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Abstract: This study presents an approach to investigating the main interventions related to gains
on performance using a combination of educational data mining (EDM) techniques and traditional
theory-driven models. The goal is to overcome the limitation of previous EDM studies that lack of
causal reasoning, which is a critical concern for educational specialists. We use large-scale assessment
data from Brazil and map the main sources of unobserved confounders using causal graphs. We then
use a two-way logistic regression fixed effects to account for these confounding factors. The model is
evaluated for its predictive ability and further investigated through classification rules and decision
trees, resulting in the proposition of new insights into the data. The findings of the study underline
the importance of socio-economic factors and showcase the significant impact of faculty education
policies as well as the vital role of Brazilian states in these policies.

Keywords: educational data mining; educational assessment; causality; ENEM

1. Introduction

The growth of large-scale assessment (LSA) data worldwide has presented a number
of quantitative research studies in the educational assessment discipline [1]. Although tra-
ditional statistical and econometric analysis is widespread, techniques such as data mining
(DM) and machine learning (ML) have become increasingly prevalent [2–5], encompassing
the so-called educational data mining (EDM) field [6]. One of the most tackled problems by
previous EDM researchers is identifying factors that contribute to educational performance.
These studies often use the traditional educational production function (EPF) [7] in which
inputs lead to better outputs. Therefore, the strongest correlation between contextual vari-
ables and academic performance is explored by means of a supervised learning paradigm
to derive insights about educational determinants [2,3,5,8–13].

Most of these studies lack causal reasoning, limiting their adoption in the decision-
making process. Causality is a fundamental scientific concept and randomized controlled
trials (RCTs) are widely considered the gold standard in this direction. However, RCT can
be expensive or may not be ethical to conduct. As a result, a large body of the literature has
been developed around the use of observational data.

In recent decades, this topic has been increasingly coupled with DM and ML with the
goal of creating more generalized models [14]. Despite this, these researchers have yet few
implications for social science problems [15]. Conversely, in the social sciences, a set of
canonical methods for causal inference has been used for decades [16]. Unlike theoretical
math and those that are strongly data-driven from the ML paradigm, these methods are
design-based with assumptions based on domain knowledge. These methods are specific
and often referred to as identification strategies [15].

To achieve more actionable results in data analysis, a promising approach involves
combining the flexibility of DM and ML with the robustness of traditional models from
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economics. This combination has been recently discussed, but little attention has been
paid to the education assessment discipline. By leveraging the strengths of both EDM and
traditional models, researchers in this field may be able to produce more accurate and
actionable insights into student learning and achievement.

Additionally, an essential aspect of the literature on causality is the concept of inter-
vention. Interventions can be understood as data variations that change the system [17].
From a temporal perspective, intervention can be modeled in conditional probability, where
previous inputs change subsequent outputs [18]. In this paper, we utilize simple economics
and machine learning models within a causal framework to identify which interventions
have improved educational performance over time. By analyzing interventions in this
way, we aim to provide insights into the most impactful strategies for enhancing student
learning outcomes.

It is important to note that while a causal framework can open a path to reduce
bias in results, it does not guarantee recovery of the true interventions, as causal infer-
ence in observational data is complex and requires many assumptions. Nevertheless,
this paper goes beyond most previous EDM studies on LSA data by attempting to find
more actionable results that are difficult to see in a purely data-driven approach due to
unobserved confounders.

This work offers a two-fold contribution. Firstly, from a methodological perspective, it
introduces a novel interdisciplinary approach to mining interventions associated with edu-
cational achievement within a causal framework. This approach combines economics and
EDM techniques, presenting a simple and effective solution for presenting new knowledge
and informing future policies and practices. Secondly, it provides valuable insights into
Brazilian secondary education, utilizing data from the national test (ENEM) and the school
census from 2009 to 2019. Brazil is a continent-sized country with a significant economy
and the world’s second-largest secondary LSA [19], which has received little attention from
the scientific community.

The structure of this paper is as follows. Section 2 describes a brief literature review,
while Section 3 introduces an inherent and required background. After that, the overall
method is explained in Section 4, and the results are summarized in Section 5. Finally, in
Section 6, the conclusion and directions for further work are discussed.

2. Literature Review

Educational assessment using quantitative methods in the policy arena emerged in
1960 [20] and various topics have been present since then. Recently, a collection of fast-
growing articles in the literature has developed, bringing new tools such as algorithms,
data preprocessing techniques, frameworks, and model validation methods [21]. The
integration of these novelties with traditional analysis techniques has been discussed for
at least two decades [22], with some contributions in the educational domain [2,10]. This
section briefly describes the use of DM and causal framework in education while presenting
some works using LSA data.

2.1. Educational Data Mining

Despite the advances in EDM and the evolution of frontiers using ML methods
in the educational environment, most research in this field has only focused on data
from information systems or learning management systems from specific institutions [23].
However, EDM is still in its early stages when applied in the context of LSA.

Existing works in this direction often advocate for the novelties of EDM as an alterna-
tive framework to traditional statistical techniques due to their flexibility in handling the
sheer volume of data in a strong data-driven approach [4,9,24]. Additionally, EDM partially
fills an important gap in the education literature. Often, policymakers and educational
practitioners ask questions in broad terms (e.g., What are the factors related to academic
achievement? How can we improve academic achievement?) [25], while researchers have
been addressing a narrower hypothesis (e.g., What is the effect of ICT on math achieve-
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ment?). Therefore, using DM can be helpful to validate existing theories or leverage new
knowledge to be further investigated.

The most common approach is the supervised learning paradigm in which student
achievement is predicted in the function of contextual variables [10,11,26]. The findings
reporting is often featured by ranking feature importance [3,26]. Additionally, some stud-
ies probed their results by exploring additional explainable techniques such as partial
dependence plots [2,27–29], decision trees, and rules [30,31].

2.2. Traditional Causal Strategies

Traditional causality identification strategies from the economics and psychology
literature are well-established and widespread in applied studies [15]. Under LSA data,
design-based techniques such as propensity score [32], difference-in-difference [33], instru-
mental variables [34], regression discontinuity [35], and its fixed-effects variation [36] have
been used for decades to infer causal effects of specific hypotheses empirically. They often
rely on the potential outcomes (PO) framework [37]. The PO, in the simplest case with a
binary treatment, consists of computing the difference between effects from data points
assigned with the treatment and those that do not.

2.3. Causality in ML

The causality literature has received significant attention in recent decades within the
ML community, and many methods have been developed. These methods are often referred
to as causal inference and causal discovery [38]. Generally, there is a big difference in how
the questions are asked. For example, to infer a causal relationship, the investigator seeks to
discover the extent to which some variables would change if the value of another variable
were changed [39]. On the other hand, to discover causal relationships, the investigator
seeks to infer rules automatically from data rather than relying on humans to conceive a
prior hypothesis [40].

Most of these methods are shaped by the Judea Pearl framework [41], which gave rise
to graphical models. These graphs, under strong assumptions [42] and through sequences
of conditional independence tests, try to recover aspects of the system from the relationships
in the data. Despite considerable advances in certain tasks, such as graph computing, and
still considered fundamental in the artificial intelligence field [40] they have little practical
use in social science and high-stakes problems. This is mainly due to their underlying
assumptions, which are hard to meet in the real world [15]. For example, in a recent study
under LSA data, the differences in achievements between rural and urban schools in China
were described [43]. The author relied on assumptions of unconfoundedness and the ability
of a sequence of statistical independence to infer causality.

A promissory causal strategy is a framework that connects invariance to causality [44,45].
The theory behind these approaches is to split the dataset into different environments drawn
from the same distribution and learn stable relationships across them. This process assumes
that the causal structure remains the same for different subpopulations. Therefore, it
highlights potential causal relationships of the heterogeneous environments that persist
regardless of differences in the unobserved effects. However, this strategy has challenges
in the learning process [46,47] and has little practical use [48].

2.4. ML in Causality

Canonical econometrics models have also taken advantage of the advancements in
supervised machine learning (ML) methods [14,49]. The main reason is the ability of ML to
reduce the risk of misspecifications and bias in the potential outcome predictions [16,50].
For example, [51] used the random forest algorithm [52] to split the data into subgroups
and propensity scores to investigate the effects of heterogeneous treatment under the
assumption of no hidden confounder. Furthermore, [53] developed a causal method that
relies upon independence tests and PSM to discover causal relationships, which are then
represented in a tree structure. In this context, a promising research direction within the
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field of LSA would be to apply these new methods as a plugin, with relevant modifications,
to estimate the influence of specific variables on student outcomes.

In [54], the authors used a modified causal forest [51], to handle the hierarchical
structure of the LSA data. The authors sought to investigate the effect of private math
lessons on student achievement. Additionally, in [50], the authors instanced the double
machine learning method [55] that, in an ML manner, extends the idea of the doubly
robust estimation from economics [56] to study the effects of musical practice on child
development under the German National Economic Panel Study.

2.5. Summary

Previous works that use EDM to explore LSA data can be divided into two categories:
(1) those that use ML to reduce the misspecification of traditional causal theory-based
models and (2) those that use ML to uncover new hypotheses about the data. Studies in the
first category aim to estimate the causal effects of pre-defined treatments in an underlying
population, while studies in the second category, similar to this paper, aim to extract
variable effects based on feature importance, often using a supervised learning paradigm.
To the best of our knowledge, among previous work in the second category, only [43] uses
a causal framework to uncover the effects of variables related to academic performance.
However, Lee’s methodology based on [57] requires assumptions of unconfoundedness,
which is the primary concern of this paper.

In doing so, this paper does not provide a new method, but it contributes to the litera-
ture by presenting a novel approach that combines simple econometrics and EDM methods
within a causal framework. This approach aims to mitigate bias caused by unobserved
confounders and identify factors associated with gains in educational performance.

3. Theory Background
3.1. Structured Equation Model

Causal reasoning requires causal models. This study relies on the structural causal
models (SCM) to provide a comprehensive theory of the causal structure of performance in
Brazilian public secondary schools. The fundamental concept of SCM traces back to [58],
who championed the use of structural equations and paths to depict the direction of
effects between variables. The modern theory of SCMs emerged more recently in the
computer science discipline [17] and typically comprises two components: causal graphs
and mathematical representations of structural equations.

3.2. Causal Graphs

Causal graphs G = (V, E), also known as directed acyclic graphs (DAGs), represent
direct and non-cyclical relationships among system variables. The graph is composed of a
node set V, and an edge set (E). Each node represents a variable inherent to the underlying
phenomenon and a direct edge X → Y denotes a causal effect of X on Y. The absence of a
link between two variables may be interpreted as the absence of a direct causal effect with
respect to the other variables in the graph. Any variable is a cause of its descendants. The
causal Markov assumption supports this interpretation, and a variable, when conditioned
on its direct causes (parents), is independent of any other variable for which it is not a
cause (non-descendants).

The concept of conditional independence is related to dependency-separation
(d-separation), which involves blocking all paths (back-door criterion) between two vari-
ables (e.g., from X to Y) through a set of nodes S, written X⊥⊥ Y| S. This conditional
independence provides ample information to determine if S is a sufficient set of variables
to adjust in order to infer the causal relationship between X and Y by applying a particular
causal inference method.

Definition 1. Back-door criterion: given a cause-effect pair (X, Y), a set of variables S satisfies
the back-door criterion of (X, Y) if and only if conditioning on S blocks all paths, except for the direct
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path, which ends with an arrow pointing to X. In Figure 1a, in order to infer the causal effect of
X→ Y, it is necessary to block the back-door path X→ Z→ Y by adjusting for Z, or the results
will be biased. Therefore, Z can be referred to as a confounder.

Definition 2. Confounder: given a cause-effect pair (X, Y), a variable Z /∈ X, Y is a confounder
if it plays a central role in a fork and is on a back-door path of (X, Y).

According to Figure 1b, it is not possible to block the back-door path X→ U→ Y since
the confounder U is unobserved. Specifically, the computed effect of X→ Y will be biased
due to the unobserved effect of U, requiring a specific causal identification to address the
confounder effects of U. In Figure 1c, both X and Y cause C, and there is no causal effect or
association between X and Y. However, adjusting for Z incorrectly will introduce bias since
a non-existent association between X will be inferred. Therefore, C is a collider and cannot
be on back-door paths even when it is a confounder.
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4. Methodology

This paper combines eleven surveys of secondary students’ background information
and academic performance from the second-largest secondary education test worldwide to
investigate what has been improving Brazilian schools´ performance from 2009 to 2019.
Specifically, we are interested in the potential interventions over time that may have led to
variations in outcomes, after controlling for the primary sources of unobserved confounders
in an underlying period. The methodology has three main components: (1) the theoretical
modeling of educational outcomes in Brazilian secondary education to map the main
sources of unobservable confounders; (2) the estimation of the strength of the relationship
between changes in contextual variables and outcomes; (3) the investigation of a more
detailed picture of the relationships identified in the previous step.

4.1. Theory-Modeling

Academic performance is a multi-causal phenomenon that is influenced by a range
of factors from multiple levels. In the context of Brazilian basic education in [59], the
authors propose a conceptual framework where student performance is directly linked
to the characteristic of the students, family, school, and the educational system in which
they are involved. While a significant amount of data has been collected as a result of
government efforts, many factors that impact academic performance cannot be accurately
measured and can bias the data analysis.

Brazil has many differences that distinguish how the educational system works across
the country. Data-driven analysis that considers all data as drawn for the same distribution
can be biased and misleading. A more effective approach may be to analyze educational
achievement separately by region, state, microregion, or city. However, this can limit
the main potential of data mining and machine learning techniques, which are specifi-
cally designed to extract knowledge from extensive databases. Therefore, the findings
are powerful enough to support further in-depth investigations, enabling researchers to
reassess and refine existing theoretical models [24]. Another challenge of cohort analysis
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is the difficulties in interpreting and summarizing multiple outputs aiming for national
policy implications.

As in every federal nation-state, Brazilian secondary schooling is mainly the legal
responsibility of the constituent states with different politics and state bureaucracies [60,61]
and certainly differs in how each one influences its own educational system. Although
public secondary schools could be at a municipal level, most of the schools (99%) in our
final dataset are from the state level. In addition, studies have shown that even in municipal
schools, the impact of state-level efforts is significantly greater than that of efforts made
at the municipal level [60]. Therefore, state-level interventions seem to be an important
source of bias when analyzing national data.

In addition to the state effects, the education literature has discussed the bias in the
level of the schools, which is not captured in the data collection [4,62]. These studies
explore the degree to which an underlying school performs better than expected due to its
inherent unmeasured pedagogical strategies. Thus, assuming that all schools within the
same state have been drawn from the same distribution may be another important source of
bias. Finally, at the student level, the student motivation, commitment, and previous skills,
which cannot be measured in the observed data, could embed bias in national models, as is
acknowledged in existing educational research [63,64].

Taking into account these theoretical constructs related to educational achievement
and the interactions among these variables, Figure 2 presents a potential causal diagram
based on DAG for the performance of public Brazilian secondary education. For the sake
of simplicity, the variables present in the dataset have been grouped into categories.
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Figure 2. Potential causal graph of Brazilian public secondary education. Red arrows mean effects
derived from unobserved variables (white nodes), while green arrows mean effects from observed
variables (grey nodes). x, a, and z are observed variables from students and schools, while u variables
are unobserved variables from the students (1), schools (2), and states (3).

Grey nodes denote the observed variables, where X is the student´s non-actionable fea-
tures, such as sex and race, A is the student´s socioeconomics, including parent’s education,
and Z is the variables related to schools, including infrastructure, teacher characteristics,
and class information. The white nodes denote the unobservable variables U, where the
exponents represent the level, with 1 representing student-level variables such as self-
confidence, commitment, and cognitive skills, 2 school-level variables related to specific
practices, and 3 representing state-level variables related to specific policies. Y represents
the final indicator of performance. The red arrows indicate the effects of the unobserved
variables on the other variables, and the blue and green arrows indicate the direct effects
on performance.

Understanding how these variables interact within the educational system is a complex
task, as with most social science problems, and although it is not possible to establish exactly
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the causal pathways, identifying key points is essential to reduce biases from knowledge
extraction. In doing so, Figure 2 illustrates the influence of students´ socioeconomics
on the school variables, as students with better social conditions tend to attend better
schools {A→ Z}. Additionally, schools located in poor neighborhoods tend to have the
worst conditions. The non-actionable factors are linked with socioeconomic factors due to
the strong bias from historically disadvantaged groups {X→ A}. Finally, the unobservable
variables at the student level are independent of other variables, as it is plausible to assume
that these characteristics are homogenous across the country.

4.2. Predicting and Explaining Changes in the Outcomes

This study aims to identify interventions related to school improvement in Brazilian
public secondary education. We argue that these interventions may be represented by
shifts in the values of certain observed variables over time. By examining the statistical
relationship between these shifts and changes in school performance over a given period,
we can gain insights into the effectiveness of educational policies. Specifically, we are
interested in a model that can determine changes in the direct effect of contextual variables
X, A, and Z on changes in outcome Y, while controlling for the unobserved variables U.

Following the backdoor criterium and the proposed causal graph, to compute the
direct effect of X → Y , it is necessary to close the indirect path X→ A→ Y, by adjusting
for A. This will open a new indirect path X→ A→ U3 → {Z, U2}→ Y due to the collider
role of U3, thus making it necessary to adjust at least for A and U3. To compute the direct
effect of A→ Y, it is necessary to close the indirect paths A← X→ Y, A→ Z → Y, and
A← U3→ {Z, U2}→ Y by adjusting at least for X, Z, and U3. Lastly, to compute the direct effect
of Z→Y, it is necessary to close the indirect paths Z← U2→ Y, Z← A← Y, Z← A← X→ Y
and Z← U3→ U2 → Y by adjusting for at least for A and U2.

Therefore, a model seeking to compute the effects of {X, Z A}→ Y might adjust for
all observed variables, as well as the unobservable effects of states (U3) and schools (U2).
However, since U2 and U3 are unknown, assumptions must be made about them in order
to adjust correctly. Assuming they are time-independent and constant over a given time
period, it is possible to control for them using a two-way fixed-effects (TWFE) econometric
approach. This technique has been established and extensively used to treat unobserved
heterogeneity [65,66], including in some research using LSA data [67,68]. Under these
assumptions, TWFE is a powerful statistical tool for causal inference under observational
data due to its ability to control for unobserved and time-invariant confounders [69,70].

Assumption 1. The effects of policies on each state and school are invariant and constant over a
specific period.

It is plausible that state policies hold in the medium or long term. The last Brazilian
Educational Plan, which is expected to strongly influence state strategies, established its
goals for the ten-year period of 2014 to 2024. Additionally, institutional changes occur
gradually and evolutionarily rather than radically, particularly in democratic societies [71].
The minimum expected term of office for school principals and Brazilian politicians, which
often head the implementation of new policies, is three and four years, respectively. Conse-
quently, the institutional structures of education systems remain relatively similar during
the time a student spends in secondary school.

Assumption 2. The structural education models follow a parametric and additive linear function.

To adjust correctly to the effects of the unobservable effects is necessary to assume a
parametric linear distribution of the structural equation. Therefore, they can be straightfor-
wardly modeled as follows:

yijt − iy − jy = β0 + β1
(
Vijt − iV − jV

)
+ β1

(
Uijt − iU − jU

)
+ εij

∆yi = β0 +
n

∑
i=1

β(∆Vi) + ε
(1)
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where yijt is the average performance for school i state j, and time t, which are “de-meaned”
in the first place to the school level and next at the state level V ∈ X, A, Z is the set of
contextual variables, U are the unobservables, and ε is the random error term. To effectively
systematize the objective of this study, it was transformed into a binary classification
problem. The target variable yijt ∈ {0, 1}, where 1 represents schools with performance
gains (differences over the mean in the two levels) in upper quartile of the distribution
and 0 represents the remaining schools. Quartiles of the distributions are robust against
extreme values (outliers) (Johnson et al., 2002) and provide a higher level of abstraction.

Lastly, a logistic regression technique was used to generate the propensity score for a
school being in the third quartile, as indicated in Equation (1). The logistic models explicitly
present the knowledge extracted from data in terms of the coefficients (β) validated by their
statistical significance (p-value). The model was carried out in ten different time windows,
which end in the last year of the period (varying their start from the first year of the period
to Tend − 1.

p
(
Yj = 1

)
=

exp
(

β0 + ∑i
i=1 β∆x,i

)
1 + exp

(
β0 + ∑i

i=1 β∆x,i

)
4.3. Model Evaluation

The models were evaluated in a 10-fold cross-validation setting using the Area Under
Receiver Operating Characteristic Curve (AUC_ROC). The AUC_ROC is a widely used
tool to assess binary classifiers across the entire continuous domain of decision (the score
range). The bigger the area, the closer the system is to the optimum decision curve, with
the ideal decision system having an AUC_ROC equal to one.

4.4. Detailing Specific Policies

An important aspect of this research is to leverage new insights about the data to
support the validation, proposition, or improvement of educational policies. In this direc-
tion, an important exercise is to understand deeper the role of variables highlighted in the
previous model as the most predictive and which can be directly linked to the effectiveness
of policies. In this step, the use of posterior information from the predictive model allows
for the validation and extraction of more knowledge about data patterns and potential
heterogeneity. This exercise using high-level interpretable techniques such as classification
rules and decision trees can further support the understanding of settings that lead to gains
in performance.

4.5. Data

The data utilized in this study is sourced from the Brazilian National Secondary School
Exam (Exame Nacional do Ensino Médio—ENEM). The ENEM data includes socioeconomic
information on students collected through self-questionnaires, as well as the student
performance (our measure of performance) from five different tests (math, languages,
natural sciences, human science, and an essay). Additionally, the national school census,
which provides information on the conditions of Brazilian schools, including physical
infrastructure and faculty details, is also utilized. Together, these databases offer a wealth
of information on Brazilian secondary education and are publicly available [72]. The data
covers the period from 2009, when the ENEM was reframed to make it comparable over
time, to 2019, the latest year for which data is available for both databases during the
study’s timeframe.

4.5.1. Scope Definition

This study focuses only on secondary public schools, which represent the vast majority
of Brazilian secondary school enrollments. The dataset refers to over 40 million students
in thousands of schools across the country. However, only a fraction of these students is
in the last year of secondary education when students take the ENEM test. We used a set
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of filter criteria to define the scope of this study and these further reduced the number of
students composing the sample in our analysis:

• As the school “id” will be the primary key for ENEM and school census dataset fusion,
all students who do not attend a school that has been assigned were removed;

• Students were not included if they were not in the last secondary year of municipal or
state public schools;

• Students were not included if they did not follow a regular curriculum;
• As a double-checker, students not in the most probable age range meeting criteria 1 and 2

(17–19 years old) were also discarded;
• In order to obtain a critical mass, only schools with ten or more students were selected;
• To ensure that all schools had at least a minimum infrastructure to function, schools

with no electric energy, sanitation, or piped water were discarded.

The same criteria were applied for each year of the dataset. Table 1 presents the
number of students and schools before and after defining the scope. As the teacher table is
present only in the school census, which includes every teacher from every school in Brazil
(including non-secondary), only the final number of teachers related to school at the ENEM
level is presented. All variables were transformed to the school level, which is the level of
the analysis (decision grain).

Table 1. Number of schools, students before and after scope definition and the number of teachers
used to build teacher variables in the school level.

ENEM—BEFORE FINAL DATASET—AFTER

YEAR School Student School * Student Teacher

2009 22,696 1,173,419 15,413 631,604 492,584
2010 22,496 1,096,483 17,957 774,937 553,909
2011 22,274 1,200,923 19,584 911,309 602,292
2012 22,240 1,201,036 20,120 954,009 614,749
2013 21,085 1,293,786 21,085 1,049,134 649,652
2014 22,846 1,344,736 21,383 1,070,778 671,383
2015 21,843 1,310,702 21,843 1,128,398 701,424
2016 24,217 1,523,161 22,476 1,192,812 709,619
2017 24,102 1,433,841 21,692 1,078,598 676,138
2018 22,729 1,151,207 20,617 920,310 615,011
2019 21,069 933,988 18,149 777,589 586,718

Since some schools are not present during the whole period due to the lack of ENEM
attendees in a specific year or not following the filter rules established in the scope definition
to a specific year, the number of schools changed over time as described in Table 2.

Table 2. Number of schools present in each time window.

Tstart 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

NUMBER OF SCHOOLS 7.988 9.357 10.013 10.410 10.829 11.131 11.448 11.744 11.985 12.561

4.5.2. Data Preprocessing

The data have gone through several changes over time. As an illustration, there were
293 variables in the ENEM questionnaire in 2009, while in the following year, 2010, only 57.
Added to this difference in the number of variables collected, and there were also changes
related to the variables representation, such as: (1) features were binary for some years
and quantity for others; (2) categories were represented by numbers in some years and by
strings in others; and (3) categorical features with i options were transformed into i binary
features for different years.
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It is important to standardize the data to overcome these issues and to allow us
to compare the findings over the years. First, we select only variables present in all
waves. Next, the data were standardized regarding content and meaning. A variable
with less information was used as a reference for mapping the others. For instance, if a
variable was binary in one year and multiple categorical in the others, the binary version
was adopted for all years. The income features were normalized using a contemporary
minimum wage. The variable related to the use of technological devices were individually
treated. For example, before 2019, the available information on technology devices at school
was measured by just one variable (student’s computer), whereas in 2019, the questions
also asked about notebooks and tablets, which were unified. The missing values were
analyzed separately since there were not many and were used as the most probable value.
Alternatively, the mean was used for those that did not have a clear explanation. To reduce
the influence of outliers, all numerical features were normalized for each year separately,
using the α-winsorized values of the distribution (α/2 = 0.025 at each tail) as their minimum
and maximum.

As a strategy to enhance the discriminant power of data, some variables frequently
brought to the fore in discussions on the quality of secondary education (39), which were
not initially present in the databases, were created. These were: (a) appropriate training
of faculty members (measured by the ratio of teachers with the right background for the
subject they teach); (b) the number of jobs held by the teacher (the average number of
schools in which teachers work); (c) faculty pedagogical training (the proportion of faculty
with pedagogical training); (d) faculty *DOMAIN* (the proportion of teachers in the school
teaching in each *DOMAIN* covered on the ENEM); and (e) faculty workload (the ratio of
teachers to the number of subjects covered in the school). In the end, as mentioned above,
40 input variables compose the final dataset.

The final dataset was presented at the school level, and variables from students and
teachers were aggregated. Overall, the central tendency for each school, such as median
and mode, was adopted. For categorical variables with an ordinal relation, such as faculty
and parent’s education, domain knowledge was incorporated by using the number of years
of schooling as a weight in the average calculation. Higher weight was given to advanced
degrees such as a Ph.D. and lower to lower degrees such as a B.Sc. The variables were
normalized to obtain a normal distribution and fall within a range of 0 and 1.

The chosen variable to indicate the outcomes was the arithmetic mean of the stu-
dents within schools in all areas of knowledge covered in the tests. The median was
adopted as a threshold for labeling schools as high and low achievement, balancing the
distribution of classes across the administrative units and increasing the range of potential
analysis. The final dataset variables, along with the descriptive statistics, can be found in
Appendix A. Additionally, the code of all experiments is available at: http://www.github.
com/rogerioluizsi/tw-fixed_effects_enem, accessed on 1 January 2023.

5. Results

As shown in Figure 3, the coefficients of each significant variable at a level of 0.05 are
presented for all years. To better visualize the difference of the coefficients over time, they
were separated into three different ranges: from 2009 to 2012, 2013 to 2015, and 2016 to
2018. Variables with lower variance in the period must have coefficients close to zero,
regardless of whether they are school success determinants. One interesting aspect of
the model is the substantial impact of demographic variables, such as those related to
race, on performance. These variables are well-known as related to performance in Brazil,
but it was expected that their coefficient would be close to zero, as their values tend
to remain stable over time. However, they were highlighted as significant in various
periods. This suggests that Brazilian students may be changing how they self-declare
their race, which is consistent with findings from a recent longitudinal study by INEP at
the student level [73].

http://www.github.com/rogerioluizsi/tw-fixed_effects_enem
http://www.github.com/rogerioluizsi/tw-fixed_effects_enem
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Some variables, such as faculty education and father’s education, have coefficients
with different signals across different time periods. This calls for caution in the analysis,
as models with a small time window tend to be low in information due to the expected
lack of variance in the contextual variables. Figure 4 demonstrates the performance of the
models by plotting their AUC_ROC values alongside their respective confidence intervals.
The results indicate a significant decrease in AUC_ROC as the time window narrows. The
best models are those starting in 2011, 2012, and 2013, respectively. Table 3 displays the
coefficients of the top variables in the best model (2011–2019). To evaluate consistency,
the number of times each variable was significant in the top seven with higher effects,
regardless of the direction, is depicted, as well as their averages within parentheses.
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Table 3. Higher coefficients for the logistic regression fixed-effects model to the period of 2012–2019
and the number of times these variables were in the same top 7 ranking in other periods.

Variable Coefficient p-Value Periods

Income (per capita) 5.22
(3.92)

0
(0) 10

Faculty education 4.93
(3.64)

0
(0) 8

Faculty work overload 3.18
(2.15)

0
(0) 5

Mother’s education 2.33
(2.41)

0
(0) 10

Father’s education −2.12
(1.60)

0
(0) 3

Number of employees −2.78
(−1.36)

0
(0) 8

Student’s computer −1.04
(−1.21)

0
(0) 1

Income per capita, faculty education, faculty work overload, and mother´s education
were the four most important positive variables during the period of 2011–2019. The
relationship between students’ socioeconomic status and educational outcomes is well-
established in the literature [74–76], including previous research using this same dataset
with a slightly different methodology [3]. Nevertheless, our methodology can provide new
insights into the relationship between socioeconomic status and educational outcomes. Our
model suggests variations in this effect concerning the top quartile, which opens the path
for further research to explore whether these variations lead to a narrowing or widening of
socioeconomic inequalities.

Regarding parents’ education, as expected, the mother’s education is directly linked
to good performance, while father’s education has a negative coefficient. This negative
effect on the period of 2011–2019 is not consistent with other periods in which father’s
education was significant into the top seven, since having a positive average. This can also
be observed in Figure 3, in which father’s education has positive effects for some periods.
Therefore, this adverse effects interpretation requires caution, as there is no theoretical
evidence to support it.

Interestingly, we found that faculty education and faculty work overload, which
had little relevance in our previous investigation of this same dataset [77] without causal
reasoning, received higher coefficients. Faculty education is a school index that accounts
for the average teacher education level, with weights based on years of schooling. Faculty
work overload is the ratio of teachers to subjects offered in the school and aims to measure
the volume of work. In Brazilian public secondary education, there is a low rate of teachers
with additional years of education beyond graduation, particularly those with advanced
degrees (in 2019, only 4.8% of teachers had an M.S., and 1.1% had a Ph.D). Additionally,
teachers often have heavy schedules. The analysis suggests that efforts to boost these
indices are positively related to gains in ENEM scores. These results are promising as
evidence of the relevance of teacher policies in achieving improved outcomes in the context
of Brazilian secondary education.

The number of employees is a direct indicator of school size and is related to negative
results. Additionally, the provision of more computers to students, which has a contro-
versial effect in the educational literature [2,31,78], was highlighted as a negative policy
in all periods. As a result, policies aimed at increasing the number of computers or other
technological devices (such as tablets, which were considered as computers in 2019 in the
data harmonization) in schools, should be carefully evaluated to identify the specific uses
and contexts in which they lead to positive effects.
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Going Back and Looking at the Data

A set of classification rules were created through online analytical processing (OLAP)
queries to validate the knowledge extracted by the logistic regression coefficients. The rules
were created over the top seven variables highlighted in the models and the outcomes.
The rules are one conditional where the variables are the ascendent and the outcomes the
consequence. The data used are two new versions of the original preprocessed dataset in
which each variable, including the scores, was replaced by its trend value representing
variable and outcome gains. Two different measures of trends were considered: (1) the
slope, representing the linear tendency of variables from 2009 to 2019 and (2) the average
difference from 2009. The goal is to confirm the influence and statistical significance of
the ascendant variables in classify scores over time. For a meaningful interpretation, the
variables were normalized between zero and one. Table 4 presents the best rules with the
associated quality metrics. Expressed in percentages, the support (S) indicates the size of the
data slice covered by the rule condition, and the confidence (C) indicates the concentration
of schools within this slice that follows the second condition. Finally, the relevance of the
feature is assessed by the departure of the lift (L) from the sample average [79]. Lifts close
to one indicate low relevance of the antecedent variable regarding the consequent and lifts
close to zero represent high negative effects.

Table 4. Rules produced by OLAP queries to validate logistic regression findings.

Condition Consequence S C L Trend

Income trends > 0.43 Score = top decile 16% 28% 2.8 Slope
Faculty education trends > 0.54 Score = top quartile 25% 34% 1.37 Slope
Faculty overload trends > 0.66 Score = top decile 7% 16% 1.6 Slope

Mother’s education trends > 0.64 Score = top decile 19% 36% 3.62 Slope
Father’s education trends > 0.66 Score = top quartile 28% 36% 1.44 Avg Change

Number of employees trends > 0.68 Score = top quartile 20% 20% 0.83 Avg Change
Student’s computer trends > 0.66 Score = top quartile 14% 14% 0.5 Avg Change

Overall, the variables highlighted as positive in Table 3 are strongly related to ENEM
scores with lift higher than one. Additionally, corroborating with the logistic models, the
variables with negative effects, student’s computer and number of employees, have lifts
lower than one. The variable student’s computer has a lift close to zero, indicating a very
low concentration of schools with average changes greater than 0.66 in the top quartile of
score trends, confirming their negative effects on student outcomes. Father’s education had
a controversial result in the logistic models, with positive and negative effects in different
periods, and it has a lift above one, indicating that a variable has a positive effect in the
trend dataset when assessed by the classification rule.

The potential of faculty education as a factor in classifying schools with higher gains in
ENEM scores is significant, yet there is a scarcity of quantitative research in this area within
the Brazilian secondary education system. This highlights the need for further investigation
to better understand the relationship between faculty education and improved ENEM
scores, and how this knowledge can inform policies and practices to support schools in
achieving higher gains in this area. Figure 5 uses decision tree gains to classify schools
in those with higher gains (third quartile) and lower gains (remains quartile) in order to
describe schools which achieve higher gains in the variable faculty education. The trend
version of the dataset which has the average change over time was used.

The decision paths, represented by the tree’s branches, express the knowledge em-
bedded in the data in a humanly understandable format through “if-then” rules [80]. The
leaves of the tree, located at the bottom, represent the outcomes of the decision paths
(higher and lower gains), while the most important attributes are found at the top of
the tree. The first number in each node represents the majority class present in the rule
defined in the node, while the second represents the fraction of positive class (confidence)
and the third the coverage of the rule (support). Only the dummy variables representing
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Brazilian states (UF_05_<STATE>) were used in the tree, suggesting the protagonism of
state-specific practices and policies in improving faculty education polices in secondary
education. The state of Bahia (BA) concentrates 6% of schools with higher gains, followed
by Espírito Santo (ES), which was chosen by the algorithm. Further in-depth investigation
of these state policies must derive some clues as to the improvement of education from a
national perspective.
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Finally, since faculty education is an index derived from the different level of teachers
in school, Figure 6 analyzes the raw dataset to identify the levels of education that have
increased in schools with higher average gains (third quartile) in the faculty education
index. The proportion of teachers with specializations, master’s degrees, and Ph.D.s has
been increasing over time. Although the number of teachers with advanced degrees exhibits
higher growth rates, they remain a small fraction of the total number of teachers, making it
difficult to attribute the good results solely to them. For instance, in 2009, only 0.002% of
Brazilian teachers held Ph.D.s (795 individuals), while in 2019, the number increased to
0.005% (2976 individuals), resulting in a 274% increase in the number of teachers with
Ph.D.s and a 150% increase in the proportion. Figure 6 illustrates the increasing proportion
of teachers by degree over time, and the legend displays the average growth rate of the
proportion for the entire period. The average growth (A.G.) is the average of growth rate
computed for each year.
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6. Discussion

Whereas computer scientists in EDM are typically experienced with predictions to de-
rive knowledge from data, they lack experience when it comes to theory-driven approaches
to resolve social science problems. In contrast, social scientists typically do not work on
predictions but are knowledgeable regarding statistical tools to uncover causal mechanisms
and derive models from theory [81]. Combining EDM and traditional statistical approaches
can put forward research on LSA data, as the former is a well-equipped tool for finding
generalizable patterns, while the latter is helpful for embedding domain knowledge to
make causal analyses [2]. How the analyst can take advantage of both disciplines depends
on the study aims and the dataset characteristics.

In this study, we combine two-way fixed-effects and EDM tools to explore longitu-
dinal LSA data. The methodology consisted of three steps. First, using domain expert
knowledge about the data and the relevant literature, potential causal relationships in the
Brazilian education system were structured by DAGs, supporting the identification of
the primary sources of bias. Next, a two-way logistic regression fixed effects was used
to control for the unobserved effects of schools and states. The AUC_ROC evaluated the
models, and the predictive contribution of variables in the best models was assumed to
be a less-biased estimation of the influence of variables in outcomes gains at the school
level. Finally, additional data mining techniques described the data using posterior infor-
mation to add knowledge about the relevance of the main variables highlighted in the
first models.

The initial models consist of a series of models applied to different time windows of the
dataset, with the end period held constant at the last year for all windows and the start year
ranging from the first year to the previous years before the last. This approach provides
a more in-depth understanding of changes in certain variables and their relationship
with gains in the ENEM. Some variables, such as students’ access to computers, faculty
education, and adequate pedagogical training, show greater relevance to the models when
covering larger time periods than the small ones. It is likely due to the gradual persistence
of interventions in these variables over time. Other variables, including father’s education,
students’ race, and income, exhibited more mixed effects across the periods. These mixed
results pose challenges for interpreting these variables, as they could be due to the dynamic
complexities of the variables or noise in the data collection. This dual interpretation
reinforces the need to match the results with the existing literature and conduct further
investigations using other techniques, as was reported in this paper.

The following analysis employed rules and decision trees to investigate two versions
of temporal data, wherein all variables were replaced by a single value representing their
trends. The rules aimed to identify relevant patterns that matched previous findings in
logistic regression models. In contrast, the trees focus on exploring what was related to
the interventions as detected in prior models. This exercise yields valuable insights for
informing policies and practices related to these interventions. Although rules and trees
are commonly used in the machine learning literature for predictive tasks, this paper only
used them descriptively without concern for data reuse or predictive evaluation. Moreover,
the trend versions of the dataset rely on assumptions that may not hold in reality. The
transformations assume independence and linearity across variables, which may also not
hold in reality.

The knowledge extraction also raises an additional contribution of this paper, due to
the scarcity of temporal and multivariate analysis in Brazilian secondary education. Overall,
the results align with previous research from the educational field and could highlight the
importance of well-known variables such as those related to socioeconomics. An exception
is the negative effect of father’s education when analyzing the models from the 2011–2019
period. However, the father’s education had a positive impact when averaging all periods.
Additionally, the classification rules did not confirm the negative effect when using a new
version of the dataset, where variables were replaced by their trends. Our methodology
also brings new insights to the forum of educational policies such as the relevance of
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policies related to faculty, students’ computers, and the changes in how Brazilian students
have self-declared their races. Regarding the faculty, policies to boost the level of education
and reduce workload were highlighted as the most effective interventions observed in
the data.

To derive these results, a sequence of assumptions was required to control for the
primary sources of unobservable confounding, raising limitations and threats to the in-
ternal and external validity of this study. Assumptions are unavoidable when exploring
observable data, and future works using other design models can verify specifically the
effects of the main variables highlighted in the results. Another limitation is the required
longitudinal data at the school level, which limits the use of the presented tools in other
LSA data, such as from PISA (https://www.oecd.org/pisa/, accessed on 12 January 2023 ),
which uses random samples of schools. An adaptive alternative is pseudo-longitudinal
data [68], where estimates can be carried out by tracking groups of interest over time,
instead of observations. Finally, causal time-series models can reveal relationships in the
temporal data that our models may have missed due to assumptions made during the
analysis process.

7. Conclusions

This study represents a novel approach by integrating methodologies from different
disciplines to examine educational data through a causal framework. This causal perspec-
tive allows for the identification and mitigation of potential sources of bias, resulting in
more accurate and reliable findings. We demonstrate that this combination of tools can
be a valuable way to leverage insights using data released from large-scale assessments.
Specifically, our analysis uses practical contexts using Brazilian secondary education data
to inform decision making and support the design of effective educational policies. The
study’s results emphasize the significance of socio-economic factors and demonstrate the
substantial influence of faculty education policies, particularly the shift towards specialized
and master’s degree programs. Additionally, they highlight the critical role played by
Brazilian states in implementing these policies.
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Appendix A

ID Variable Mean S.D. Min Max Source Type

1 Computer lab 0.89 0.31 0.00 1.00 School Binary
2 Science lab 0.55 0.50 0.00 1.00 School Binary
3 Special attendance room 0.22 0.41 0.00 1.00 School Binary
4 School library 0.74 0.44 0.00 1.00 School Binary

https://www.oecd.org/pisa/
https://doi.org/10.7910/DVN/WEWDHL
https://doi.org/10.7910/DVN/WEWDHL
https://www.github.com/rogerioluizsi/tw-fixed_effects_enem
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ID Variable Mean S.D. Min Max Source Type

5 Reading room 0.37 0.48 0.00 1.00 School Binary
6 W.C. 0.97 0.17 0.00 1.00 School Binary
7 Disabled W.C. 0.54 0.50 0.00 1.00 School Binary
8 Classrooms 14.96 8.18 4.00 42.00 School Numeric
9 Television 0.96 0.20 0.00 1.00 School Binary
10 DVD player 0.88 0.32 0.00 1.00 School Binary
11 Copy machine 0.71 0.45 0.00 1.00 School Binary
12 Printer 0.93 0.26 0.00 1.00 School Binary
13 Student’s computer 21.48 19.86 0.00 102.00 School Numeric
14 Fast internet 0.87 0.33 0.00 1.00 School Binary
15 Number of employees 65.09 36.20 12.00 175.00 School Numeric
16 School lunch 0.74 0.44 0.00 1.00 School Binary
17 Faculty room 0.97 0.18 0.00 1.00 School Binary
18 School kitchen 0.91 0.28 0.00 1.00 School Binary
19 Satellite dish 0.48 0.50 0.00 1.00 School Binary
20 Sports court 0.89 0.32 0.00 1.00 School Binary
21 Complementary activity 0.25 0.43 0.00 1.00 School Binary
22 Father’s education 2.00 0.79 0.65 3.77 Student Numeric
23 Mother’s education 2.41 0.73 1.11 3.97 Student Numeric
24 Faculty education 0.14 0.08 0.02 0.34 Teacher Numeric
25 Income (USD per capita) * 418.63 282.42 88.75 1190.17 Student Numeric
26 White students (fraction) 0.47 0.26 0.05 0.95 Student ** Numeric
27 Black students (fraction) 0.09 0.08 0.00 0.33 Student ** Numeric
28 Brown students (fraction) 0.38 0.22 0.00 0.82 Student ** Numeric
29 Asian students (fraction) 0.02 0.03 0.00 0.11 Student ** Numeric
30 Indigenous students (fraction) 0.00 0.01 0.00 0.05 Student ** Numeric
31 Student´s gender 0.54 0.01 0.2 0 Student ** Numeric
32 Enrollments 29.88 8.09 14.00 48.00 School Numeric
33 Natural Science faculty (fraction) 0.16 0.08 0.03 0.33 Teacher Numeric
34 Humanities faculty (fraction) 0.27 0.05 0.17 0.38 Teacher Numeric
35 Languages faculty (fraction) 0.39 0.06 0.26 0.50 Teacher Numeric
36 Math faculty (fraction) 0.18 0.05 0.07 0.28 Teacher Numeric
37 Faculty jobs 1.38 0.32 1.00 2.36 Teacher Numeric
38 Pedagogical training 0.90 0.11 0.57 1.00 Teacher Numeric
39 Faculty adequate training 0.68 0.10 0.47 0.86 Teacher Numeric
40 Student’s age 17.55 0.30 17.08 18.33 Student Numeric
41 Faculty work overload 0.85 0.17 0.47 1.00 Teacher Numeric

* Converted from Brazilian Real to United States Dollar using the average rate in the period (2.67).
** Students features grouped in the non-actionable features.
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