting problem
which will reduce the accuracy of the decision tree in the whole instance space.
Therefore, it is necessary to delete unreliable branches or limit the model’s degrees
of freedom. Setting the maximum depth of the tree structure is the most common
pruning method. The other choices of hyperparameters include the minimum number
of samples per leaf node, the maximum number of leaf nodes and the complexity
parameter. For more information about the CART algorithm, see [36–38].
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3. The Proposed Method
3.1. Architecture of the Two-Stage Framework

This paper aims to develop a general tool for automatic analysis and diagnosis of
planetary gearbox failures from T-F data. For this purpose, a two-stage framework for
T-F spectrum analysis and fault diagnosis is proposed in this paper. The first stage uses
U-net to label the characteristic patches representing faults in the T-F spectrum, also known
as semantic segmentation. Then, the well-trained U-net is used as a segmentation tool,
and geometric moment features in the segmented T-F image are extracted to facilitate the
second stage calculation. In the second stage, a decision tree is trained to analyze the shape
features and determine the health status of the gearbox. The overall architecture of the
two-stage framework is shown in Figure 2.

Figure 2. Architecture of the proposed two-stage framework.

The proposed framework is built using Python machine learning library Pytorch [39].
The structure of U-net mainly refers to Ronneberger’s paper and some modifications have
been made to adapt to the T-F analysis task, including the redesign of the network structure
and the removal of the overlap-tile input strategy, etc. The decision tree algorithm is
mainly based on the DecisionTreeClassifier model in Scikit-Learn package [40]. Because
of its outstanding computational efficiency, Adam is used as the optimization algorithm
for the U-net model. The learning rate is set to 1 × 10−3, and the weight decay rate
is set to 1 × 10−5. The model uses categorical cross-entropy for the loss function. The
stopping criterion of training is set such that the loss on the validation set has not improved
significantly for five successive epochs or reached the epoch maximum (50 epochs).

3.2. Evaluation Metrics of Performance

In this paper, three evaluation metrics are used to quantitatively evaluate the ability
of different algorithms to label ROI in T-F spectrum, including precision (P), recall (R),
and F1-score (also known as Dice coefficient). The joint use of three indicators helps us
to analyze the algorithm performance from a more comprehensive perspective: precision
reflects the ability of the model to accurately select valuable information, recall reflects
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the ability of the model to avoid missing valuable information, and F1-score reflects the
coordination between the above two abilities, obviously a more rigorous metric.

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

F1 =
2 × P × R

P + R
(10)

where TP represents the number of pixels belonging to true positive, FP represents false
positive and FN represents false negative.

4. Case Study
4.1. Data Collection and Augmentation

The vibration signals used in the case study were collected from 1.5 MW pitch-
controlled wind turbines located on a wind farm in northeast China, as shown in Figure 3.
The transmission chain mainly includes a bladed rotor, a planetary gearbox with a ratio
of 100.48:1, and a doubly-fed induction generator. The planetary gearbox contains two
planetary transmission mechanisms and one parallel transmission mechanism. The ac-
celerometer was attached to the ring of the second-stage planetary mechanism by magnetic.
Figure 4 illustrates the internal structure of the gearbox and the location of the sensors.
Table 1 lists teeth number information of the second-stage planetary mechanism.

Figure 3. Planetary gearbox in the case study.
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Figure 4. Internal structure of the planetary gearbox and the location of the accelerometer.

Table 1. Teeth number information of the second-stage planetary mechanism.

Component Planet Ring Gear Sun Gear

Teeth 39 101 22

The case study involves four health conditions: normal (NS), ring gear tooth pitting
(RP), planetary gear meshing misalignment (MA), and pitting-misalignment concurrence
(CO). All the above failures occur in the second-stage planetary mechanism. Each health
condition corresponds to four planetary gearboxes and, thus, there are 16 gearboxes used
in this experiment. During the data collection, the speed of the gearboxes continuously
varied. The characteristics of varying speed operation of wind turbines and changeable
operating environment bring more challenges to fault analysis and diagnosis.

The piezoelectric accelerometer samples at a frequency of 16,384 Hz and each signal
lasts for 10 s. Ten segments are randomly intercepted from each signal to calculate the T-F
spectrum. In this paper, generalized S-transform [41] (generalized factor = 2) is used to
generate 512 × 512 T-F images from signal segments. Figure 5 shows the vibration signal
and T-F spectrums corresponding to the four health conditions.

The shortfall in dataset scale, accompanied by the possibility of overfitting, is one of
the common problems in model training. 10 × 4 × 4 = 160 samples are insufficient to train
deep learning models in this case study. Therefore, the Augmentor toolkit [42] is utilized to
mirror or distort the original image to obtain 800 additional training samples. After data
augmentation, the total number of experimental samples reaches 960. Referring to similar
studies [43], datasets of this scale can effectively inhibit over-fitting.

4.2. Performance Validation

In semantic segmentation methods, each pixel in the sample is given a label. The
characteristic patches or bands in the T-F image are highlighted with a grayscale of 255.
The grayscale of other parts is set to 0. The experimental data is divided into two non-
overlapping parts in a ratio of 4:1, which are used as training and test datasets, respectively.
The size of minibatch data in training is set at 24 to determine how many training samples
jointly calculate a parameter update in the model. A computer (Intel Core i5-10400 CPU
with 16 GB of RAM) and an NVIDIA GTX 1660 with 6 GB of GPU memory are used to
conduct all experiments in this section.
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Figure 5. Vibration signals and T-F spectrums in the four health conditions: (a,e) NS marked by
characteristic band in meshing frequency bin; (b,f) RP marked by characteristic patches occurring
with meshing frequency in meshing frequency bin; (c,g) MA marked by high energy in 2× meshing
frequency bin; (d,h) CO marked by characteristic patches occurring with meshing frequency in 2×
meshing frequency bin.

Figure 6 illustrates the results of identifying fault feature regions using the U-net
method in test dataset. We can find that, in general, the U-net model can identify the
characteristic patches or characteristic bands well for the test samples in four health states,
revealing the gear meshing phenomenon or impact phenomenon contained in the T-F
spectrum. Tooth surface pitting faults and pitting misalignment concurrent faults seem to
be two more difficult cases. There are a small amount of noise pixels and error boundaries
in the network output. One possible reason is that patch-like areas are easily confused
with intense background noise. In order to illustrate the performance of U-net method
and analyze the differences between four types of test samples, Table 2 lists the detailed
evaluation metrics more specifically. The Precision, Recall, and F1-score of U-net are all
satisfactory. The F1-score in the whole test dataset reaches 0.942. By comparison, the tooth
surface pitting fault and pitting misalignment concurrent fault have poor performance,
with F1-score of 0.891 and 0.87, respectively. These are consistent with our observations in
Figure 6.

Table 2. Performance metrics of the U-net.

Data Precision Recall F1-Score

Test Dataset 0.933 0.951 0.942
NS 0.943 0.953 0.948
RP 0.886 0.897 0.891
MA 0.955 0.955 0.955
CO 0.801 0.952 0.87

Furthermore, the Otsu method and Fourier filtering are used to process the samples in
the test dataset to conduct the performance comparison between the proposed method and
traditional methods, as shown in Figure 7. The time consumption to process each T-F image
is also shown in the figure. We find that the U-net method is more successful than the two
classical algorithms thanks to its strong feature learning ability and context information
processing ability. Although the Otsu method gives the highest computational efficiency
with a time consumption per sample of approximately 6 ms, there is an apparent imbalance
between its Precision and Recall metrics, suggesting too many false positive pixels in the
results. The Fourier filtering method shows better performance than the Otsu method,
with F1-score reaching 0.858. However, because the size of the mask in the filter needs to
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be optimized during image processing, the computational efficiency of Fourier filtering is
degraded. U-net, as a deep learning method, can automatically capture multi-scale features
without manual tuning of model parameters. A trained model, in addition, can process T-F
samples quickly, which meets the real-time requirements in fault analysis. In conclusion,
as the first stage of the proposed framework, the U-net method is competent for the T-F
analysis task among planetary gearbox fault diagnosis.

Figure 6. The results of identifying fault feature regions using U-net. White represents the character-
istic area, and black represents the background.
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Figure 7. Comparison of performance and time consumption between different methods.

Besides analyzing the T-F information, the ultimate goal of presenting a high-accuracy
analytical method is to realize the fast classification of planetary gearbox faults. The
labeled fault feature regions are used in the second stage of the proposed framework.
This paper uses three geometric moments to extract valuable information from segmented
images, including image mass M00 and moment of inertia in two directions (M20, M02). In
our conception, the former is defined to distinguish between characteristic patches and
characteristic bands, while the latter two judge the relative position in the T-F spectrum.

The significantly compressed feature space makes it possible to use a simple classifier.
In this experiment, we choose the decision tree algorithm to classify the four health states of
planetary gearboxes quickly. The simplicity of the model, convenience of training, and high
interpretability of the model are several factors that we focus on. Obviously, the decision
tree algorithm is an excellent choice to reveal the faulty information in T-F images.

Figure 8 shows the classification confusion matrix of the decision tree algorithm on
the test dataset. Overall, the average accuracy of the diagnosis reaches 97.4%. The limited
amount of real data and small feature space have no adverse impact on the diagnosis results.
Specifically, meshing misalignment fault (MA) and pitting-misalignment concurrent fault
(CO) are easy to confuse because they both have the characteristics of high energy of double
meshing frequency bins. Ring gear tooth pitting (RP) fault is a health condition with the
lowest diagnosis accuracy. Referring to the observation in the previous subsection, it is
more polluted by noise. Figure 9 shows the trained decision tree in the experiment. In
summary, the decision tree algorithm combined with the shape feature extraction method
can effectively extract the status features in T-F images and accurately classify the health
states of planetary gearboxes.

4.3. Robustness against Variable Operating Environment

In the engineering application of fault diagnosis, the variable operating environment
greatly influences the system’s performance. For example, wind turbines operate under
continuous variable speed and variable loads. In the same wind farm, the operating
conditions of wind turbines differ by local geographical environment. In addition, there are
more difficult diagnostic scenarios, such as the same type of planetary gearboxes mounting
in different wind farms. In these cases, diagnostic systems require high robustness against
environmental changes. In this sub section, we sequentially take a subset belonging to one
wind turbine from the original dataset as the robustness test data and use the remaining
data to train the two-stage framework as described in Section 4.1. The performance metrics
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and fault classification accuracy of the trained model on the robustness test dataset are
shown in Figure 10.

Figure 8. Classification confusion matrix.

Figure 9. Trained decision tree in the experiment.

We can observe that the segmentation and classification performance in each healthy
state is affected by the variable operating environment in some way. The proposed two-
stage framework achieves an average F1 score of 0.747 and a classification accuracy of
83.1% on the robustness test dataset. The normal state gives the best segmentation and
classification performance on the robustness test dataset, reaching an average F1 score
of 0.91 and a classification accuracy of 99.18%. Pitting-misalignment concurrent faults
gives the worst robustness. A possible reason is that more complex fault causes make less
similarity between different machines. In addition, the experimental results also show
that there is no dependence of the classification accuracy on a certain segmentation per-
formance metric when surveying four health states, which indicates that the influence of
errors in the analytical stage on the geometric moments is uncertain. To sum up, the pro-
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posed framework presents satisfactory robustness against variable operating environments.
Therefore, it is suitable for application in the actual industrial environment with variable
operating environments.

Figure 10. The segmentation performance metrics and fault classification accuracy of the trained
model on the robustness test dataset: (a) NS; (b) RP; (c) MA; (d) CO.

5. Conclusions

This paper presents a two-stage fault diagnosis framework for planetary gearboxes,
including a U-net based T-F spectrum analytical method in the first stage and a decision tree-
based health state classification method in the second stage. Both the specific indications of
fault feature regions and the white-box property of the decision tree model can improve
confidence in the fault diagnosis conclusion for operators, which is lacking in conventional
deep learning models. Using the real data collected from wind turbines, we prove that the
U-net model is better than the traditional image processing methods in the T-F spectrum
analytical task of planetary gearboxes with a F1-score of 0.942. With a decision tree classifier,
the final accuracy of planetary gearbox fault diagnosis reaches 97.4%. Further experiments
show that the proposed framework presents high robustness against variable operating
environment. Moreover, it is worth noting that our method provides a flexible paradigm
for solving similar problems with high openness.

In future work, the authors plan to improve the proposed method from two as-
pects. First, knowledge generation based on interpretable machine learning is a promising
direction for improvement. Second, the authors will follow up on advanced semantic
segmentation methods to enhance the robustness of time-frequency analysis.
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