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Abstract: Deep learning effectively identifies and predicts modes but faces performance reduction
under few-shot learning conditions. In this paper, a time series prediction framework for small
samples is proposed, including a data augmentation algorithm, time series trend decomposition,
multi-model prediction, and error-based fusion. First, data samples are augmented by retaining and
extracting time series features. Second, the expanded data are decomposed based on data trends,
and then, multiple deep models are used for prediction. Third, the models’ predictive outputs are
combined with an error estimate from the intersection of covariances. Finally, the method is verified
using natural systems and classic small-scale simulation datasets. The results show that the proposed
method can improve the prediction accuracy of small sample sets with data augmentation and
multi-model fusion.

Keywords: time series prediction; few-shot learning; data augmentation; feature decomposition;
covariance intersection fusion

1. Introduction

Data are vital for various artificial and natural systems in the modern information
era. The real-time data generated with equipment and sensors are critical to monitoring
the controlled objects’ operation statuses [1]. Moreover, advanced sensing and precaution
are expected to be obtained for administrators. Then, the aforehand actions can be taken
to adjust a system’s operation and make effective decisions to avoid accidents and gain
benefits. Therefore, close attention has been paid to prediction information in various
applications, such as unmanned terminal control [2,3], environment monitoring [4–6], the
stock market [7], agriculture [8], etc. In a prediction, the time series data are always of
nonstationary and nonlinear features with complex noises [9]. The issue of time series
prediction has been a research hotspot for a dozen years. The traditional statistical methods
represented by the ARIMA (Auto-Regressive Integrated Moving Average) [10], ARCH
(Auto-Regressive Conditional Heteroskedasticity) [11], and intelligent machine learning
methods have been studied and applied widely. However, the methods may be invalid
when the historical data are on a small scale.

The data size of a time series in practical applications is often not as large as we expect,
although big data are always advocated in the internet world. The data in many fields are
collected artificially in the traditional management style. For example, we investigated
water environment monitoring in Beijing, China. The mainstream authoritative monitoring
data are mainly collected by operators and assayed in the laboratory [12]. The frequency
is one dataset of one day at most. There are only about 30 sets of monitoring data in a
month on the official website. A similar phenomenon occurs in casual food inspections.
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The government administration inspects different kinds of grain and foods in markets.
The highest frequency is once a day based on human resources limitations and enormous
market scope. There are only hundreds of inspection datasets in a year. Another typical
example is demographic statistics. Population censuses have been conducted for about
ten years in China. The latest censuses were in 1990, 2000, and 2010. The demographics in
the highest frequency are only measured once a year, which means the number of recent
population data is only in the dozens. The slow data collection makes the data size so small
that it cannot meet the requirement of intelligent computing.

In many application states in the real world, the number of samples is small or
minimal, and marking lots of unmarked samples will consume many human resources.
Therefore, finding a way to learn with a small number of samples has become a current
need. Existing prediction models mainly include shallow neural networks and deep neural
networks. For existing methods, small-scale data hinder effective modeling and accurate
calculations. Models fitted using statistical methods do not track new patterns because of
limited information in the existing data. Building a model using machine learning methods
may not be possible because the data size is too small to train the network. Deep networks
often require a mass of data to train an available model. Suppose a small amount of data
cannot reflect the natural characteristics of the data well. In that case, the deep network
model will fail to achieve the expected accuracy, and it may lead to model overfitting.

Aiming at the problem of insufficient data volume, related research has begun to
introduce some data augmentation methods to enhance the data volume of samples, such
as Hermite interpolation, cubic spline interpolation, generative adversarial net, etc. A
Hermite spline is a piecewise cubic polynomial with a given tangent at each value point.
Cubic spline interpolation takes the curve as the primary element, connects the discrete
point data into a curve, and can find the function value of any point on the curve. It
solves the limitations of interpolation by fitting all discrete data points to find a continuous
curve. Cubic spline interpolation is a standard method in numerical analysis that can assist
in establishing the functional relationship between discrete variables. Compared with
Hermite interpolation, the data curve obtained by cubic spline interpolation is smoother
and more suitable for fundamental data changes. The generative adversarial net uses a
GAN-based generator network to provide an effective regular representation for invisible
data distributions. It uses a residual pairwise network as a discriminator to measure the
similarity of paired samples. However, the extended samples obtained by these expansion
methods can only guarantee the continuity of the small curves at the connection points.
However, they cannot guarantee the authenticity of the sample data, which may cause
cumulative errors and affect the experimental results. In addition, the complex data
distribution is not captured, and the generated features are not interpretable. This cannot
meet the prediction accuracy requirements of deep learning models. When expanding
data samples, meeting the needs of model training and ensuring the authenticity of data
sources as much as possible are still problems to be solved. Therefore, a small-sample
learning method based on data enhancement is proposed to solve the problem. This data
enhancement algorithm expands the characteristics of the samples to obtain more samples
containing the original data’s characteristics so that the model can extract features better.

This paper explores the prediction solution in small-scale time-series data. The limited
data are expanded with a designed augmentation method. Then, the parallel augmentation
datasets are predicted with the appropriate models corresponding to the data subsets that
were decomposed [13]. The sub-prediction results are integrated with the error covariance
intersection. The features of the small-scale time series are expanded and excavated in the
proposed method. Moreover, the method is verified with a typical simulation of time series
and practical systems.

This paper is organized as follows. In Section 2, related work on time series predictions
is introduced, including the development of shallow neural networks and deep neural
networks. Section 3 introduces the details of the proposed framework, including data
augmentation, data decomposition based on time series trends, multi-model prediction,
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and error estimation fusion with the intersection of covariances. Section 4 tests the proposed
and comparative models on simulation data in MG and MSO systems and real data in a
fraction ratio in a food safety check system and SO2 concentration in an atmospheric quality
monitoring system. In Section 5, the experimental results are discussed and analyzed, and
the experimental results of the proposed model and the comparative model for the dataset
are compared and analyzed. Section 6 summarizes the approach, and conclusions and
outlooks are provided.

2. Related Works

The existing research on time series prediction mainly includes methods based on
statistics and machine learning. Some studies have been discussed in the two categories of
methods for small samples, but the amount of relevant research is relatively small. Classical
prediction methods and studies on small samples are presented in this section. Moreover,
the merits and demerits are also discussed briefly.

2.1. Statistical Prediction Methods

Prediction methods have been studied deeply based on statistical theory. The meth-
ods are established in the solution to the data rule description and relation fitting. The
autocorrelation function and exponential decays are essential for studying time series vari-
ations [14]. In the generalized view, the traditional prediction methods include exponential
smoothing [15], the state–space model represented by the Kalman filter [16], ARIMA [10],
and ARCH [11]. The methods in the system of ARIMA are the most representative of
the extensive studies and applications. The typical models include AR (Auto Regression),
MA (moving average), and hybrid models. The AR model can fit the relationship of the
regressor variable itself. The iteration relationship in the adjacent variables is expressed
with a linear combination of the historical data. The MA model introduces the sliding
window to extract the change features. The synthesis of AR and the MA can model the time
series more accurately, in which ARIMA develops fast in the nonstationary regressive issue.

The primary statistical model is presented with the expression of ARIMA:(
1−

p

∑
i=1

αiLi

)
(1− L)dxt =

(
1 +

q

∑
i=1

βiLi

)
εt (1)

where xt is the value of time series at t. p is the autoregressive order, d is the differential
order, and q is the moving average order. εt is the error term conforming to the normal
distribution. L is the Lag operator. αi and βi are the autoregressive parameters and the
shifted moving average parameter.

The primary support for the prediction methods above is the statistical theory, which
does not require a strict data size. The usual data size of dozens and hundreds can meet
the modeling demand. Some methods have been proposed for the small-scale data of time
series. Rogoza [17] proposed the local extrapolation method to model a few samples that
may be less than 10. The time series variables were derived based on the Kolmogorov–
Gavor polynomial, in which the parameter identification and data sensibility were analyzed
for short-term predictions. Shi et al. [18] built a preprocessing model for small samples
to enhance their stationary time series. The simulated annealing algorithm and support
vector machine were introduced to predict samples. Furthermore, the grey theory and
method [19,20] are also studied in the traditional methods for small sample predictions.

The methods above solve the small sample issue based on mathematical descriptions
in the statistical framework. The model can fit the changing trend in the available data, but
one wonders if it can accord with new data outside of the existing scope. The methods can
predict a small-scale time series that is stable in the short term. It may be invalid for the
long-term prediction of complex nonstationary time series.
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2.2. Shallow Machine Learning Methods

Machine learning provides novel access to data modeling with black-box thought.
It focuses on the external representation of the data instead of the inner mathematical
mechanism. BP (backpropagation) [21,22] is the classical network in time series analysis.
Moreover, shallow machine learning methods are also studied widely, including the support
vector machine [23], random forest [24], Bayes network [25], and the extreme learning ma-
chine [26]. The support vector machine transforms the input space into a high-dimensional
space through nonlinear transformation and finds the optimal linear classification surface.
This nonlinear transformation is defined as an appropriate inner product function. The
random forest algorithm uses the Bootstrap sub-self-sampling method to obtain different
sample sets for the construction of the model, thereby increasing the difference between the
models and improving their extrapolation and prediction abilities. The extreme learning
machine randomly selects the weight of the input layer and the bias of the hidden layer.
The weight of the output layer minimizes the loss function, composed of the training error
term, and the regular term of the weight norm of the output layer. It is calculated according
to the Moore–Penrose (MP) generalized inverse matrix theory analysis.

The prediction model based on the shallow machine learning method has the advan-
tages of a relatively mature theory, a simple algorithm structure, and certain self-learning
and self-adaptive capabilities, and it can be applied to nonlinear data modeling. However,
due to the substantial volatility of the currently collected time series, the prediction model
based on the shallow machine learning method is ineffective in fitting nonlinear data tasks
and cannot learn the long-term dependence of time series data.

2.3. Deep Learning Methods

With the promotion of techniques for data storage and computation, machine learn-
ing is replete with deep learning methods. The network structures are expanded, and
more components are appended. In deep learning for time series, RNN (recurrent neural
network) [27] is a typical network for the sequence features. In RNN, the hidden layer
is endowed with a memory function by connecting the nodes in different components.
Because RNN may diverge in the long term, LSTM (Long Short-Term Memory) [28] is
proposed by introducing gate components. LSTM is improved with the redesign of the gate
structure, including the bidirectional LSTM network [29] and the GRU (Gated Recurrent
Unit) [30].

Deep learning develops along with big data. The mass of data provides the learning
basis for deep networks. Meanwhile, the networks’ complex components and deep struc-
tures need a lot of data to establish the function relationship. A test was conducted in our
previous research, in which an LSTM network was trained with the classical datasets of an
MG (Mackey–Glass) system and MSO (Multiple Superimposed Oscillator) systems [31].
The data size when the network converges is recorded in Table 1, in which the network is
trained with different prediction steps.

Table 1. The minimum data size for training the LSTM network with simulation time series.

Prediction Steps 5 10 15

MG system dataset 1500 1700 1800
MSO system dataset 1800 1900 1950

It can be seen that the LSTM network needs at least 1500 sets of data to obtain the
available model in the test. The number of prediction steps represents the step size of
LSTM’s backward predictions, including 5 steps, 10 steps, and 15 steps. The numbers
corresponding to the datasets in Table 1 are the minimum data in the training set required
to obtain an effective backward prediction in LSTM models with different step lengths.
That is, 1500 sets of data mean that, in the MG system’s dataset prediction task, the LSTM
model trained by at least 1500 sets of training data can achieve adequate accuracy in the
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test set, including data and labels. The LSTM-related parameter settings are shown in
Table 2: input-size and output-size represent the time series dimension of the network’s
input and output, respectively, layers represent the number of layers in the network, hidden
unit represents the number of hidden neurons, batch size represents the number of samples
imported into the network simultaneously, and leaking rate represents the learning rate
parameter. The settings of the parameters are based on the general situation, exploring
how many sets of training data can be trained to achieve sufficient accuracy in the test set
(including data and labels) of the LSTM model trained.

Table 2. Parameter settings related to the LSTM model.

Input-Size Output-Size Layers Hidden Unit Batch Size Leaking Rate

1 1 2 32 60 0.001

The data size increases with the prediction steps. Furthermore, the classical data
used in the test are relatively regular, without complex noises and uncertain mutations. A
prediction model based on the deep learning method can automatically learn the hidden
characteristic information in the data and capture nonlinear relationships. Although the
deep learning method has a strong learning ability, when the data are more complex and
unstable, this learning ability requires a large amount of data. The prediction accuracy is
often unsatisfactory if the amount of data is insufficient. Few-shot learning cannot meet
the data volume requirements of deep networks. Although the use of the width learning
system can update the model training weight faster than a deep learning network, thus
improving the training speed of the model, it is still limited by the amount of data imposed
by few-shot learning.

Compared with the recurrent neural network and the convolutional neural network,
the transformer model has the advantage of parallel computing, which improves the speed
of model training and reasoning and is one of the main advantages of the model. However,
the transformer model, as a deep learning algorithm, naturally has the defect of deep
learning models in few-shot learning. Due to its large model size and high-dimensional
input features, the transformer model requires a large amount of training data to avoid
overfitting and improve its generalization ability. Therefore, the transformer model does
not have an advantage in the field of few-shot learning.

In addition, in addition to using a single model to solve nonlinear time series fore-
casting problems, the technique of applying a combination of models based on machine
learning has also begun to appear. For example, Xiong et al. [32] propose a novel hybrid
method combining seasonal–trend decomposition procedures based on loess (STL) and
extreme learning machines (ELMs) for the short-, medium-, and long-term forecasting of
seasonal vegetable prices. Liu et al. [33] propose a hybrid model combining inputs selected
using deep quantitative analysis, wavelet transform (WT), the genetic algorithm (GA), and
support vector machines (SVM).

This discussion can be concluded with a brief survey of traditional statistical methods
and modern deep-learning networks. Existing methods have limitations in the field of
few-shot learning predictions. Statistical methods require a relatively small amount of data.
However, feature extraction is weak for unknown potential trends outside the range of the
existing data. The existing methods of shallow machine learning networks have a single
structure, a weak generalization ability, and cannot learn long-term data dependencies. A
deep network needs abundant data to train a model with high prediction accuracy, and
few-shot learning limits the data volume demand of a deep network. Furthermore, different
methods specialize in handling different data, such as ARIMA for stationary time series and
LSTM for strongly nonlinear series with noise. For the ideal prediction of small samples,
two aspects should be considered: first, the sufficient expansion and feature extraction of
small samples and, second, the matching of models with different data trends.
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3. Fusion Prediction Based on Data Augmentation
3.1. Framework of Fusion Prediction in Data Augmentation

Deep networks are expected to excavate the features of small-scale time series. To
apply deep networks, the issue of the demand for a large data size should be solved first.
In addition, a deep network cannot be regarded as an almighty tool because it can be
improved in a complex environment. The novel prediction method is designed from two
perspectives: the augmentation of small samples and a distributed prediction based on
GRU. The framework of the proposed prediction method is shown in Figure 1.
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Figure 1. The framework of the fusion prediction model based on the augmentation of the original data.

First, the augmentation algorithm should expand the original data based on random
probability because small samples cannot satisfy the large amount of training data required
by the deep learning model. Multiple augmentation sets are generated to meet the data
amount requirements. Each augmentation set will be input for the multi-model predic-
tion in the next step. The augmentation of small-scale time series will be elaborated in
Section 3.2.

Second, a deep prediction model based on trend decomposition is designed for the
augmentation sets. For each augmentation set, the STL (seasonal and trend decomposition
using loess) decomposition is applied to the set to generate three components: the trend
component, the seasonal component, and the remainder component subsequence. The
decomposed features are predicted with GRU models. Then, the prediction results of each
GRU are fused as the prediction output of the augmentation set. The error indexes of each
model are output together with the prediction results, such as with RMSE (Root Mean
Square Error) and MAE (Mean Absolute Error), which provide the basis of the subsequent
fusing of the outputs of multiple augmentation sets. The proposed deep prediction model
based on trend decomposition will be elaborated in Section 3.3.

Third, the output results of each augmentation set are fused to obtain the final output.
The output of each augmentation set includes two parts: the prediction result of the deep
networks based on trend decomposition and the error indexes. The covariance intersection
(CI) fusion algorithm is used based on the error indexes to obtain the final output. The
covariance intersection algorithm based on the prediction error index will be elaborated in
Section 3.4.

As mentioned above, the method consists of three major parts.
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The first part is the augmentation part, as shown in the augmentation part in Figure 1.
An algorithm of augmentation based on random probability expands the original data of
small-scale time series to generate augmentation sets of different sizes to train deep learning
models, as shown in augmentation sets i, j, and k. The augmentation results are shown in
the colored blocks in the augmentation section. The green blocks represent the original
data, and the blocks of other colors represent the sample data obtained via resampling
based on the random probability algorithm. Each augmentation set will be used as the
input of the corresponding model to learn the trend characteristics of the time series.

The second major part is a deep prediction model based on trend decomposition for
parallel datasets. In each augmentation set, the augmented data from the original samples
obtained using a deep prediction model based on trend decomposition are nonlinear and
nonstationary. Therefore, to reduce the complexity of the trend in the augmentation set,
the STL algorithm is used to decompose it, and three subsequences of the trend, cycle,
and fluctuation of the augmentation set are obtained. Then, the GRU is used to predict
each subsequence and fuse the prediction results of the three subsequences to obtain the
prediction output of a single augmentation set. In addition, to fuse the prediction results
of the multiple deep prediction models in the next step, the prediction error index of each
augmentation set corresponding to the model is also output as a verification reference for
model performance.

The third part is the fusion part. Based on the prediction error index of each model,
the covariance intersection fusion algorithm is used to fuse the prediction results output
by the multiple models to obtain the final output. In the fusion of the prediction results
of the multiple models, the fusion is based on the prediction error index of each model,
which not only considers the prediction performance of each model but also makes full use
of the advantages of different models. It avoids the impact on the proposed framework’s
final prediction result due to the model’s poor prediction result corresponding to a single
augmentation set.

In the three major parts of the framework above, it can be seen that the main issues
include the augmentation of the original small samples, the distributed deep prediction
model, and the integration method based on the covariate intersection. The three parts are
introduced as follows.

3.2. Augmentation of Small-Scale Time Series

In the framework proposed, the precondition for deep network prediction is the
augmentation of the original data. Small samples should be expanded to meet the data size
demand of the deep networks. Therefore, an augmentation algorithm based on random
probability is proposed first.

The original dataset is expressed as {x1, x2, · · · , xn}, where n is the number of samples.
The expansion of the small-scale time series is achieved through the following steps. First,
the parameters related to resampling are set. The minimum data size of the network
according to the needs of the augmented sample is set. The number of resamplings, m,
can be ascertained with the limitation of m · n ≥ ε. The resampling is conducted following
the Bootstrap method [34,35]. If samples are unknown, multiple samplings in the existing
partial samples construct the estimated confidence interval. In an abstract sense, the usual
estimation from the samples does not extract all the information, while Bootstrap builds
the confidence interval by exerting the residual value with the resampling. Third, for the
original set, the sample is extracted with playback n times, and the new set is Xj(1 ≤ j ≤ m).

Meanwhile, the probability distribution parameter, θj, is calculated for the new set. Af-

ter the resampling m times, the new sets are obtained and joined as Yk
′ = {X1, X2, · · · , Xm}k

and 1 ≤ k ≤ α, in which Xj consists of n samples. The corresponding parameter set is
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{θ1, θ2, · · · , θm} of which the a-th and b-th parameters are the lowest and highest points of
the confidence interval:  a = intfloor

(
m · β

/
2
· 100%

)
b = intfloor(m · (1− β) · 100%)

(2)

where β is the quantile parameter. Finally, the samples and the resampled new set are fused.
b samples are selected from the original data and inserted evenly into the newly joined set.
Small sample augmentation is performed through the process of resampling and union.
First, the relevant resampling parameters are set, and the number of resampling times
is determined. Second, confidence intervals for the estimates are constructed by taking
multiple samples across the existing partial sample. Third, for the original set, samples are
extracted to obtain a new set after n playbacks. At the same time, the probability distribution
parameters for the new set are calculated. Finally, the samples and the resampled new set
are fused. The augmentation can be conducted α times considering the multiple models
trained later. The augmentation Algorithm 1 is concluded as follows for a clear and logical
presentation.

Algorithm 1: Augmentation of a small sample.

Input: {x1, x2, · · · , xn}, m, α, β

Output: Yk
Procedure
For k = 1, k <= α, k++

For j = 1, j < = m, j++
resampling of {x1, x2, · · · , xn} → Xj ;
calculate probability distribution parameter θj;

For end
join Xj → Yk

′ = {X1, X2, · · · , Xm}k ;
join θj → {θ1, θ2, · · · , θm} ;
calculate confidence interval parameters a and b following Formula (2);
select b samples from {x1, x2, · · · , xn} evenly;
insert b samples selected above into Yk

′ evenly → Yk ;
For end
Procedure end

3.3. Deep Prediction Model Based on Trend Decomposition

Obviously, the simpler the data trend, the better the prediction result. In this method,
the augmentation sets are decomposed into subsets for specific analysis. In the decompo-
sition, STL (seasonal–trend decomposition procedure based on loess) [36] is introduced
to obtain the subsets of trend, period, and fluctuation. STL is formulated in independent
components, as shown in Formula (3).

Yt = Tt + St + Rt t = 1, 2, . . . , N (3)

where Tt, St, and Rt are the trend, period, and fluctuation components, respectively. The
loess (locally weighted scatterplot smoothing) [37] smoother is based on fitting a weighted
polynomial regression for a given observation time, where weights decrease with their
distance from the nearest neighbor. The calculation process of STL is presented with the
loop mode in Figure 2. The time series is fitted iteratively until the trend and seasonality
stabilize. In a multi-step process, moving averages alternate with loess smoothing.
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Figure 2. Flowchart of the data decomposition based on STL.

The STL algorithm includes a series of loess smoothing, using loess smoothing periodic
subsequences on the original data and extending a period before and after each. The
window length is n(p). The resulting periodic subsequence is denoted as C(k+1)

v , v = −n(p)+
1, . . . ,−N + n(p) . A moving average is performed on the obtained periodic subsequences,

C(k+1)
v . Then, loess is used to smooth the sequence. Finally, the low-throughput sequence

of the periodic subsequence is obtained, denoted as L(k+1)
v , v = 1, . . . ,−N. The trend

component is subtracted from the smoothed periodic subsequence to obtain the periodic
component, denoted as S(k+1)

v = C(k+1)
v − L(k+1)

v .
Three subsequences of trend, period, and fluctuation are obtained through the STL

algorithm for the augmentation set. The GRU is used for fitting and feature extraction for
each subsequence separately. The basic structure of the GRU is shown in Figure 3, in which
two types of gates are the main components. The update gate (block 2 in Figure 3) controls
the degree to which the state information at a previous time is brought into the current
state. The larger the value of the update gate, the more status information from a previous
moment is brought in. The reset gate (block 1 in Figure 3) decides how much information
is written to the current candidate activation, h̃t, in the previous state. The smaller the reset
gate, the less information about the previous state is written.
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Figure 3. Structure of a GRU cell.

The output, ht, from each GRU cell in Figure 3 is obtained as

zt = σ(xtUz + ht−1Wz + bz)
rt = σ(xtUr + ht−1Wr + br)

h̃t = tanh(xtUh + (ht−1◦rt)Wh + bh)

ht = (1− zt)◦h̃t + zt◦ht−1

(4)

where zt, rt, bz, and br are the update gate, reset gate, current candidate activation, and
activation of the GRU at time t, respectively. h̃t represents the hidden state of the previous
time step. Uz, Ur, Uh, Wz, Wr, and Wh are weight matrices to be learned during model
training. ◦ is an element-wise multiplication. σ and tanh are activation functions.
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The decomposed subsets are predicted with three GRU networks correspondingly.
The sub-outputs are added to obtain the result of the augmentation subset.

3.4. Fusion Method Based on Error Covariance Intersection

Multiple models are trained in correspondence with the augmentation sets. The mod-
els can extract the different features of the original data by expanding with the random
probability mechanism. In the practical prediction, multiple models are applied simultane-
ously, and the outputs should be fused for the final output. In the fusion, the prediction
ability and performance of the models should be regarded as the pivotal factors. Then, the
fusion method is introduced based on the covariance intersection of the network errors.

The prediction errors in the networks are set as the essential information to evaluate
the network performance. In the augmentation set, parts of the data train the network,
while others are set as the validation reference. The prediction error can be calculated with
the validation data, providing the basis for the fusion weight. The validation data are yi

t,
and the predicted results are ŷi

t, where t is the time step, n is n time steps, and i is the serial
number of the augmentation and network. For each network, the estimation variance, pi, is
calculated as

pi =
√

∑n
t=1

(
yi

t − ŷi
t
)2
/

n (5)

and the covariance of all networks, p, is

p−1 =
m

∑
i=1

ωi p−1
i (6)

where ω is the weight of the network, and m is the number of networks. The covariance
is expected to be minimal, which means the estimation is balanced with the steady effect.
Then, the calculation of the covariance can be converted to the optimization problem, and
the model is expressed as

min
ωi

p−1 =
m
∑

i=1
ωi p−1

i

s.t.
{

ωi ∈ [0, 1]
∑m

i ωi = 1

(7)

Various methods can be selected for the optimization problem with the existing
research [38]. Sequential least square is used to optimize p−1 in this paper. Then, the fusion
result, ŷ, can be obtained with the optimization resolution:

p−1ŷt =
m

∑
i=1

ωi p−1
i ŷi

t (8)

The final prediction result can be achieved with the framework and algorithms above.
The original small samples are augmented to generate the long-term time series. The
augmentation should be conducted with the algorithm in Section 3.2. Then, multiple
networks are trained with the decomposition of the augmentation sets and GRU models.
Finally, the fusion solution is presented by assessing the prediction error with the covariance
intersection optimization.

4. Simulation and Experiment

Experiments are designed and carried out with the simulation and practical data,
of which the number is relatively small for the usual deep models. The proposed fusion
prediction method is tested using data augmentation and multiple prediction models.
The experiments and results presented in this section are divided into the simulation and
practical parts.

The simulation and experiment were conducted in the open-source deep learning
library Keras (https://keras.io/zh/ (accessed on 17 October 2022)) based on Tensorflow

https://keras.io/zh/
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(http://www.tensorflow.cn/ (accessed on 19 October 2022)). All experiments were per-
formed on a PC server with an Intel CORE CPU i5-4200U at 1.60 GHz with 4 GB of memory.

4.1. Test on Typical Simulated Time Series
4.1.1. Simulation Data

For time series predictions, typical data trends are usually studied. The following
part selects two time series benchmarks, the Mackey–Glass (MG) system and the multiple
superimposed oscillator (MSO) problems. For each dataset, 1350 sets of data are selected
for experiments, and the first 1000 sets are the training set of the model, which is used to
train the proposed model. The following 350 sets of data are divided into the first 150 sets
to verify the model’s accuracy, and the last 200 sets of data are used to test the model’s
predictive performance.

The MG system is a typical series model with a chaotic attractor. It is derived from a
time-delay differential system:

dy(t)
dt

=
ay(t− τ)

1 + yn(t− τ)
+ by(t) (9)

where n is the order of the time series variable, and a and b are the adjusting parameters.
The MG system will be chaotic when τ < 16.8. In the experiment, the parameters are set as
τ = 16, n = 4, a = 0.1, and b = 0.1. Then, 1350 sets of data are generated. The original data
of the MG system is shown in Figure 4a.
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MSO system.

Data in the MSO system are generated by overlaying several simple sine wave func-
tions, expressed as follows:

y(n) =
k

∑
i=1

sin(αin) (10)

where n is the time step order, k is the number of sine waves, and αi is the frequency of the
sine waves. In the experiment, k = 6, and αi is set as a random value in [0, 1]. The data
size is the same as that of the MG system. The original data are presented in Figure 4b.
The simulation data in MG and MSO systems are relatively periodic. Parts of the data are
shown in Figure 4 for an intuitional observation.

Based on the state trend characteristics of the time series data, the STL algorithm can
decompose the data into three parts: seasonal, trend, and random items. The simulation
data in the MG and MSO systems are decomposed into time series using the STL algorithm,
and the seasonal subsequences are obtained, as shown in Figure 5. In the proposed time
series prediction framework, input data are subjected to a sample enhancement algorithm
to obtain multiple enhancement sets. Similarly, the enhancement set obtained through the
sample enhancement algorithm is decomposed using STL to obtain seasonal subsequences,
as shown in Figure 6. The overall trend of the data fluctuates significantly, with a certain

http://www.tensorflow.cn/
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degree of seasonality. The seasonal trend of the enhancement set after the enhancement
algorithm is similar to the seasonal trend of the original simulation data in Figure 6. In
addition, each enhancement set will also be used as input for the corresponding multi-
model prediction in the next step of training.
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Concrete model building is conducted following the method in Section 3, including
training data augmentation, data trend decomposition, parallel prediction with multiple
GRUs, and a result fusion based on the error covariance intersection. Because the proposed
method mainly consists of the sample augmentation and covariance intersection fusion
of multiple GRUs, it is abbreviated as A-CI-GRUs. Other typical prediction methods are
set as the contrast, as shown in Table 3. In order to exclude other interferences, the same
model parameters in the experiments are set consistently.

Table 3. Related parameter settings for different models.

Model Parameter Settings

Statistical model ARIMA p = 2, d = 1, q = 2

Deep learning model

LSTM layers = 2, nodes = 16, batch size = 60, η = 0.03
GRU layers = 2, nodes = 16, batch size = 60, η = 0.03

Transformer
seq_len = 24, label_len = 24, n_heads = 8

layers = 2, d_layers = 1, d_ff = 2048, factor = 5
dropout = 0.05, batch_size = 60, η = 0.03

Multi-model Fusion
CI-GRUs layers = 2, nodes = 16, batch size = 60, η = 0.03

A-CI-GRUs layers = 2, nodes = 16, batch size = 60, η = 0.03
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(1) ARIMA: The typical model in the statistical prediction methods. Its main parame-
ters, p and q, are determined according to the training data.

(2) LSTM: The efficient recurrent neural network in deep learning.
(3) GRU: The development of LSTM, which is more efficient in a relatively simple

structure. The parameters of LSTM and GRU are adjusted to obtain the optimal training
result.

(4) Transformer relies on the attention mechanism to represent the global dependencies
between the input and output of the model. The transformer’s core is the self-attention
module, which can be viewed as a fully connected layer whose weights are dynamically
generated based on the pairwise similarity of the input patterns.

(5) Fusion model of multiple GRUs: Considering our method’s model framework, the
part of the proposed model is built, namely, the multiple GRUs without augmented samples.
The GRUs are integrated with the covariance intersection, the same as the proposed method.
The contrast method is abbreviated as CI-GRUs.

In Table 3, layers are the number of network layers, nodes are the number of hidden
nodes, batch size is the number of training steps, and η is the learning rate. Seq_len represents
the input sequence length of the transformer encoder, and label_len represents the starting
token length of the transformer decoder. n_heads represents the number of heads, e_layers
represents the number of encoder layers, d_layers represents the number of decoder layers,
d_ff represents the dimension of function, and factor represents the probsparse attention
factor. dropout means the probability of dropout, and batch_size represents the batch size of
the training input data.

Prediction methods perform differently in various step lengths. The proposed and
comparison methods were tested in experiments with backward predictions of 5, 10, and
15 time steps. RMSE and MAE are introduced as the error evaluation criteria.

4.1.2. Test Results

In the experiment, 200 sets of data were tested using the proposed and contrast
methods. The general prediction outputs are shown with curve graphs, for which the
results of the MG system are shown in Figure 7, and the MSO system’s results are shown in
Figure 8.
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Figure 7. Prediction results of data in the MG system.

Figures 7 and 8 show the performance of different methods. In total, 200 sets of data in
the MS and MSO systems were tested. ARIMA performs poorly for the losing track in the
MS system and shifting in the MSO system. Other methods can trace the general trend, but
their approximate degree varies. The LSTM network fluctuates more acutely, and the GRU
develops a little. The fluctuation of the transformer is relatively more severe. CI-GRUs and
A-CI-GRUs are closer to the true value, and their deviations are smaller than others. For an
intuitional comparison, the absolute errors in all methods are drawn in Figures 9 and 10.
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For the prediction length performance, the error criteria are calculated for different steps,
listed in Table 4.
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Table 4. Errors in the prediction result in different steps in the MG system and MSO system.

MG System MSO System
5 10 15 5 10 15

RMSE

ARIMA 0.0860 0.1210 0.1109 1.2327 1.3584 1.5893
LSTM 0.0577 0.0712 0.0832 0.6205 0.8289 0.8938
GRU 0.0472 0.0689 0.0789 0.2444 0.3589 0.3623

Transformer 0.1379 0.1590 0.1642 0.4485 0.6149 0.7211
CI-GRUs 0.0356 0.0412 0.0634 0.3623 0.4012 0.4265

A-CI-GRUs 0.0269 0.0313 0.0529 0.2343 0.2783 0.3074

MAE

ARIMA 0.1889 0.2034 0.2101 1.0061 1.3342 1.3983
LSTM 0.1223 0.1324 0.1423 0.4955 0.5253 0.5321
GRU 0.1070 0.1132 0.1198 0.2160 0.3129 0.3983

Transformer 0.1093 0.1268 0.1286 0.3600 0.4863 0.5880
CI-GRUs 0.0729 0.0805 0.0894 0.2817 0.3029 0.3182

A-CI-GRUs 0.0583 0.0612 0.0669 0.2054 0.2983 0.3056

The error in each point in Figures 9 and 10 shows the same performance corresponding
to Figures 7 and 8. The general descending sort of all methods is A-CI-GRUs, CI-GRUs,
GRU, transformer, LSTM, and ARIMA. A conclusion can be drawn following the error
criteria in Table 4. From the perspective of the different methods, their errors decrease
progressively from ARIMA to the A-CI-GRUs, which is similar to the graph trend in
Figures 7–10. From the perspective of step length, the error rises when the step increases.
The increment is dramatic in ARIMA, LSTM, and transformer. Multiple models are affected
little by the step length, and errors in the A-CI-GRUs are relatively stable.

4.2. Test on Time Series in Practical Systems
4.2.1. Dataset

The food safety check data were collected from the websites of the Chinese General
Administration of Quality Supervision, Inspection, and Quarantine. The data are from
26 provinces of China from 2013 to 2018. The sampling area and scope consider the
production and consumption conditions. The food safety attributes of rice are measured
and integrated as a comprehensive index, namely, the fraction ratio, to present its safety
degree. The data are organized as a time series by value per day.

For the atmospheric quality data, the concentration of SO2 is set as the main index.
It was measured at an industrial park in Hebei Province, China. A segment of data from
December 2017 is used in the experiment.

As mentioned in the introductory section, many practical systems generate data at
a low frequency according to monitoring demands and the manual sampling approach.
Therefore, practical data are tested except for the simulation systems above. The data from
the spot check system of food safety are recorded once a day. The data from the atmospheric
quality monitoring system are the typical time series. Then, parts of the data are shown
in Figure 11 for an intuitional observation. The two categories of data are tested with our
proposed and contrast methods in the same mode as a simulation experiment. The data
size is set as 1000 sets in training, 300 in the validation, and 200 in the test.

Similarly, the original practical data used in the experiments is decomposed using
the STL algorithm to obtain seasonal subsequences, and the enhancement set obtained
through the sample enhancement algorithm is decomposed using STL to obtain seasonal
subsequences, as shown in Figures 12 and 13. Although practical data have more complex
characteristic trends and more severe volatility, the seasonal subsequences decomposed
from the augmented practical data in Figures 12 and 13 still have a high similarity in the
same trend as the original practical data.
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4.2.2. Test Results

The experiment is similar to the simulation; the prediction results are obtained from
the proposed and contrast methods with different step lengths. The general results are
shown in Figures 14 and 15.
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From Figures 14 and 15, the practical data show pronounced fluctuations without
evident periodicity. ARIMA can hardly trace dramatic data changes, especially for the
large saltation. LSTM, transformer, and the GRU can only present the general trend, of
which the compactness to the true value is low. Compared with the virtual dataset with a
relatively simple fitting data trend, transformer’s performance is not ideal when fitting the
real dataset with a more complex trend. The results of the CI-GRUs and A-CI-GRUs are
closer to the benchmark data, although there is a minor backward shifting in the prediction
results for SO2. The corresponding absolute errors are presented in Figures 16 and 17. The
factual errors are calculated according to the types of methods and prediction steps, which
are listed in Table 5.

Figures 16 and 17 show a noticeable distinction in various methods. For the error in
the five-step method, the A-CI-GRUs reduce the RMSE by 0.54 in the CI-GRUs, 0.24 in
transformer, 1.22 in the GRU, 2.68 in LSTM, and 1.99 in ARIMA in the prediction of the food
safety fraction ratio. Similarly, the RMSE decreases from 8.69 to 2.87, and MAE reduces
from 5.74 to 2.17 in the prediction of the SO2 concentration. There is also a performance
reduction with the prediction step length increasing. The average increment of the RMSE
in the A-CI-GRUs is 0.49, whereas it is 1.16, 0.40, 0.66, 1.14, and 0.72 using the other
contrast methods. Tables 4 and 5 show that the A-CI-GRUs perform best in the five datasets
derived from the RMSE and MAE indicators. This verifies that the proposed prediction
framework is practical. In addition, when the backward prediction steps of the model
increase, the prediction error increment of the A-CI-GRUs is also smaller than that of the
comparison model.
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Table 5. Errors in the prediction result in different steps of the food safety fraction ratio and SO2

concentration.

Food Safety Fraction Ratio SO2 Concentration
5 10 15 5 10 15

RMSE

ARIMA 7.0300 9.3423 10.3224 4.7846 5.8321 6.1232
LSTM 8.0841 8.4562 8.9342 5.3669 5.9832 6.1233
GRU 6.6246 7.3452 7.8923 4.5867 5.3422 5.9653

Transformer 5.6369 7.0029 8.3610 8.6905 10.2021 10.5355
CI-GRUs 5.9455 6.2345 7.1234 4.0821 5.3983 5.7834

A-CI-GRUs 5.4012 5.9839 6.2532 2.8743 3.5683 3.9834

MAE

ARIMA 4.5877 5.8965 6.2312 3.7824 4.5834 6.0123
LSTM 4.8356 4.9342 4.9834 4.0112 4.2342 5.2736
GRU 4.2812 5.0745 4.8912 3.7135 4.2453 4.9832

Transformer 4.4159 5.4351 6.2418 5.7427 7.1292 7.4242
CI-GRU 3.9939 4.0234 4.1235 3.1694 4.2341 4.0231

A-CI-GRUs 3.5680 3.9834 4.2371 2.1708 2.9843 3.7532

5. Discussion

A fusion prediction model is proposed considering small samples in some practical
systems. The fusion model extracts the features by augmenting the sample and utilizing the
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multiple models parallelly. It was tested with simulation and practical data and compared
with other relative methods. This can be discussed in the context of the experimental results
to analyze the characteristics of the proposed method.

On the one hand, the situation mainly considers that many systems and activities
generate data at a low frequency, and historical datasets are often small. Thus, an augmen-
tation method is designed in this paper for the training demands of deep models. The
proposed method is compared with CI-GRUs, which lack the augmentation part. For MG
and MSO simulation data, the RMSE values of our method are 75.56% and 64.67% of those
in the CI-GRUs. Similarly, in the practical prediction of the food fraction ratio and SO2
concentration, the RMSE decreases by 9.15% and 31.51% compared with the CI-GRUs.
The other methods, LSTM, GRU, and transformer, which are trained on the original small
sample, perform poorly in accurately fitting the true value. This proves that augmentation
can enlarge the sample size with the inherent data feature and can help improve the model’s
prediction performance.

On the other hand, the proposed method realizes the fusion of multiple methods. Finite
samples limit single models such as ARIMA, LSTM, GRU, and transformer. Although the
deep models of LSTM, GRU, and transformer can trace the general trend in the experiment,
their precision is low in predicting the concrete values of each point. When facing data
prediction tasks with more complex trend characteristics, the transformer cannot exert its
ability to fit data trends when the number of samples is small. Furthermore, a covariance
intersection is introduced to fuse the models instead of using the traditional addition
method. In the covariance intersection fusion, the performance of each model is evaluated
with the error degree in the validation set. Then, the fusion weight can be obtained
quantificationally rather than using the weight of the artificial experience or a random value.

The proposed method guarantees the sample size for deep models. It also realizes
reliable predictions by integrating multiple models. In this paper, the type and number of
models used in the fusion framework are determined with common sense. Future work
can deeply explore how to choose concrete models considering the calculation speed and
computing resources. It is expected that the selected model will be as simple as possible,
and the number of multiple models should be restricted.

6. Conclusions

An integrated method is studied in this paper to solve the prediction issue in small-
scale time series. The overall structure is designed to organize the associated calculation
modules, in which the small sample is augmented and predicted with parallel GRUs. The
sub-results are fused with the covariance intersection method. The three key components,
augmentation, multiple models, and error fusion, realize feature extraction using a limited
data size. The method is verified with a classical time series and practical system data. In the
future, under the framework of the proposed model, the model type and quantity selection
principles can be explored, including using more deep learning models to complete the
prediction tasks of the decomposed data to improve prediction accuracy. During data
expansion, better retaining the original data characteristics is still a problem worth exploring
while also ensuring the data scale required for deep learning model training. In addition,
new migration learning strategies can be used to solve the problem of insufficient data for
few-shot learning.
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