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Abstract: Cardiovascular disease (CVD) is the leading cause of death. CVD symptoms may develop
within a short-term after diagnostic catheterizations and lead to life-threatening situations. This study
is the first to apply machine learning (ML) methods to predict subsequent adverse cardiovascular
events/treatments for patients within 90 days after their first diagnostic catheterizations. Patients
(6539) without previously diagnosed CVD were selected from the DukeCath dataset. Ten ML
methods were used. Three medical outcomes, varied cardiovascular-related scenarios, percutaneous
coronary intervention (PCI) treatments, and coronary artery bypass graft (CABG) treatments, were
targeted individually. With patient medical history, vital measurements, laboratory results, and
the number of diseased vessels, the random forest classifier (RFC) performed best in predicting
combined cardiovascular scenarios, including CABG, PCI, valve surgery (VS), stroke, and myocardial
infarction (MI), achieving accuracy: 88.17%, sensitivity: 89.72%, specificity: 86.98%, area under
receiver operating characteristic (AUROC): 91.68%. The gradient boosting classifier (GBC) performed
best in predicting the PCI and CABG treatments (PCI treatments: accuracy: 89.21%, sensitivity:
90.20%, specificity: 88.74%, AUROC: 94.16%; CABG treatments: accuracy: 93.86%, sensitivity: 77.57%,
specificity: 96.23%, AUROC: 96.47%). Our results show that the ML applications effectively identify
high-risk patients, can provide diagnostic assistance in cardiovascular treatment planning, and
improve outcomes in cardiovascular medicine.

Keywords: cardiovascular disease; diagnostic catheterizations; machine learning; risk estimation;
treatment planning

1. Introduction

Cardiovascular disease (CVD) continues to be the leading cause of death and health
expenditure worldwide. In the United States, approximately 659,000 people die from CVDs
each year [1]. CVD is broadly referred to as a number of cardiovascular conditions, includ-
ing coronary heart disease, arrhythmia, and heart valve problems. Coronary heart disease
is prevalent and can cause heart attacks and stroke when a blood clot forms [2]. Diagnostic
cardiac catheterization allows the assessment of coronary vessels and provides evaluation
information about the heart muscle, heart valves, and blood vessels in the heart. Different
treatments are suggested afterward depending on the diagnostic catheterization results
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(CR) and cardiovascular conditions [3]. Due to the ongoing CVD progression after the
diagnostic catheterization, a certain portion of suspected patients would develop adverse
cardiovascular symptoms in the short term [4]. These symptoms (e.g., heart attack, stroke)
place patients at high risk that would even cause fatalities if proper medical interventions
(e.g., percutaneous coronary intervention (PCI) for acute myocardial infarction) are not
delivered on time. Unfortunately, these dangerous cardiovascular symptoms are unknown
until these adverse cardiovascular events occur. Thus, early predictions of adverse cardio-
vascular events for patients who received catheterizations can provide helpful information
to differentiate the high-risk patients and provide valuable time ahead for hospital inpatient
monitoring and treatment management.

Machine learning (ML) techniques have become a powerful tool for making predictions
or performing classifications for medical diagnoses [5]. Previous studies have developed
cardiovascular event prediction methods [6,7]. ML predicted one-year cardiovascular
events for patients with severe dilated cardiomyopathy and achieved an area under receiver
operating characteristic (AUROC) of 0.887 [8]. Another study predicted mortalities and
heart failure (HF) hospitalization for HF outpatients diagnosed with preserved ejection
fraction. They tested different models, and they received their best results using the random
forest model with a mean C-statistic of 0.72 for predicting mortality and 0.76 for predicting
HF hospitalization during the 3-year follow-up [9]. A deep neural network method was
used to predict myocardial infarction (MI) events at six months, resulting in an AUROC of
0.835 with harmonized electronic health record data [10]. The majority of these ML studies
focused only on the long-term (years) predictions of cardiovascular scenarios and not aimed
to generate on-time guidance/assistance on treatment planning or risk estimation at the
beginning of patient diagnoses. Additionally, during that long observation period, many
unseen factors would affect patients diagnosed with CVD (e.g., side effects of prescription
medicine [11]). These introduced uncertainties would hinder the accurate performance of
the ML models. Differently, short-term predictions (i.e., months) will not be sensitive to
these unpredicted factors, and uncertainties can be largely reduced [12]. Thus, ML methods
focusing on short-term cardiovascular-related predictions would be practical and reliable.

The number of CVD patients increases yearly, and the population of patients who
receive catheterization procedures is significant [4]. In certain cases, the complete determi-
nation of CVD progression in patients can be challenging when there is a lack of sequential
catheterization history [13]. Therefore, patients, who have no history of or any dangerous
symptoms (e.g., heart attack and stroke) of CVD, are still encountering unknown cardio-
vascular risks. An accurate scoring metric/approach is needed to identify the high-risk
patients from the suspected CVD patients. Furthermore, some related studies [14,15] are
solely based on CR and basic demographic information. With the catheterization proce-
dures, the ML model, predicting fractional flow reserve, achieved 84% sensitivity, 80%
specificity, 82% accuracy, and 0.87 AUROC [14]. Similarly, another ML model showed 84%
accuracy and 0.89 AUROC during external validation for the assessment of myocardial
ischemia [15]. These catheterization-based methods ignore the patient’s medical/physical
features (such as laboratory results and physical examinations), which are not applicable
to personalized medicine developments. Including patient medical history, vital mea-
surements, and laboratory results before catheterization procedures can enhance the ML
model’s performance and practicality for diagnostic purposes [16]. To fill this gap, this
study adapted ML-based approaches to effectively identify high-risk patients who lack
sequential catheterization history. These findings would provide diagnostic assistance
in cardiovascular treatment planning with patients’ short-term diagnostic information,
contributing to improved diagnosis and treatment outcomes in cardiovascular medicine.
Further, the DukeCath database [17] contains 155,980 catheterization procedures (diagnos-
tic and interventional), and to the best of our knowledge, this study is the first to apply ML
methods to this dataset. This study aimed to explore the potential of ML applications in
predicting CVD in suspected patients with no previously diagnosed CVD or any apparent
severe symptoms of fatal CVD. The DukeCath database was utilized to provide insights
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into the effectiveness of ML algorithms for detecting CVD in this specific target population.
Initially, ML methods were used to predict cardiovascular-related scenarios (i.e., treatments
and events) occurring within 90 days of the first catheterization procedure to provide over-
all cardiovascular risk assessments and classify high-risk patients. The patients’ features
included medical history, vital measurements, laboratory results, and CR. The treatments
and events include coronary artery bypass surgery (CABG), valve-related surgery (VS), PCI,
stroke, and MI. For CVD, the PCI and CABG treatments are the main revascularization pro-
cedures [18,19]. Therefore, the study generated treatment predictions (PCI and CABG) for
suspected patients using ML models to facilitate treatment planning. Finally, the model’s
performance was evaluated by measuring accuracy, sensitivity, specificity, and AUROC.

2. Materials and Methods

DukeCath database contains a total of 155,980 catheterizations that took place in
the Duke University Medical Center (Durham, NC, USA) from 1985 to 2013. The Duke
Medicine Institutional Review Board (Pro00068333) approved the creation, de-identification,
and public sharing of the DukeCath dataset through DCRI’s SOAR (Supporting Open
Access for Researchers) initiative. In this dataset, 95 features were created for each catheteri-
zation procedure. Among the records, there were 84,167 unique patients. A table providing
the univariance analysis of the applied patient information can be found in the Appendix A
section. There were nine groups of features: identification, demographics, medical history,
vital signs before the catheterization, laboratory measurements before the catheterization,
physical examination record before the catheterization, catheterization procedures, CR,
and follow-up results, as shown in Table A1 of Appendix A. Some features had two ver-
sions in the database, and their raw versions were considered here. Missing data were
commonly found among the features. ML applications were applied to subsets of the
DukeCath patient population based on their medical history to predict the likelihood of
specific cardiovascular events and treatments. These subsets included patients with no
history of cerebrovascular disease, congestive heart failure, MI, or peripheral vascular
disease and who were not experiencing any severity of congestive heart failure. None of
the cardiac-related surgeries, including CABG, PCI, valve repair or replacement (VS), were
reported previously in these patients’ medical history. Since the cardiovascular risk factor
was the only factor investigated here, the potential risks caused by other health conditions
were excluded from this study. These exclusions comprised chronic medical conditions
such as chronic obstructive pulmonary disease, connective tissue disease, or undergoing
dialysis, as well as high-risk diseases like liver disease, renal disease, leukemia, lymphoma,
solid tumor, or metastatic cancer. All these preserved patients have only received their first
diagnostic cardiac catheterization procedures. There was a total of 38 input features, includ-
ing demographic information (three features), medical history (seven features), physical
examination (six features), vital signals (three features), laboratory results (four features),
and CR (15 features). Baseline characteristics of the study population were analyzed with
t-test methods (on continuous data), Fisher’s exact tests (on Boolean data), and chi-square
tests (on categorical data).

Machine Learning Models

Ten ML methods were used to provide binary predictions (risk or no risk) in this
work. ML models can be divided into linear and nonlinear types for classification. A
linear model will plot features and the targeted outcomes with a hyperplane that separates
all the different classifications. Nonlinear models, as their name suggests, have complex
boundaries which do not have to be a hyperplane. Currently, all the selected ML models in
this study are widely used. Linear discriminant analysis (LDA), logistic regression classifier
(LRC), Gaussian naïve Bayes (GNB), and support vector classification (SVC) were applied as
linear models. Applied nonlinear models include decision trees (DT), K-neighbors classifier
(KNC), and ensemble models (AdaBoost classifier (ABC), gradient boosting classifier (GBC),
and random forest classifier (RFC). Since this work provides an understanding of using
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general ML applications to predict adverse cardiovascular events and treatments, as a
neural network model, a multi-layer perceptron classifier (MLP) was chosen [20]. Our
MLP model consists of an input layer with 38 dimensions, while the number of hidden
layers varied up to 50 during the model selection process. The output layer has one
dimension. All ten ML models were trained with default parameters unless additional ones
were mentioned. The synthetic minority over-sampling technique (SMOTE, a type of data
augmentation) [21] was used to stratify the data to mitigate the data imbalance issue. As
conventional methods to performance train/test data splitting, when the data is sufficient,
20–30% of the data is preserved for testing, and the remaining 70–80% of the data is for
training purposes [22]. More training data would likely yield a better ML model; more
testing data would provide a more accurate estimation of model performance. Therefore,
to maintain a sufficient number of positive cases (occurrence of cardiovascular events of
interest) for validation, the data was split into a ratio of 1:1 for training and testing purposes.
With the patient testing data, accuracy, sensitivity, specificity, and AUROC were calculated
for each ML model. A flowchart to illustrate the ML applications on the DukeCath dataset
is shown in Figure 1.
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Figure 1. The flowchart of the ML applications on the DukeCath dataset.

ML models were trained to predict multiple cardiovascular scenarios within 90 days
after receiving their first catheterization for patients with no previous cardiovascular event
history. The first part (referring to Case I in Figure 1) of the study provides overall risk
assessments that would be a metric for isolating high-risk patients. The target cardiovas-
cular events and treatments included CABG (727 of 1041 cases occurred within 90 days),
PCI (2008 of 2211 cases occurred within 90 days), VS (152 of 230 cases occurred within
90 days), MI (53 of 349 cases occurred within 90 days), and stroke (111 of 444 cases occurred
within 90 days). The resulting dataset contains 6539 patients, including 2822 patients who
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experienced the targeted events (positive). In total, 207 patients had two incidents, and
11 patients had three incidents within 90 days. For CVD, the PCI and CABG treatments
are the main revascularization procedures, and each of them is preferable under patients’
clinical conditions [18,19]. Thus, in the next section, PCI (Case II in Figure 1) and CABG
(Case III in Figure 1) were explored separately as the predicted treatments for the patient
within 90 days after their first catheterization. To predict PCI treatments, the patient who
received CABG and VS were excluded, and the number of patients was reduced to 5374. In
total, 1734 patients received PCI within 90 days. To predict CABG treatments, the number of
patients was reduced to 4135 after excluding the patient who received PCI and VS, and only
526 patients received CABG within 90 days. Until the ML models with the best performance
were obtained at all three conditions, these selected models were additionally trained only
with CR features and with non-CR features to demonstrate the overall importance of the
CR features. Lastly, all the features were divided into three groups: the first group was the
combination of demographic information and patient medical history; the second group
included all patient examinations (physical examination, vital signals, laboratory results);
the CR features were included in the third group. For these feature groups, heatmaps
(Figure 2) were generated in each predicting case to demonstrate the importance of features
from the best ML model. With the visual aid of the heatmaps, feature selections were
performed to obtain the final ML models in this study.
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Figure 2. Heatmaps of different feature groups. (A) The combination of demographics information
and patient medical history features heatmap; (B) included all patient examination results (physical
examination, vital signals, laboratory results); and (C) the heatmap of all the CR features.

The machine learning code was written in Python (Python Software Foundation,
Wilmington, DE, USA). The ML models were from the Scikit-learn package [23], a popular
ML library for the Python programming language.

3. Results
3.1. Performance of ML Methods

Table 1 shows the performance of ten ML models on the prediction of the short-term
risk assessment within 90 days. Among the ten ML models, RFC was the best model
achieving 89.69% accuracy, 93.83% sensitivity, 86.55% specificity, and an AUROC of 95.76%,
with the testing dataset composed of 1411 positive cases and 1859 negative cases. When
the train test split ratio was changed to 75:25, the GBC was the best model achieving
90.28% accuracy, 93.06% sensitivity, 88.16% specificity, and an AUROC of 95.87%, which is
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slightly better than the RFC’s performance (achieving 90.03% accuracy, 94.05% sensitivity,
86.98% specificity, and an AUROC of 95.77%). Only with the increasing amount of training
data, GBC outperformed RCF. Without enabling the SMOTE data augmentation technique,
the training accuracy was 100.00% in the RFC model training phase, and an accuracy of
89.36%, a sensitivity of 93.27%, 86.39% specificity, and an AUROC of 95.75% were obtained
with the test data. Since the data imbalance is not significant, the effectiveness of SMOTE
applications was not observed. Still, the RFC model with SMOTE was slightly better. As
shown in Table 2, the performance of the RFC model trained only with the CR was far
better than training without CR features, reflecting the importance of CR. Regarding the
importance of other features, the top 10 catheterization-unrelated features of the RFC model
were high-density lipids (HDL), history of angina, low-density lipids (LDL), heart rate,
body mass index (BMI), diastolic blood pressure (DBP), systolic blood pressure (SBP), body
surface area (BSA), weight, and serum creatinine.

Table 1. Performance of ML models in predicting cardiovascular events and treatments, including
CABG, PCI, VS, stroke, and MI.

Model Accuracy (%) Sensitivity (%) Specificity (%) AUROC (%)

LDA 88.13 92.20 85.05 93.67
KNC 1 83.03 77.53 87.20 89.53
DTC 83.58 82.00 84.78 83.39
GNB 75.90 95.68 60.89 89.15
SVC 87.31 91.35 84.24 93.87
LR 88.47 89.58 87.63 93.57

RFC 89.69 93.83 86.55 95.76
GBC 89.05 91.85 86.93 95.58
ABC 88.53 89.09 88.11 94.41

MLP 2 87.61 87.53 87.68 94.26
1 KNC model with setting the weights parameter as ‘distance’ was better than its default. 2 With a hidden layer of
34 dimensions as the best MLP model among the model selection.

Table 2. Performance of the RFC model trained without CR and trained only with CR.

Model Accuracy (%) Sensitivity (%) Specificity (%) AUROC (%)

No-CR 67.89 59.32 74.39 73.97
CR 88.90 91.92 86.61 95.37

Table 3 shows the performance of the ten ML models on the prediction of the PCI
treatment within 90 days. Among the ten ML models, GBC was the best model, achieving
92.07% accuracy, 95.50% sensitivity, 90.44% specificity, and 98.02% as an AUROC, with
the testing dataset composed of 867 positive cases and 1820 negative cases. When the
train test split ratio was changed to 75:25, the GBC was still the best model achieving
92.26% accuracy, 94.47% sensitivity, 91.21% specificity, and an AUROC of 97.95%. The
SMOTE method mitigated the data imbalance issue, and the GBC model’s performance
was enhanced. As shown in Table 4, the performance of the GBC model trained only with
the CR was also found to be better than training without CR features, which revealed the
importance of CR. Other than catheterization-related features, history of angina, acute
coronary syndrome (ACS), HDL, LDL, GFR Stage, DBP, BSA, BMI, age, and history of
diabetes were among the top ten important features in the GBC model for predicting the
PCI treatment within 90 days.
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Table 3. Performance of ML models in the prediction of receiving PCI treatments.

Model Accuracy (%) Sensitivity (%) Specificity (%) AUROC (%)

LDA 89.36 94.00 87.14 96.19
KNC 1 85.34 73.24 91.10 91.15
DTC 87.12 81.78 89.67 85.72
GNB 36.32 97.81 7.03 53.86
SVC 89.21 88.00 89.78 95.69
LR 89.62 87.20 90.77 95.76

RFC 91.40 95.62 89.40 97.46
GBC 92.07 95.50 90.44 98.02
ABC 90.36 89.39 90.82 96.91

MLP 2 89.58 86.62 90.99 96.10
1 KNC model with setting the weights parameter as ‘distance’ was better than its default. 2 with a hidden layer of
43 dimensions was the best MLP model among the model selection.

Table 4. Performance of the GBC model trained without CR and trained only with CR.

Model Accuracy (%) Sensitivity (%) Specificity (%) AUROC (%)

No CR 72.57 47.87 84.34 76.66
CR 91.63 95.62 89.73 97.93

Table 5 shows the performance of the ML models on the prediction of CABG treatment
within 90 days. Among the ten ML models, GBC was the best model, achieving 95.45%
accuracy, 86.31% sensitivity, 96.79% specificity, and 98.33% as an AUROC, with the testing
dataset composed of 263 positive cases and 1805 negative cases. When the train test split
ratio was changed to 75:25, the GBC was still the best model achieving 95.65% accuracy,
83.33% sensitivity, 97.45% specificity, and an AUROC of 98.40%. Compared with two
previous cases, this data was significantly imbalanced, and the number of CABG samples
was far less than the negative group, which directly lowered the sensitivity even under
engaging the SMOTE. As shown in Table 6, the performance of the GBC model trained
only with the CR was found to be better than training without CR features, as in the other
two predictions. Aside from the catheterization-related features, history of angina, age,
race, heart rate, height, serum creatinine, HDL, DBP, SBP, and LDL were the top ten most
important features in the descending order.

Table 5. Performance of ML models in predicting receiving CABG treatments.

Model Accuracy (%) Sensitivity (%) Specificity (%) AUROC (%)

LDA 93.96 84.03 95.4 97.52
KNC 1 92.36 63.88 96.51 89.57
DTC 92.07 69.58 95.35 82.46
GNB 62.86 88.97 59.06 83.82
SVC 94.58 73.00 97.73 96.33
LR 94.73 75.67 97.51 96.86

RFC 95.31 87.83 96.40 98.21
GBC 95.45 86.31 96.79 98.33
ABC 94.83 82.51 96.62 97.68

MLP 2 94.58 72.24 97.84 97.05
1 KNC model with setting the weights parameter as ’distance’ was better than its default. 2 with a hidden layer of
38 dimensions was the best MLP model among the model selection.

Table 6. Performance of the GBC model trained without CR and trained only with CR.

Model Accuracy (%) Sensitivity (%) Specificity (%) AUROC (%)

No CR 86.65 20.15 96.34 76.12
CR 94.49 85.17 95.84 97.73
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In Figure 2A, based on the color of the heatmaps, age, and HXANGINA (history
of angina) were the most important features within the demographic information and
patient medical history for all three prediction cases. In Figure 2B, the patient examination
features were found relatively important only during the prediction of cardiovascular
scenarios, including CABG, PCI, VS, stroke, and MI, but not for the prediction of only PCI
or CABG treatments. Further, these examination features had higher importance than the
demographic information and patient medical history features in this risk estimation model,
and the HDL was the most important feature. Since the cardiovascular risk was assessed
within 90 days, the recent physical conditions of the patients would be helpful in identifying
the high-risk patients. In the PCI treatment prediction, the history of diabetes feature was
uniquely found as an important feature that was supported by other studies [24,25]. In
contrast, the CABG treatment predictions are more affected by the demographic information
(age, race), also evident in Figure 2A.

Based on the results from Tables 2, 4 and 6, the overall importance of CR-related fea-
tures was higher than the others, which are also visually supported by the colored heatmaps
(in Figure 2). Among these CR features, the NUMDZV (the number of significantly diseased
vessels) feature was important in all three prediction cases. This feature can be accessed via
noninvasive techniques, such as noninvasive CT angiograms [26,27]. Among the non-CR
related features, CBRUITS (carotid bruits), S3 (the third heart sound), YRCATH_G (year of
cardiac catheterization), and HXPEPULC (history of peptic ulcer disease) were removed.
After combining the NUMDZV with other non-CR-related features, the performances of all
three models were improved (listed in Table 7). For estimating high-risk conditions within
90 days, the RFC achieved 88.17% accuracy, 89.72% sensitivity, 86.98% specificity, and an
AUROC of 91.68%. For predicting the PCI treatments within 90 days, the GBC achieved
89.21% accuracy, 90.20% sensitivity, 88.74% specificity, and 94.16% AUROC. For predicting
the CABG treatments within 90 days, the GBC achieved 93.86% accuracy, 77.57% sensitivity,
96.23% specificity, and 96.47% AUROC.

Table 7. Performance of models trained after feature selections.

Model 1 Accuracy (%) Sensitivity (%) Specificity (%) AUROC (%)

Risk-RFC 88.17 89.72 86.98 91.68
PCI-GBC 89.21 90.20 88.74 94.16

CABG-GBC 93.86 77.57 96.23 96.47
1 CBRUITS (carotid bruits), S3 (the third heart sound), YRCATH_G (year of cardiac catheterization), HXPEPULC
(history of peptic ulcer disease) were removed from the features list. The NUMDZV (the number of significantly
diseased vessels) was the only CR feature included.

3.2. Statistical Analysis

Based on the statistical analysis results, weight, history of peptic ulcer disease, the
third heart sound, BMI, DBP, and valve-related features (including aortic valve insufficiency,
mitral valve stenosis, valvular heart disease, mitral regurgitation grade) were not significant
(p ≥ 0.01) between the positive and negative group during the varied cardiovascular events
and treatments predictions (Case I). Further, in the PCI treatment predictions (Case II),
weight, history of peptic ulcer disease, BMI, DBP, maximum stenosis of the left main
artery, aortic valve insufficiency, aortic valve stenosis, mitral valve stenosis, and mitral
regurgitation grade were not statistically significant (p ≥ 0.01). In the CABG treatment
predictions (Case III), weight, history of peptic ulcer disease, history of smoking, the third
heart sound, BSA, BMI, DBP, aortic valve insufficiency, aortic valve stenosis, mitral valve
Stenosis, and valvular heart disease were not found statistically significant (p ≥ 0.01).
Among the patient samples, the number of VS cases is the least compared to the other
treatments, and VS has been excluded as the criterion in the PCI and CABG predictions.
Therefore, the conventional statistical results found that heart valve-related features from
the CR were not found to be significant between the positive and negative groups. BMI and
DBP were also not significant in all three prediction models. Compared to the importance
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of features, most of these insignificant features (e.g., BMI, DBP) were used among these
three prediction scenarios as important features. However, these features were classified
as weak features in the applied conventional statistical techniques (t-test (on continuous
data), Fisher’s exact tests (on Boolean data), and chi-square tests (on categorical data)). In
this work, ensemble methods, RFC and GBC, produced an optimal predictive output by
combining several weak learning models. The interactions/relations between features were
examined, and the weak features were efficiently considered. As shown in Tables 2, 4 and 6,
the addition of the non-CR features improves the model performance.

4. Discussion

This study is the first to apply ML methods to the DukeCath database, which contains
155,980 catheterization procedures to predict short-term risks for CVDs. In this research,
various ML methods (linear models, nonlinear models, and a neural network) were applied
for short-term likelihood assessment of varied cardiovascular events and treatments (in-
cluding CABG, PCI, VS, stroke, and MI), PCI treatments, and CABG treatments for patients,
who were not previously diagnosed with CVD, by inputting their first catheterizations
results, catheterizations procedure, medical history, vital signal, laboratory results, and
physical examination prior to catheterizations. The RFC was the best predictive model
among all the ML models in the risk assessment on varied cardiovascular events and treat-
ments section with high accuracy. This model accurately identifies the high-risk patients
who will experience multiple cardiovascular incidents within 90 days. In the case of the PCI
prediction, the GBC was the best model among all the ML models with high accuracy. As
for the CABG forecast, the GBC was the best model among all the ML models, with high pre-
diction accuracy. The PCI and CABG treatments were predicted accurately in a short-term
manner, providing instance diagnosis assistance in cardiovascular treatment planning.

Some of the patients are expected to have recurrent cardiac events within the first
year after catheterization. This highlights the poor medical outcomes and high utilization
of resources by this patient population [28]. Our study provides a better solution for
determining recurrent cardiovascular events and identifying high-risk patients. This
work also presents a baseline for ML applications targeting the treatment predictions
for suspected CVD patients and serves as a comparison reference for future ML model
validation. In some survival analyses on CVD patients, African-Americans are shown to
have lower long-term survival than Caucasian [29]. Extremes of BMI are associated with
lower long-term survival in patients with significant coronary disease [30]. In our study,
race is observed to be significant only in the statistical analysis of the short-term effect,
but it is a weak feature in all three prediction cases. Contrarily, the BMI feature is not
significant in our statistical analysis, but it is a strong feature in the risk estimations (Case I
predictions). Our ML applications examined the interactions/relations between features,
and the weak features were efficiently considered. Despite having a high significance
in statistical analysis, a feature will process with low importance if it lacks interactions
between other features. Therefore, the feature importance presented in our study provides
additional importance evaluations for CVD patients’ features.

Among the other ML applications on CVD, cardiovascular symptoms were broadly
used as the targets and predicted as output. The naïve Bayes algorithm was used to pre-
dict heart attacks with an accuracy of 81.25% [31]. This naïve Bayes classifier reduced
the doctor’s efforts and time by automating the risk prediction. In another study, a deep
neural network achieved an F1 score of 0.092 and AUROC of 0.835 on MI predictions
from harmonized EHR data [10]. With the ensemble deep learning method, 85% of heart
arrest was successfully predicted one hour before the incidence (sensitivity ≥ 0.85), and
73% of arrest cases 25 h before the occurrence (sensitivity ≥ 0.73) [32]. The models from
these studies could predict adverse cardiovascular conditions based on the known factors
which have been widely accepted to directly relate to the predicted cardiovascular events.
Therefore, these methods might not be suitable for patients without previously diagnosed
CVD due to the lack of previous adverse cardiovascular symptoms. Additionally, since



Appl. Sci. 2023, 13, 5191 10 of 15

the risk of each CVD patient is not the same, different CVD patients may develop different
cardiovascular events, and the exact cardiovascular event that will occur is unknown.
Hence, ML models that only focus on a single type of cardiovascular incident lack prac-
ticability in providing diagnosis aids. As an advantage of this study, patients without a
known history of cardiovascular disease were exclusively considered and investigated. It
also demonstrated that the performance of the ML models was enhanced slightly after
including non-catheterization features. Overall, the proposed models in our work achieved
highly accurate predictions: 88.17%, sensitivity: 89.72%, and AUROC: 91.68% for predicting
various cardiovascular incidents (including CABG, PCI, VS, stroke, and MI) with accuracy:
89.21%, sensitivity: 90.20%, and AUROC: 94.16% for predicting PCI treatments; and with
accuracy: 93.86%, sensitivity: 77.57%, and AUROC: 96.47% for predicting CABG treatments.
As a novelty of this study, cardiovascular treatment (PCI or CABG) was the predicted target.
By predicting the likelihood of a treatment received, patients’ cardiovascular risks were
also indirectly estimated. The approaches can efficiently differentiate CVD patients under
high risk and assist in timely treatment planning (PCI or CABG).

Compared with traditional strategies for the CVD risk assessment (e.g., the Fram-
ingham Risk Score), ML could improve the accuracy of CVD risk prediction [33]. For
10-year cardiovascular predictions, the neural networks algorithm obtained a sensitivity
of 67.5% and a specificity of 70.7% and performed better than the established algorithm
based on American College of Cardiology guidelines [33]. AutoPrognosis, an ensemble of
three ML pipelines, maintains higher accuracy (AUROC: 0.774) compared to the baseline
Framingham score (AUROC: 0.724) on 5-year CVD risk prediction for patients without
diabetes [34]. However, the level of CVD risk is still hard to be evaluated accurately. In
fact, CVD has been long believed as a multifactorial disease, and its risk factors tend to
interact with each other for each individual. Thus, the interactive effects within patients’
medical history, vital signs, laboratory measurements, and physical examination records
should not be ignored. Additionally, long-term predictions were unavoidably exposed to
unseen factors that should be eliminated for accurate predictions. In the future research
plan, feature selection will be performed based on the provided importance of each feature
from the developed ML models in this study. With these selected features, new ML models
will be explored to provide a better risk evaluation for survival analysis on patients without
any adverse cardiovascular symptoms. Even though there is room for future improvement
on the proposed method, this novel research is the first ML application on the DukeCath
dataset, and it demonstrated the feasibility of using the ML models to classify high-risk
CVD patients accurately.

5. Conclusions

This study provides new insights into predicting the risks of developing CVD in
the short term after the first catheterization. The application of ML methods to the large
clinical DukeCath databank is new, and the results are promising. For patients without
previously diagnosed CVD, the proposed RFC had a good performance in predicting
cardiovascular scenarios (including CABG, PCI, VS, stroke, and MI) to provide short-term
cardiovascular risk estimations. The gradient boosting classifier performed accurately on
both predicting the PCI and CABG treatments within 90 days after the first catheterizations
by using patient medical history, vital measurements, laboratory results, and the number
of diseased vessels. In conclusion, these models offer valuable information to identify
high-risk patients and help gain valuable time ahead for hospital inpatient monitoring and
treatment consideration.
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Appendix A

Table A1. Univariance analysis of patient information.

Feature No Risk
(3717)

Risk
(2822)

No PCI
(3640)

PCI
(1734)

No CABG
(3609)

CABG
(526)

Gender (male) 1771 994 1759 626 1734 150
Race

Missing 98 64 97 42 96 11
Caucasian 2419 2128 2360 1267 2341 407

African American 1034 482 1019 325 1010 81
Other 166 148 164 100 162 27
Age

18–24 6 1 6 0 6 1
25–29 27 3 27 2 27 0
30–34 80 14 80 7 78 2
35–39 173 56 166 35 165 8
40–44 330 130 326 85 323 18
45–49 469 259 455 164 455 33
50–54 583 355 571 220 560 67
55–59 563 413 546 257 537 76
60–64 499 426 488 265 492 83
65–69 420 415 412 242 408 70
70–74 247 340 243 199 237 83
75–79 199 267 197 159 199 65
≥80 121 143 123 99 122 20

History of peptic
ulcer disease 43 41 41 21 40 7

History of diabetes 740 698 719 400 704 144
History of angina 2552 2500 2488 1607 2460 459

History of
hypertension 2015 1769 1966 1086 1947 326

History of
hyperlipidemia 1534 1542 1491 925 1481 314

History of
smoking 1504 1318 1463 818 1450 242

Acute coronary syndrome status upon presentation (ACS)
No ACS 2545 1292 2492 715 2478 280
STEMI 17 75 17 51 15 6

Non-STEMI 42 111 42 76 41 20
MI Unspecified 2 2 3 1 3 0

Unstable Angina 1111 1342 1086 891 1072 220

Third heart sound
(S3) 29 12 28 3 29 4

Carotid bruits 47 105 47 42 47 32
Height

(cm)
170.64

(10.8, 0)
171.95

(10.34, 0)
170.53

(10.76, 0)
171.88

(10.39, 0)
170.58

(10.79, 0)
172.64

(10.45, 0)
Weight

(kg)
86.29

(24.09, 0)
86.54

(20.18,0)
86.03

(24.12, 0)
87.19

(20.42, 0)
86.13

(24.11, 0)
86.37

(19.92, 0)
Body surface area

(m2)
1.97

(0.27, 0)
1.99

(0.24, 0)
1.97

(0.27, 0)
1.99

(0.24, 0)
1.97

(0.27, 0)
1.99

(0.24, 0)
Body mass index

(kg/m2)
29.63

(8.44, 0)
29.3

(7.03, 0)
29.58

(8.48, 0)
29.58

(7.47, 0)
29.6

(8.48, 0)
28.95

(6.13, 0)

http://www.dcri.org/our-approach/data-sharing/
http://www.dcri.org/our-approach/data-sharing/
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Table A1. Cont.

Feature No Risk
(3717)

Risk
(2822)

No PCI
(3640)

PCI
(1734)

No CABG
(3609)

CABG
(526)

Diastolic blood
pressure (mmHg)

81.38
(13.59, 0)

81.52
(13.93, 0)

81.28
(13.63, 0)

81.29
(13.6, 0)

81.33
(13.63, 0)

82.1
(13.23, 0)

Systolic blood
pressure (mmHg)

142.23
(23.29, 0)

148.07
(24.62, 0)

141.98
(23.22, 0)

147.02
(24.01, 0)

142.03
(23.21, 0)

150.62
(24.96, 0)

Heart rate
(bpm)

74.31
(19.13, 0)

69.87
(16.94, 0)

74.41
(19.17, 0)

68.83
(15.33, 0)

74.39
(19.14, 0)

71.52
(20.84, 0)

Serum creatinine
(mg/dL)

0.99
(0.46, 0)

1.06
(0.53, 0)

0.99
(0.46, 0)

1.05
(0.5, 0)

0.99
(0.46, 0)

1.09
(0.53, 0)

High-density lipid
(mg/dL)

50.38
(18.46, 0)

43.68
(14.02, 0)

50.58
(18.52, 0)

43.49
(13.27, 0)

50.62
(18.56, 0)

43.89
(14.68, 0)

Low-density lipid
(mg/dL)

110.44
(38.16, 0)

114.79
(38.26, 0)

110.22
(38.21, 0)

113.55
(37.04, 0)

110.12
(38.11, 0)

117.14
(39.96, 0)

GFR Stage (mL/min per 1.73 m2)
<15 13 20 13 10 12 3

15–<30 48 36 45 17 47 7
30–<45 122 158 124 99 122 30
45–<60 342 366 340 224 334 72
60–<90 1680 1474 1649 900 1633 279
≥90 1512 768 1469 484 1461 135

Valvular heart
disease 85 76 71 8 71 4

Max stenosis of
the right coronary

artery

14.9
(24.68, 23)

62.39
(36.29, 609)

14.27
(24.12, 22)

61.3
(35.71, 495)

14.43
(24.48, 21)

72.88
(32.12, 13)

Max stenosis of
the left main

artery

4.5
(11.81, 7)

12.24
(22.67, 307)

4.41
(11.8, 6)

5.39
(12.94, 252)

4.53
(11.96, 5)

31.63
(31.83, 2)

Max stenosis of
the left anterior

descending artery

20.07
(25.92, 8)

72.46
(29.39, 450)

19.42
(25.27, 5)

71.66
(28.87, 371)

19.65
(25.66, 5)

84.78
(18.69, 4)

Max stenosis of
the left circumflex

artery

13.74
(23.72, 21)

57.48
(37.27, 712)

13.1
(23.06, 20)

54.19
(37.58, 589)

13.32
(23.52, 19)

71.75
(31.18, 8)

Max stenosis of
the proximal left

anterior
descending artery

6.96
(15.17, 8)

28.5
(35.9, 451)

6.72
(14.74, 5)

23.58
(33.86, 371)

6.88
(15.25, 5)

45.53
(38.38, 4)

Left ventricular
ejection fraction

(%)

62.07
(10.59, 844)

60.32
(10.69,
1416)

62.11
(10.65, 848)

61.24
(9.94, 1053)

62.11
(10.63, 842)

59.52
(11.3, 86)

Coronary dominance
Left 341 167 342 98 338 27

Right 3087 2562 3011 1598 2983 464
Balanced 289 93 287 38 288 35

Number of significantly diseased vessels
Missing 91 94 91 71 89 7

None 3064 141 3028 26 2981 6
One 340 1421 325 1137 327 57
Two 129 646 109 409 115 129

Three 93 520 87 91 97 327
Mitral regurgitation grade (left ventriculogram)

Missing 858 1424 862 1057 856 88
None 2637 1215 2575 610 2547 382

I 143 116 131 46 134 45
II 59 37 54 20 54 11
III 12 12 12 1 12 0
IV 8 18 6 0 6 0

Aortic valve insufficiency
Missing 3528 2713 3460 1709 3427 508
Absent 123 53 123 16 124 15

Mild 24 18 20 2 20 1
Moderate 24 22 21 4 22 2

Severe 5 8 5 0 5 0
Trace 13 8 11 3 11 0
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Table A1. Cont.

Feature No Risk
(3717)

Risk
(2822)

No PCI
(3640)

PCI
(1734)

No CABG
(3609)

CABG
(526)

Aortic valve stenosis
Missing 3231 2584 3169 1626 3146 466
Absent 458 202 450 107 443 59

Mild (>1.0 cm2) 19 4 12 1 11 1
Moderate

(0.7–1.0 cm2) 5 12 5 0 5 0

Severe (<0.7 cm2) 4 20 4 0 4 0
Mitral valve stenosis

Missing 3650 2791 3578 1726 3548 521
Absent 56 22 53 8 52 4

Mild (>1.5 cm2) 4 3 3 0 3 1
Moderate

(1.0–1.5 cm2) 3 2 3 0 3 0

Severe (<1.0 cm2) 4 4 3 0 3 0
Type of cardiac catheterization

Unknown 8 35 8 26 7 1
Right Heart Only 5 1 5 0 5 0
Left Heart Only 2722 2558 2659 1644 2624 502
Right and Left

Heart 982 228 968 64 973 23

Year of cardiac cath
1991–1994 2 6 2 1 2 5
1995–1998 698 860 665 492 656 170
1999–2002 947 816 909 501 897 153
2003–2006 892 594 888 415 882 94
2007–2010 676 336 672 195 669 72
2011–2013 502 210 504 130 503 32

DSPCI
1871.03
(1439.18,

3606)

63.57
(418.21,

722)

1945.08
(1461.92,

3550)

0.49
(3.63, 0)

DSVALVE
1957.11

(1632.88,
3671)

450.57
(1149.06,

2638)

DSMI
1907.78
(1545.51,

3643)

1523.77
(1524.79,

2547)

DSCABG
2110.27

(1701.61,
3624)

397.05
(1072.4,
1874)

1924.44
(1649.45,

3550)

5.18
(8.67, 0)

DSSTROKE
2158.53
(1577.75,

3587)

1642.44
(1800.13,

2508)
All the continuous numeric data were described with the means; the standard deviation and the number of
missing data were included in the following bracket. DSPCI, Days to First Subsequent Percutaneous Coronary
Intervention; DSVALVE, Days to First Subsequent Valve Repair or Replacement Surgery; DSMI, Days to First
Subsequent Non-Fatal Myocardial Infarction; DSCABG, Days to First Subsequent Coronary Artery Bypass Surgery;
DSSTROKE, Days to First Subsequent Non-Fatal Stroke.
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