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Abstract: This paper investigates a rapid modeling method and robust analysis of hypersonic vehicles
using multidisciplinary integrated techniques. First, the geometrical configuration is described using
parametric methods based on the class–shape technique. Aerodynamic forces and moments are
estimated for the specific configuration using engineering methods. Moreover, the nonlinear model
is simplified by the polynomial fitting expressions, and the linear variable parameter model is
obtained for the tracking control design and dynamic characteristic analysis with the aid of the
sensitivity analysis and gap metric methods. A velocity-driven trajectory design method is deduced
for hypersonic ascent, and the tracking control law is developed to realize the flight process from
the initial point to the cruise point. Furthermore, a robust analysis process based on gap margin is
proposed for climb trajectory tracking. Simulation results are provided to verify the feasibility of the
proposed modeling method and show that the flight control of a hypersonic vehicle is more sensitive
to altitude variation.

Keywords: hypersonic aerospace vehicle; modeling; track control; parametric design method

1. Introduction

Reusable hypersonic flight vehicles for future aerospace access will dramatically
improve economy and efficiency [1]. However, such aerospace vehicles must pass through
the large flight envelope from subsonic flight to hypersonic, leading to unexpected dynamic
features compared with other traditional vehicles. Hence, researchers on hypersonic
aerospace vehicles need to adopt a multidisciplinary integrated strategy concerning the
propulsion system, aerodynamics, control, and structural dynamics [2].

The parametric modeling approach offers a favorable way for the aerospace vehi-
cle to implement the multidisciplinary integrated design [3]. In particular, an analytical
aeropropulsive/aeroelastic aerospace vehicle model was established [4], and the model
involves a two-dimensional aerodynamic structure, a one-dimensional SCRAMjet-type
propulsion system, and an elastic airframe [5]. Alternatively, a nonlinear longitudinal
dynamical model was derived from first principles, capturing inertial coupling effects
between the propulsion system, aerodynamics, and structural dynamics [6,7]. Further-
more, a control-oriented model of the aerospace vehicle was obtained in [8] by replacing
complex force and moment equations with curve-fitted approximations, and this model
allows an understanding of the applicability of control-oriented techniques. In addition,
a 3D simulation model of the aerospace vehicle was built [9], and intrinsic flexibility was
considered with a one-dimensional Euler–Bernoulli beam representation. This model was
subjected to stability analysis and control-based design. However, some problems still
need to be addressed to enhance the overall performance, including the integrated de-
sign of the trajectory and vehicle shape, control-centric trade study, and multidisciplinary
design optimization.

Additionally, the control-centric trade studies were conducted based on a parametric
model, and this work explores the parameterization types, parameter ranges, and objec-
tives available for the analysis and optimization of the aerospace vehicle [10]. Moreover, a
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multidisciplinary optimization method was proposed [11], and the optimal vehicle con-
figuration and flight trajectory are determined to accomplish the mission requirements.
The parametric model provides a suitable way to change a vehicle optimized for a single
design point to be more effective along a trajectory [12]. In summary, the parametric model
is a fundamental issue for further studies. Furthermore, the model provides an effective
tool to construct the mutual relations between the propulsion, aerodynamics, control, and
structural dynamics so that the optimal trade results for the aerospace vehicle design can
be easily obtained in the conceptual stage.

Some control-relevant issues are revealed for hypersonic flight based on these pro-
posed models [13], including the coupled features of the plant and trajectory [14]. In
addition, hypersonic flight suffers from control system constraints, which limits the perfor-
mance for trajectory tracking [15]. Moreover, the robustness of flight control is particularly
significant on account of the uncertainty of the model and environment. Many robust con-
trol design methods have been developed [16–18]. Their works focused on the development
of a nonlinear adaptive robust control method to deal with model uncertainty. However,
few methods have been proposed for quantifying the robustness of the flight control system.
A robust analysis method based on a gap metric is proposed in this paper. The benefit of
the proposed method is the quantitative analysis ability to identify the boundary of the
robustness, whereas the drawback is the restriction from the nonlinear system. One has to
formulate a series of linearized systems to approximate the nonlinearity.

The structure of the paper is organized as follows. Section 1 introduces the model of
aerospace vehicles and deduces the polynomial fitting model of longitudinal dynamics for
the following control design. A linear parameteric varying model is driven based on a gap
metric in Section 2. Then, a velocity-driven method is proposed to solve the optimal ascent
problem and a robust analysis method based on gap margin is proposed to qualify the
closed-loop performance. Furthermore, the simulation results are provided and discussed
in Section 4.

2. Model Description

In this paper, the parametric keel-line is firstly formulated based on the second-order
curve method, and then the section along with the body x-axis x is identified using the
“shape function/class function” transformation (CST) technique [19]. To this end, the
geometrical configuration of the aerospace vehicle is divided into two classes: the fuselage
and wing. In particular, the fuselage shape is considered to be the stretching results of the
profile curve for the body axis xB, and thus the fuselage design needs to first determine the
relevant equation of each profile curve.

Afterward, the relations of the profile parameters along with the body axis need to be
determined according to the top, bottom, and front view. Aside from the fuselage, the wing
is considered to be a flat plate with variable thickness [20]. In addition, the installation
position of the wing has a significant impact on the control capacity. As a result, the relative
position of the leading edge from the fuselage to the wing, the relative position from the
wing’s leading edge to the bottom of the vehicle, and the wing mounting angle are selected
as the main parameters to describe the wing placement.

The aerospace vehicle adopts an integrated structure such that the airframe and the
engine are changed into a whole. That is, the outer surface of the engine is treated as a
part of the fuselage. Thus, the internal geometry structure will affect the thrust. Typically,
the engine configuration is considered to be a ladder tube with a variable area including
five parts: the inlet part, intake part, isolation section, combustion chamber, and internal
nozzle [21]. In principle, the inlet is designed as the ladder tube with variable area to make
the airflow compressed; the isolation section is given as the ladder tube with the same
area to suppress the unfavorable effect on the inlet due to the combustion; the internal
nozzle is considered to be the ladder tube with variable area when the airflow is expanded.
Furthermore, the given parameters associated with the fuselage, aerofoil, and engine are
interrelated as a result of the fact that the constrained relations need to be identified to
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construct the complete configuration. To this end, the configuration of the aerospace vehicle
is built in Figure 1.

Figure 1. Geometrical configuration of aerospace vehicle.

2.1. Force Estimation

As soon as the configuration of the aerospace vehicle is identified, the following task
is to acquire the forces for establishing the dynamic model. In this article, we divide the
vehicle body into several surface elements, considered the triangle surface [22]. For each
surface element in the face of freeflow, the oblique shock theory is used to estimate the
enforced pressure coefficient Cp, and it is expressed by [23]

Cp =
4

γc + 1
(sin2 βs −

1
Ma2 ) (1)

where γc denotes the specific heat ratio; Ma is the flight Mach number; and βs is the shock
wave angle, which is solved based on the flow turning angle δ by the following equation:

tan δ = 2 cot βs ·
[

Ma2 sin2 βs − 1
Ma2(γc + cos 2βs) + 2

]
(2)

Alternatively, if the surface element lies on the leeward side, the Prandtl–Meyer theory
is adopted to estimate the pressure coefficient, which is calculated by [24]

Cp =
2

γc Ma2
u

( 1 + γc−1
2 Ma2

u

1 + γc−1
2 Ma2

d

) γc
γc−1

− 1

 (3)

where the subscripts u and d denote the parameters before and after the shock wave,
respectively, which are solved based on the flow turning angle by

|δ| = ν(Mad)− ν(Mau) (4)

where ν(Ma) is the Prandtl–Meyer function.
Once the pressure coefficient is obtained for the surface element, the suffered pressure

is computed by
Pi = Cpisa,i + P∞ (5)

where P∞ denotes the static pressure, and sa,i denotes the area of the i-th surface element.
The aerodynamic forces and moments are yielded by superimposing these pressures for all
surface elements, and they are expressed by [25]

Fx = −∑ PinxiSi
Fy = −∑ PinyiSi
Fz = −∑ PinziSi

(6)



Appl. Sci. 2023, 13, 5189 4 of 16


Mx = ∑ Pi(rzinyi − ryinzi)Si
My = ∑ Pi(rxinzi − rzinxi)Si
Mz = ∑ Pi(ryinxi − rxinyi)Si

(7)

where ri = rxiex + ryiey + rziez represents the distance vector from the vehicle centroid to
the center of each surface element.

Aside from aerodynamic forces, the thrust is calculated using the momentum theorem,
and it is expressed by [26]

FT = ṁa[(1 + fst)V5 −V1] + (P5 − P1)Ae − (P2 − P1)A1 (8)

where ṁa denotes the air flow rate; φ is the stoichiometric ratio; fst represents the stoichio-
metric fuel–air ratio; V1 and P1 indicate the airflow parameters at the inlet; V5 and P5 denote
the airflow parameters at the nozzle; Ae and A1 are the areas in relation to the nozzle exit
plane and inlet plane, respectively; P2 represents the pressure of the compressed section.

Furthermore, the pitching moment induced by the propulsive force is expressed by

MT = rTG × FT (9)

Similar to the aerodynamic coefficient, the thrust coefficient and propulsive moment
coefficient are formulated by

CT =
2FT

ρ∞V2
∞Scap

(10)

where Scap denotes the capture area of the engine and ρ∞ indicates freeflow density.

2.2. Longitudinal Dynamics

The longitudinal dynamic equation of the aerospace vehicle in the air flow coordination
is established as follows [27]:

ḣ = V sin(θ − α)

V̇ =
FT cos α− D

m
− g sin(θ − α)

α̇ =
−FT sin α− L

mV
+ q +

g
V

cos(θ − α)

θ̇ = q

q̇ =
1
Iy

My

(11)

where h denotes the flight altitude, V is the flight velocity, α is the angle of attack (AOA), θ
is the pitch angle, and q is the pitch angle rate. g is the gravity constant; m and Iy denote
the mass and moment of inertia of the aerospace vehicle, respectively. In addition, L, D,
and My denote the lift, drag, and pitch moment, respectively. The forces and moments
are estimated by the methods described above, and the mechanical properties should be
further analyzed for control system design.

2.3. Polynomial Fitting Modeling

The mechanical model based on the finite element method is very complicated for
implementing the control design and integrated optimization for the aerospace vehicle.
Hence, the surrogate models of the aerodynamic forces and moments need to be first
acquired, and they are expressed by [28]

L = q̄SrefCL
D = q̄SrefCD
FT = q̄ScapCT
My = q̄SreflrefCm + zT FT

(12)



Appl. Sci. 2023, 13, 5189 5 of 16

where q̄ is the dynamic pressure, and Sref and lref are the reference area and length, respec-
tively. zT is the shift of the thrust axis from the center of gravity.

Furthermore, the polynomial fitting method is applied to identify the specific forms
concerning CL, CD, CT , and Cm. The surrogate procedure consists of four steps: the
design of the sample points, selection of the model structure, identification of the model
parameters, and verification of the acquired model. Without loss of generality, we first
select y = CL as the identification parameter to expatiate this design course.

The sampling points for CL are constructed using the Latin hypercube sampling
method with the subsequent evaluation criterion:

Ee =
N

∑
i=1

N

∑
j=i+1

1∥∥xi − xj
∥∥2 (13)

where N is the number of the sample points; xi and xj denote the positions of the i-th and
j-th sample points.

In principle, the selected sample points can ensure that the distance among the sample
points is the maximum, matching the minimum evaluation criterion of (14). According to
these obtained sample points, we consider further the surrogate model (SM) of CL with the
following form:

y = f (Acof, x) (14)

where Acof denotes the contingent coefficients which need to be determined in terms of the
trust region method. Furthermore, we define the residual errors as

∆y = min
Acof
‖ f (Acof, x)− yobs‖2

2 (15)

where yobs denotes the outputs of the sample points. In particular, the SM is comprised of
first-degree terms, quadratic terms, and two crossing terms. However, such polynomial
items complicate the iterative computation for obtaining these contingent coefficients.
Therefore, the optimum selection of these items aids in simplifying the modeling courses.

In this paper, a sensitivity analysis method is adopted to choose the identified items,
and this method is based on the iterative fractional factorial design (IFFD), which distin-
guishes the influence relation between outputs and inputs.

The basic design matrix of FFD with k parameters is donated as Jni , columns of which
represent the sampling level of parameters. The orientation of an iteration is defined
as positive, negative, or null. A positive orientation means the sampling values of the
parameter agree with the notation of the basic design matrix (high: +1, low: −1), while
negative means the opposite, and null represents sampling at the median 0.

The procedure of IFFD consists of two steps of randomization [13]. The first step
affects the whole set of iterations. The orientation of each iteration is randomized with a
specified proportion of null orientation. The random direction matrix Onk is identified. The
parameters are randomly assigned to columns of the basic design matrix Jni and generate
the new basic design matrix J′ni

. After that, the sampling matrix Qk and response matrix
Yk = y are determined for the k-th iteration wherein Qk is expressed by

Qk = J′ni
· diag

[
Onk (:, k)

]
(16)

For IFFD screening analysis, one must simulate the experiments according to the
sampling matrix. The main effect of the i-th parameter is identified by the difference in
average response between the two levels (1 and −1), which is assumed to be a linear effect:

ME(i, Y) =

nk
∑

k=1
Qk(:, i)Yk

nk
∑

k=1
|Ok(i, k)|

(17)
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The analysis of the interaction effect of parameters is similar to the main effect. Nonlin-
ear effects of the i-th parameter are identified by the difference in average response between
the median (0) and the boundary (1, −1), which is assumed to be a quadratic effect:

ME(i, Y) =

nk
∑

k=1

2ni

∑
j=1

(1− |Qk(j, i)|)Yk(j)

nk
∑

k=1
(1− |Ok(i, k)|)

−

nk
∑

k=1

2ni

∑
j=1
|Qk(j, i)|Yk(j)

nk
∑

k=1
|Ok(i, k)|

(18)

The factors in polynomial approximation are sequentially selected from the sensitivity
analysis based on IFFD. The number of factors is increased until the fitting performance is
satisfied. Following that, the structure of the polynomial expression of CL is yielded.

Similarly, we can obtain the polynomial interpolation expressions regarding CD, CT ,
and CM. Furthermore, the matching functions, including the goodness of fit VAF, mean
square error RMSE, and maximum standard error MSR, are applied to evaluate the
accuracy of the SM, and they are provided by

VAF =

(
1− ‖yobs−yfit‖2

2
‖yobs‖2

2

)
× 100%

RMSE =
‖yobs−yfit‖2

Ns
MSR = max

∣∣yobs,i − yfit,i
∣∣ (19)

The structure of the SM regarding the aerodynamic and thrust coefficients is identified
as the following fitting expressions:

CL = −0.0182 + 2.5138α + 0.5255δe + 0.3347Ma−1 + 17.9879αMa−1+
2.4639δe Ma−1 + 0.2754δ2

e − 3.4Ma−2 + 0.0324φ
CD = 0.0066 + 0.0336α− 0.00045δe + 2.225αδe + 6.3216α2 + 0.8627δ2

e+
0.7869Ma−2 + 7.5902δ2

e Ma−2 − 0.0146φ
Cm = 0.1699 + 1.2296α− 0.8943δe − 0.7209αδe + 8.1079α2 − 0.3636δ2

e+
4.4097αMa−1 − 4.3520δe Ma−1 + 4.9149Ma−2−0.0392φ

CT = 1.0771− 0.2034Ma + 1.7564α− 0.2389αMa− 5.1418α2 + 0.0096Ma2+
− 1.4256e−6h− φ(1.5368− 0.5322Ma− 1.1112α− 0.2319αMa+
5.0981α2+0.0310Ma2)

(20)

Once the matching degree between the SM and original model is satisfactory, the
model features can be further analyzed to understand the internal dynamics and to design
the applicable control law. In particular, Equation (20) shows that the lift coefficient, drag
coefficient, and pitch moment coefficient are relevant to the angle of attack and flight Mach
with which the propulsive coefficient and thrust moment are correlated. As a result, when
the changes in the angle of attack and flight Mach lead to the change in the engine’s thrust,
the variation in the propulsive force will affect the flight states such that the aerodynamics
and propulsion are inseparable.

The goodness of fit VAF and mean square error RMSE of the polynomial model in
Equation (20) are given in Table 1. In addition, the comparative results between the original
model and the polynomial model at the flight condition of Ma 4 and 25.9 km are provided
in Figures 2 and 3.

Table 1. The matching function of the polynomial model.

Coefficients VAF RMSE

CL 99.08% 0.0007
CD 98.04% 0.00008
Cm 98.36% 0.0022
CT 90.82% 0.0094
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Figure 2. Comparison diagram for the aerodynamic model.

Figure 3. Comparison diagram for the propulsive model.

Some errors exist between the original model and the fitted model, but these errors are
minor and the changing trends of the aerodynamic coefficients along with the flight states
are consistent. Once the matching degree between the SM and original model is satisfactory,
the model features can be further analyzed to understand the internal dynamics and to
design the suitable control law.
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3. LPV Modeling Based on Gap Metric

The linear model is obtained using the Taylor expansion method, and it is expressed
by [29]

∆Ẋ = A∆X + B∆U (21)

where ∆X = X − Xeq, ∆U = U −Ueq, X = [h, V, α, θ, q,]T , and U = [φ, δe]; the subscript eq
indicates the trim value; A and B denote the linear model matrices.

In addition, we select the normalized height δh and velocity δV as the scheduling
variable, and they are expressed by

δV =
2V − (Vmax + Vmin)

Vmax −Vmin

δh =
2h− (hmax + hmin)

hmax − hmin

(22)

where Vmax, Vmin, hmax, and hmin are maximum velocity, minimum velocity, maximum
height, and minimum height over the whole flight range, respectively, and the flight
envelope is divided into NV × Nh grid points where

NV =
δVmax − δVmin

∆δV
+ 1, Nh =

δhmax − δhmin

∆δh
+ 1

For each flight point, the linear model Gij where i = 1, . . . , NV and j = 1, . . . , Nh can
be obtained. Based on that, the gap metric of the linear model for any two operating points
is defined as δgap

(
Gi,j, Gi+1,j

)
, and the gap metrics of V and h need to satisfy the following

condition: 
∫ ∂δgap

∂δV
dδV ≤ εmax∫ ∂δgap

∂δh
dδh ≤ εmax

(23)

where εmax denotes the expected threshold of the gap metric.
Based on the gap metric strategy, the linear variable parameter model of the aerospace

vehicle is formulated. All operation points throughout the whole envelope are built as{
Ẋ = A(δV , δh)X + B(δV , δh)U
Y = C(δV , δh)X

(24)

The matching relation between the linear variable parameter model and the original
model is required, resulting in the following design. As soon as the testing results are
satisfactory, this simplified model will substitute the original model for implementing the
control law design and integrated optimization for the aerospace vehicle. The flowchart of
the rapid modeling process and simulation is shown in Figure 4.
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Figure 4. Research course on the simulation model.

4. Climbing Command and Track Controller Design

The trajectory profile of the mission needs to be designed based on various constraints,
and a feasible scheme is provided in this paper. In particular, the hypersonic vehicle climbs
along the constant dynamic pressure, remains at the flight Mach number to reach the cruise
point, and finally maintains the cruise state. According to this design profile, the whole
flight process is divided into the constant dynamic pressure climb phase, constant Mach
climb transition phase, and cruise phase.

A velocity-driven trajectory design method is proposed to translate a trajectory opti-
mization to path optimization. The velocity-driven design method is restricted to solving
trajectory with acceleration or deceleration.

4.1. Velocity-Driven Climbing Command

The acceleration profile ac = a(V) is solved to generate the optimal climbing trajectory.
The climb rate can be expressed as

ḣ =
dh
dV

dV
dt

=
dh
dV
· ac (25)

considering ḣ = Vsin(γ), where γ = θ − α is the flight path angle (FPA). The relation
between the FPA and the acceleration is deduced as

sinγ =
1
V

dh
dV
· ac (26)

The change rate of the FPA is limited by

γ̇ =
1

V cos γ

[
d2h
dV2 · ac +

(
dac

dV
− ac

V

)
dh
dV

]
ac (27)
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where the range of the FPA rate is [−0.04, 0.02] rad/s.
The maximum climb acceleration at constant dynamic pressure can be deduced as

acmax =
(T cos α− D)(
1− 2dhρg

dρV2

)
·m

(28)

Once the climb condition is determined, the trajectory parameters are estimated
accordingly. In the process of constant Mach climb, the acceleration and change rate of the
flight path angle of hypersonic vehicles are computed by

ac = Ma ·V sin γ · da
dh

(29)

γ̇ =
1

V cos γ

(
d2h
da2 ·

a2
c

Ma2 − V̇ sin γ

)
(30)

where a is the local sonic speed. The final climbing states in the constant dynamic pressure
phase are considered the initial states in the constant Mach phase. Thus, the following
relations are satisfied, and this is expressed by

ac =
T cos α− D−mg sin γ

m
1

V cos γ

(
d2h
da2 ·

ac
2

Ma2 − V̇ sin γ

)
=

T sin α + L−mg cos γ

mV
My = 0

(31)

4.2. Track Controller Design

The control commands are identified to reach the desired cruise states. Furthermore,
the linear time-invariant system of hypersonic vehicles can be considered as[

ẋp
ẋe

]
=

[
Ap 0
−Cp 0

][
xp
xe

]
+

[
Bp
0

]
∆u +

[
0
I

]
r (32)

where Ap, Bp, and Cp are the state, control, and output matrices, respectively. xp =
[∆V, ∆γ, ∆h, ∆α, ∆q] are the states relative to the trim values, ∆u = [∆δe, ∆φ] indicates
the control inputs relative to the trim values, and r = [∆Vr, ∆hr] shows the given control
commands. Additionally, the integral errors of the state variables xe are written as

xe =
∫ t

0

(
r− Cpxp

)
dt (33)

The above equation is abbreviated as

ẋ = Ax + B∆u + Gr (34)

The quadratic performance index is considered as

J =
1
2

∫ ∞

0

(
eTQe + ∆uT R∆u

)
dt (35)

where Q and R are positive semidefinite matrices and positive definite matrices, respec-
tively. The tracking error is defined as

e = [r− Cpxp, xe] = Mr + Hx
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Furthermore, the control law for Equations (34) and (35) is provided as

u = utrim + ∆u = utrim − Kxx− Kzr (36)

where utrim is the trim control inputs, and

Kx = R−1BTP (37)

Kz = R−1BT
(

PBR−1BT − AT
)−1(

HTQM + PG
)

(38)

For Equation (36), the control gains can be determined by selecting Q and R to make
the track errors close to zero. Hereto, we design an optimal controller for ascent tracking,
whereas the robustness of the closed-loop system should be further discussed.

The normalized coprime robust stability margin (NCSM), the gap metric stability
margin, indicates closed-loop robustness to unstructured perturbations. Values of NCSM
greater than 0.3 generally indicate good robustness margins. Furthermore, the open-loop
dynamics vary dramatically due to trajectory flight. The gap metric has been introduced
to perform LPV modeling. Moreover, the gap metric can also be applied to quantified
open-loop model differences.

Let Ai denote the open-loop system of the i-th plant and Ki denote the control parame-
ters obtained based on Ai. The gap metric between the i-th plant and j-th plant is ν(i, j), and
the NCSM for the i-th plant with j-th controller is µ(i, j). If µ(i, j) > ν(i, j), we can deduce
the closed-loop system process robustness to deal with the varying of the plant. Herein, we
assume that the control parameters are designed for the i-plant and remain constant for the
other operating conditions. The gap margin is defined as the margin between the NCSM
and the gap metric.

νm(i, j) = µ(i, j)− ν(i, j) (39)

Generally, the initial controller parameters are obtained at the initial point of ascent.
The plant dynamics vary as the trajectory tracking flight. If we keep the controller param-
eters constant, µ(i, j) decreases with an increase in ν(i, j). Hence, we can locate the flight
conditions where the gap margin vanishes to evaluate the closed-loop robustness.

5. Simulation Analysis
5.1. Static and Dynamic Analysis

The given flight envelope consists of flight Mach range from 6 to 10 and flight altitude
range from 25 km to 29 km. Correspondingly, the trim states and control inputs regarding
the different heights and speeds are listed in Table 2.

Table 2. Trim values of hypersonic vehicles.

Mach Altitude (km) AOA (deg) Elevon Deflection Angle (deg) FER

6 25 2.1645 14.4488 0.391
7 26 1.9073 13.6513 0.4044
8 27 1.7253 13.1218 0.4393
9 28 1.6016 12.7670 0.4811

10 29 1.5224 12.5351 0.5309

The trim angle of attack, elevon deflection angle, and stoichiometric ratio increase with
the increase in the flight height, whereas they will decrease with the increase in the flight
velocity. In addition, the poles and zeros of the right half plane are plotted in Figure 5.

According to Figure 5, poles and zeros of the right half plane show that the model
is unstable and difficult to control with the fixed structure. Furthermore, there are three
motion modes: short-period modes, long-period modes, and height mode. Among them,
the eigenvalues corresponding to the short period mode are positive and negative roots,
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and this indicates that the short-period mode is unstable. Additionally, the long-period
mode is stable in neutrality as the characteristic root is close to zero.

Figure 5. Poles and zeros of the right half plane.

5.2. Tracking Control

The ascent trajectory consists of three phases: constant dynamic ascent, constant Mach
ascent, and cruise. The trajectory profile of the mission is designed in Table 3. The initial
velocity and altitude are selected as 6.5 and 23,408 m, and the final cruise velocity and
altitude are given as 7.8 and 26,759 m.

Table 3. Initial points of the different phases.

Phases h0(m) V0(m) Ma0 Ma1

Constant dynamic pressure 23,408 25,769 6.5 7.8
Constant Mach number 25,769 26,495 7.8 7.8

Cruise flight 26,495 26,495 7.8 7.8

The tracking errors and control are provided in Figure 6. The velocity and altitude can
track the given commands well, and the angle of attack and control inputs can keep within
the expected range. These results show the effectiveness of the designed control system,
and the relative tracking error is too small to climb the given task point.

Figure 6. Response of trajectory tracking.
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5.3. Robust Analysis

The initial parameters of the tracking controller are obtained at the start point in
constant dynamic pressure climb. The gap metric is computed for the open-loop system
varying due to flight condition. The normalized coprime stability margin (NCSM) of the
closed-loop system is calculated for the same controller obtained at the design point. Here,
we provide two examples to illustrate the robust analysis based on gap margin, as shown
in Figures 7 and 8.

Figure 7. NCSM and gap metric of ascent tracking at Mach 6.5, h = 23,408 m.

Figure 8. NCSM and gap metric of ascent tracking at Mach 7.8, h = 26,495 m.

The value of NCSM and the gap metric are expressed in dB. The tendency of the gap
metric shows a significant relation with dynamic pressure. Furthermore, it decreases as
the velocity deviates from the design point, revealing the variation in open-loop dynamics
with flight conditions. As for closed-loop dynamics, the nominal controller at the initial
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point is used for all cases in the flight envelope. Hence, the NSCM reveals the robustness of
the closed-loop system if we keep the controller the same. The nominal value of NSCM for
the start point is approximately 0.1. It dramatically decreases as the flight altitude increases
by 2 km, whereas it remains as velocity increases. Moreover, simulation results show the
same tendencies for the terminal points compared with the initial point. The evaluated gap
margins for these two cases are provided in Figure 9. The circle in these figures represents
the initial flight condition of ascent, whereas the square is the terminal point. Besides, the
blue line denotes the constant dynamic pressure profile, and the orange line denotes the
constant Mach number provile.

Figure 9. Gap margin of ascent tracking.

A positive gap margin reveals the robustness of the closed-loop system, whereas a
negative gap margin indicates that the closed-loop system lacks robust stability. Simulation
results reveal that the trajectory tracking control is more sensitive to altitude variation. A
deviation of 800 m will cause stability problems, whereas the range of velocity deviation is
about 210 m/s. It indicates that climbs with constant velocity for hypersonic vehicles need
more attention for precise altitude control.

6. Conclusions

This paper develops a rapid modeling method of an aerospace vehicle and proposes a
robust analysis method based on the gap metric. Simulation results validate the proposed
model of the aerospace vehicle in terms of longitudinal dynamics. The structure of the
polynomial fitting model is proven to be efficient for guidance and flight control. Hyper-
sonic ascent trajectory is optimized by accelration profile using the velocity-driven method.
Moreover, a robust analysis method is proposed and validated for ascent tracking control.
The difference in hypersonic dynamics tends to be more sensitive to dynamic pressure.
Furthermore, the closed-loop robustness regarding the normalized coprime stability margin
(NCSM) is closely related to altitude. The gap margin is proposed to qualify the robustness.
Simulation results reveal that a deviation of 800 m in altitude will cause stability problems,
whereas the range of velocity deviation is about 210 m/s. Hence, the ascent tracking control
for hypersonic vehicles needs more attention for precise altitude control.
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