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Abstract: Aspect-level sentiment analysis aims to identify the sentiment polarity of specific aspects
appearing in a given sentence or review. The model based on graph structure uses a dependency
tree to link the aspect word with its corresponding opinion word and achieves significant results.
However, for some sentences with ambiguous syntactic structure, it is difficult for the dependency
tree to accurately parse the dependencies, which introduces noise and degrades the performance of
the model. Based on this, we propose a syntactic and semantic enhanced multi-layer graph attention
network (SSEMGAT), which introduces constituent trees in syntactic features to compensate for
dependent trees at the clause level, exploiting aspect-aware attention in semantic features to assign the
attention weight of specific aspects between contexts. The enhanced syntactic and semantic features
are then used to classify specific aspects of sentiment through a multi-layer graph attention network.
Accuracy and Macro-F1 are used as evaluation indexes in the SemEval-2014 Task 4 Restaurant and
Laptop dataset and the Twitter dataset to compare the proposed model with the baseline model and
the latest model, achieving competitive results.

Keywords: aspect-level sentiment analysis; graph attention network; feature extract

1. Introduction

The rapid development of the Internet has changed people’s way of life. For example,
information is exchanged and shared through online service platforms, which generates a
large number of comment information. These comments not only contain users’ views and
attitudes towards news events, which can help the government and other agencies monitor
public opinion, but also contain preferences for products, which can help commercial
companies quickly complete product analysis and make improvements. These comment
data have great social and commercial value. It is of great significance to use sentiment
analysis technology to study these comments. Aspect-level sentiment analysis is a subtask
in sentiment analysis. It is a fine-grained sentiment analysis task, aiming at judging the
sentiment tendency of different aspects of entities in comments. Recently, the syntax-based
model has used the dependency tree to extract syntactic information and apply it to the
aspect-level sentiment analysis task, which has achieved remarkable results. Dependency
trees capture dependencies between aspect words and their corresponding opinion words,
which can solve the problem of long-distance dependence [1]. Therefore, they are often
used to extract syntactic information. Due to the arbitrary expression of online comments,
there is no obvious syntactic structure, which leads to the introduction of noise (irrelevant
dependency relation) in the parsing of dependency-tree-based methods, reducing the ability
of a dependency tree to capture the sentiment-aware context [2].

Based on the above observations, we propose a syntactic and semantic enhanced
multi-layer graph attention network (SSEMGAT). The dependency tree is used to represent
the dependency between words at the word level; the constituent tree is introduced to
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obtain syntactic information from a higher-level perspective. The attention mechanism is
easily disturbed by other aspect words. It uses aspect-aware attention to redistribute the
attention weight between specific aspect words and context. Then, the extracted syntactic
and semantic features are fed into the multi-layer graph attention module for specific
aspects of sentiment classification.

The main contributions of this paper are as follows:

(1) For the aspect-level sentiment analysis task, we propose a syntactic and semantic
enhanced multi-layer graph attention network to extract features from syntactic and
semantic perspectives and use pre-training knowledge to integrate syntactic and
semantic features extracted to infer specific aspects of sentiment polarity.

(2) We introduce a constituent tree to make up for the defect in the dependency tree and
combine different levels of syntactic information to align the position of the aspect
word and its corresponding opinion word. At the same time, aspect-aware attention
and multi-headed attention are used to construct local attention and global attention,
respectively, to link sentiment information between specific aspects and contexts.

(3) Experimental results on three benchmark datasets show that the performance of the
SSEMGAT model exceeds the baseline model and some recent models. Our model
incorporates syntactic and semantic feature information well, which indicates that
our work is effective.

The following sections of this paper are arranged as follows: In Section 2, we introduce
the relevant work of aspect-level sentiment analysis, which is mainly divided into three
categories: attention-based approach, syntax-based approach, and pre-training-based
approach. In Section 3, we describe the proposed model in detail. In Section 4, we test our
proposed model on the public benchmark datasets and analyze it separately. Finally, in
Section 5, we summarize the whole paper and look forward to future work.

2. Related Work

Sentiment analysis (SA) is an important research direction in opinion mining. It is the
process of using natural language processing technology (NLP) to analyze and summarize
text content containing sentiment. Sentiment analysis is divided into sentence-level [3,4],
chapter-level [5,6], and aspect-level analysis. The sentence level aims at comment text, which
needs to judge its whole sentiment tendency and provide corresponding sentiment values,
generally including positive, neutral, and negative. Chapter level refers to a document, which
judges the overall sentiment tendency and provides the same sentiment value as the sentence
level. Both methods judge the whole and generally only provide sentiment value, which
belongs to coarse-grained sentiment. Aspect level aims at the multiple aspects of the entity
contained in the review text; each aspect can be composed of different sentiment values,
and different aspects can have different sentiment values, even conflict, while the sentence
level and chapter level only have one direction of sentiment. Existing studies on aspect-level
sentiment analysis can be broadly split into three categories:

(1) Attention-based methods: The attention mechanism models the dependency rela-
tionship between an aspect term and its corresponding opinion words. However,
there may be several different aspect terms in a sentence. There have been studies to
judge the sentiment of a particular aspect. Wang et al. [7] captured the importance of
different contextual information to a given aspect word through the attention mecha-
nism, and the attention mechanism and LSTM are combined to model the semantics
of sentences and solve the problem of aspect-level sentiment analysis. Ma et al. [8]
proposed an interactive attention network (IAN), which uses the attention mechanism
to link the target and context for multi-level semantic classification. Chen et al. [9]
used multiple attention mechanisms to capture connections between long-distance
sentiment features, with strong robustness to irrelevant information. Huang et al. [10]
introduced an attention-over-attention (AOA) module to capture the connection be-
tween aspects and context words. Fan et al. [11] proposed a multi-grained attention
network (MGAN) to combine coarse-grained and fine-grained attention to capture
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the interaction of aspect and context at the word level. The attention-based approach
achieves attractive results. However, due to its defect, the attention mechanism is
easily affected by the noise in the sentence, thus misjudging the sentiment polarity.

(2) Syntax-based methods: Some work explicitly uses dependency trees of a sentence to
extract syntactic information. Zhang et al. [12] first proposed building a graph con-
volutional neural network on a dependency tree to learn the dependencies between
nodes. Sun et al. [13] utilized the representation of sentence features learned from the
bidirectional LSTM and enhanced embedding with the graph convolutional network.
Zhang et al. [14] constructed a hierarchical syntactic graph and lexical graph via
convolution on GNN embedding and BiLSTM embedding, respectively, and a bi-level
interactive network was designed to learn information interaction. Chen et al. [15]
combined information from the latent graph and the dependency graph via a gated
attention mechanism. For the situation where the current node of the dependency
tree pays average attention to adjacent nodes, Wang et al. [16] constructed an aspect-
oriented dependency tree structure (R-GAT) by extending the graph attention network
to encode graphs with labeled edges. Most syntax-based models only make use of
dependency, without considering the type of dependency. Tian et al. [17] proposed
T-GCN, which uses an attention mechanism to distinguish different edges in a graph
and uses attention layer ensemble to comprehensively learn different layers of T-GCN.
The use of syntactic knowledge only cannot obtain the best results, and some re-
searchers have studied the use of other knowledge. Li et al. [18] proposed a dual
graph convolutional neural network (DualGCN) to construct syntactic graphs and
semantic graphs from the perspective of syntactic structure and semantic correlation,
respectively. Zhang et al. [2] combined the attention matrix constructed by the atten-
tion mechanism and syntactic mask matrix to accomplish the interaction of syntactic
structure and semantic information. Wu et al. [19] used a dependency tree and phrase
tree to construct a phrase dependency graph and used the PD-RGAT model on it
for the ABSA task. Compared with the attention-based model, the performance of
the syntax-based method was greatly improved, but some shortcomings cannot be
ignored. Since dependency trees have different syntactic sensitivities, the noise in-
troduced to sentences without obvious syntactic structure will make it difficult for
dependency trees to accurately capture sentiment-aspect context [17], and GCN can-
not perfectly integrate topological structure and node features [20]. These problems
limit the further development of graph neural networks.

(3) Pre-trained-based methods: Devlin et al. [21] used the left and right context to pre-
train the depth bidirectional representation, requiring only one additional output
layer to fine-tune the pre-trained BERT representation, achieving state-of-the-art
results for a variety of tasks without basic task-specific architecture modifications.
Xu et al. [22] proposed training on large-scale general domain data and fine-tuning
on a small amount of downstream data, which provides a solution for the study of
small sample data. Song et al. [23] designed an attentional encoder to generate hidden
representations, and the BERT-SPC model is designed as a comparison model for
sentence pair classification tasks. There are also some studies using a combination
of pre-training and GCN. Jawahar et al. [24] found that BERT could capture a rich
hierarchy of language information, with phrase features at the bottom, syntactic
features in the middle, and semantic features at the top. Xiao et al. [25] integrated
syntactic sequence information from BERT and knowledge from dependency trees to
enhance graph convolutional neural networks for better coding dependency graphs.
Tang et al. [26] regarded GCN as a special form of transformer and studied the
representation between GCN and a transformer interactively.

3. Methodology

In this section, we introduce the syntactic and semantic enhanced multi-layer graph
attention model, that is, SSEMGAT. The overall structure of the model is shown in Figure 1.
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It is mainly divided into four parts: input layer, extraction layer, MGAT module, and fusion
layer. Next, we will describe each module in the model in detail.

Figure 1. The framework of the proposed SSEMGAT model.

3.1. Input Layer

Given a sentence of n words s = {ω1, ω2, . . . ,a1, a2, . . . , am, . . . , ωn}, where {a1, a2, . . . ,
am} is aspect term, since BERT has a powerful representation learning capacity, we utilize
BERT as a sentence encoder to generate contextual representations. To accommodate the
input format of the BERT model, given target aspect, we follow BERT-SPC [23] to construct
a BERT-based sequence: [CLS] + {sentence} + [SEP] + aspect + [SEP]. However, there may
be multiple aspects in a sentence, so we use the form of [CLS] + {sentence} + [SEP] + aspect
+ [SEP] + aspect + [SEP] to construct the pattern sequence. Then, the output representation
H is obtained by BERT,

H =
{

ht
1, . . . , ht

n
}

(1)

3.2. Extraction Layer

The existing models based on graph structure often use the dependency tree to extract
syntactic information, the attention mechanism to extract semantic information, and use
GCN to construct syntactic graphs and semantic graphs; the above graphs are interactively
learned, and good results are achieved.

3.2.1. Syntactic Feature Extraction

Generally, a dependency tree (Dep.Tree) can capture dependencies between aspect
terms and their corresponding opinion words, maintaining valid in the long-distance
dependency problem. Therefore, dependency trees are often used to extract syntactic
information from sentences. However, not all information on the dependency tree is
beneficial to our task, and introducing noise (unrelated relations of dependencies) makes it
difficult for each aspect word to accurately capture the corresponding contextual sentiment
information. For example, the dependency tree parsing of sentences is shown in Figure 2,
and the “conj” relation between “delicious” and “terrible” is invalid for our task, but the
aspect term “taste” may be associated with the opinion word “terrible”, reducing the ability
to accurately capture “delicious” in the opinion words.



Appl. Sci. 2023, 13, 5085 5 of 14

Figure 2. The result of dependency tree parses.

Moreover, the dependency tree reveals relations between words, the relationship
between clauses and between aspects that is difficult to capture. Based on this, we use
constituent trees, which mainly consist of phrase segmentation and hierarchical structures
that help to correctly align aspect words with their corresponding opinion words of senti-
ment information. Phrase segmentation can easily divide a sentence into multiple clauses
and refine the syntactic position of each word in the sentence. The structured hierarchy
can distinguish different relationships between aspect words to infer different aspects of
sentiment information from a clause-level perspective. For example, the result of parsing
the constituent tree of sentences is shown in Figure 3. The whole sentence is divided into
four parts: clause “The taste is delicious”, phrase segmentation term “but”, clause “the
service and price are terrible”, and “.”. In hierarchical structure, according to the phrase
segmentation term “and”, we can find that the aspect words “service” and “price” have
the same sentiment polarity, while according to the phrase segmentation term “but”, it is
concluded that it has the opposite sentiment polarity towards the aspect word “taste” and
the aspect words of other clauses.

Figure 3. The result of constituent tree parses.

Integrating information from different structural levels can obtain more accurate
syntactic information. Therefore, we construct the dependency adjacency matrix DA at
the word level and the constituent adjacency matrix CA from the clause level, which is
constructed as follows:

(1) Matrix DA: Using the dependency tree as an undirected graph, if there is a connection
between the words wi and wj,

DAi,j =

{
1, i f wi, wj link directly in Dep.Tree
0, otherwise

(2)
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(2) Matrix CA: The constituent tree has a hierarchical structure, and in each layer, if words
wi and wj belong to the same clause phrase,

CAl
i,j =

{
1, i f wi, wj in same phrase o f

{
phl

u

}
0, otherwise

(3)

Then, the CA and DA matrices are combined via position-wise addition as the extracted
syntactic feature matrix Asyn:

Asyn = CA + DA (4)

3.2.2. Semantic Feature Extraction

Attention mechanism is a common way to capture the interactions between the aspect
and context words. However, the attention mechanism is easily disturbed by noise (other
irrelevant aspects of words), and as clues, misjudge the sentiment polarity of the related
aspects. Therefore, we use aspect-aware attention to learn local semantic information for a
specific aspect, while using self-attention to learn global semantic information for sentences.
After that, we fuse local attention with global attention to learn semantic correlation.

(1) Local attention: To enhance the attention of specific aspects to local contextual senti-
ment information, we use aspect-aware attention to prevent disturbance with other
aspects of word information. The aspect-aware attention mechanism utilizes the
aspect term as query conditions to calculate the attention feature information of
related aspects,

Ai
local = tanh

(
HaWa ∗

(
KWK

)T
+ b
)

(5)

where K is equal to the output H of the input layer, and Wa and WK are learnable
weights. We perform mean pool operation on output H and copy the processed output
n times as Ha.

(2) Global attention: The attention mechanism captures the semantic correlation between
any two words in a sentence. This is useful for grasping all of the semantic information
in a sentence. Therefore, we use the multi-head attention mechanism [27] to construct
the global semantic score matrix Ai

global of the sentence. The calculation process is
as follows,

Ai
global = so f t(

QWQ ∗
(
KWK)T

√
d

) (6)

where WQ and WK are learnable weights

Then, we combine the local attention score with the global score to obtain semantic
matrix Asem:

Asem = Aglobal + Alocal (7)

3.3. Multi-Layer Graph Attention Module (MGAT)

To utilize rich hierarchical syntactic information, we use the MGAT block stacked
by several designed graph attention layers [28]. GAT is a new graph neural network
architecture, including an attention mechanism, which enables one to assign different
attention weights to the information provided by the feature aggregation of the central
node according to different nodes and propagate the sentiment information of node to its
neighboring nodes.
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The set of input and output in the graph attention layer is h =

{
⇀
h1,

⇀
h2, . . . ,

⇀
hN

}
and

h′ =
{

⇀

h′1,
⇀

h′2, . . . ,
⇀

h′N

}
, from which the attention coefficient between the central node and

neighboring nodes is obtained:

eij = a([W
⇀
hi||W

⇀

h′j]) (8)

where a is attention mechanism and W is the weight matrix.
GAT adopts a masked attention mechanism to prevent the dropping of all structural

information and changes the previous situation where the self-attention mechanism will
allocate attention to all nodes to allocate attention to neighboring nodes. In addition, the
attention coefficient is normalized using the softmax function, so the attention coefficient
after the update is:

αij = so f tmax
(
eij
)
=

exp
(
eij
)

∑N
k=1 exp(eik)

(9)

The multi-head attention mechanism is used to obtain the influence of adjacent nodes
on the central node, and the node features extracted by K heads are represented to complete
the splicing operation, and finally, the K average is used to replace the connection operation
to obtain the final node representation:

⇀

h′i = σ

(
1
K ∑ ∑j∈N αk

ijW
k
⇀
hj

)
(10)

where αk
ij is the normalized attention coefficients and Wk is the linear transformation

correlation weight matrix.
By stacking the above update process multiple times, node updates in a multi-layer

attention graph can be represented as follows:

HA = MGAT(A) (11)

The syntactic matrix Asyn and semantic matrix Asem are fed to the MGAT, respectively,
to obtain the syntactic feature Hsyn and semantic feature Hsem:

Hsyn = MGAT
(

Asyn
)

(12)

Hsem = MGAT(Asem) (13)

3.4. Fusion Layers

Pre-trained language models such as BERT have rich hierarchical information, with
phrase-level information at the bottom layer, syntactic feature information in the middle
layer, and semantic feature information at the top layer [24]. In addition, according to [29],
syntactic and semantic information is not completely isolated, and as the syntactic structure
changes, the semantics also have some changes. Interactive learning between syntax and
semantics can help us better understand sentences. Therefore, we combine the pre-trained
knowledge to fuse and learn the semantic and syntactic information, then feed the output
feature Ha into the softmax function for classification, and finally obtain the probability
distribution P(a) of the sentiment polarity:

Ha =
[
Hsem; Hsyn; H

]
(14)

P(a) = so f tmax
(
Wp Ha + bp

)
(15)
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3.5. Loss Function

We use standard cross-entropy with L2 as the loss function:

L = −∑i ∑
C
j=1 P log P̂ (16)

4. Experiment
4.1. Datasets

We evaluate our model on three public datasets: Restaurants and Laptops dataset
from Sem-Eval 2014 Task 4 [30] and Twitter dataset provided by Dong et al. [31]. Each
sentence in the three datasets is labeled with aspects and opinion words, and sentiment
includes three different polarities: positive, neutral, and negative. The statistics from the
datasets are in Table 1.

Table 1. Statistics from datasets.

Dataset
Restaurant Laptop Twitter

Train Test Train Test Train Test

Positive 2164 728 994 341 1507 173
Negative 807 196 851 128 1528 169
Neutral 637 196 455 167 3016 336

4.2. Experimental Environment and Parameter Setting

The computing hardware used in the experiment was GeForce GTX 2080Ti, and the
deep learning framework was PyTorch. The specific configuration of the experimental
environment is shown in Table 2. For model training, we use the bert-base-uncased version
of BERT as the sentence encoder and Adam as the optimizer. The detailed parameters are
shown in Table 3.

Table 2. Experimental environment.

Projects Configuration

Operating Platforms CUDA 11.3
Operating System Linux

Memory 16 GB
Python Versions Python 3.8
PyTorch Versions PyTorch 1.12.0

Table 3. Model parameter settings.

Parameter Name Parameter Value

batch size 12
learning_rate 0.0001
rnn_hidden 200

bert_dim 768
input_dropout 0.1

atten_head_ 2
layer_dropout 0.2

num_epoch 20
attn_head 2

4.3. Evaluation Index

Following the previous work, we used Accuracy and Macro-F1 values as evaluation
indexes of aspect-level sentiment analysis tasks.
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4.4. Baseline Methods

We selected some mainstream baseline and lasted models to compare with the pro-
posed models.

(1) IAN [8]: The aspect words and contextual representations generated by LSTM are
used to learn interactively through attention.

(2) AOA [10]: The aspect words and context representations generated by LSTM are mod-
eled by attention-over-attention neural networks to capture the interaction between
aspect and context.

(3) RAM [9]: This proposes a recurrent attention network on memory to capture sentiment
features between long distances.

(4) MGAN [11]: The alignment matrix is used to complete the coarse-grained interaction
between the aspect word and the context, and the aspect alignment loss function is
designed to complete the fine-grained interaction at the word level.

(5) TNet [32]: Use CNN to extract significant features from the transformed word repre-
sentations from the bidirectional RNN layer.

(6) ASGCN [12]: The dependency tree is used to extract syntactic information and per-
form graph convolution operations on the dependency tree to learn the representation
of nodes.

(7) CDT [13]: The feature representation of a sentence is learned by using bidirectional
LSTM, and the embedded representation is enhanced by graph convolutional networks.

(8) BiGCN [14]: The hierarchical syntactic graph and lexical graph are constructed by
convolution on GNN embedding and BiLSTM embedding, respectively, and a bi-level
interactive network is designed to learn information interaction.

(9) kumaGCN [15]: It combines information from the latent graph and the dependency
graph through a gated attention mechanism.

(10) R-GAT [16]: The dependency tree is rooted to the target aspect by reconstructing, and
pruning is performed to preserve the edges that are directly dependent on the aspect term.

(11) DGEDT [15]: Considering the dependency tree as a special form of transformer,
representations from the dependency tree and transformer are learned in an iterative
interaction manner.

(12) DualGCN [26]: Syntactic graph and semantic graph are constructed at the same time,
and a double affine mechanism is used to complete the information exchange between
syntactic and semantic, and finally, all the information is fused for classification.

(13) SSEGCN [2]: The attention matrix constructed by the attention mechanism and
syntactic mask matrix are combined to accomplish the interaction of syntactic structure
and semantic information.

(14) RAG-TCGCN [33]: Multiple attention is used to combine syntactic and semantic
features and their related features with word-level features parsed using residual
attention gates.

(15) BERT [21]: MLM is used for pre-training bidirectional transformers to generate deep
language representation, and good results can be achieved only with fine-tuning in
downstream tasks.

(16) BERT-PT [22]: The pre-training language model is trained through a large number of
general domain data and a small amount of downstream data. It provides a solution
for small sample data research.

(17) AEN-BERT [23]: This uses an attention encoding network to interact aspect words
with context and designs a processing form based on BERT word embedding.

(18) BERT4GCN [25]: Based on BERT’s rich hierarchical structure information, the feature
information in the middle layer is fused with the knowledge of the dependency tree,
the enhanced dependency graph is constructed, and the convolution operation is
performed in it.
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4.5. Experimental Results and Analysis

Our proposed model is compared with three types of baseline model: the attention-
based method, the syntax-based model, and the pre-training-based model. The attention-
based model includes IAN, AOA, RAM, MGAN, and TNet. The syntax-based model
includes ASGCN, CDT, BiGCN, kumaGCN, R-GAT, DGEDT, DualGCN, SSEGCN, and
RAG-TCGCN. The pre-training-based model includes BERT, BERT-PT, AEN-BERT, and
BERT4GCN. The main experimental results are reported in Table 4.

Table 4. Sentiment classification results. We directly introduce the result data from the original
author’s paper as the data for comparison, where “-” means that this part of the work is not revealed,
and the best experimental results are shown in bold.

Models Restaurant Laptop Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

IAN 78.60 - 72.10 - - -
AOA 80.53 69.84 72.88 67.48 72.25 69.96
RAM 80.23 70.80 74.49 71.35 69.36 67.30

MGAN 81.25 71.94 75.39 72.47 72.54 70.81
TNet 80.69 71.27 76.54 71.75 74.90 73.60

ASGCN-DG 80.77 72.02 75.55 71.05 72.15 70.40
ASGCN-DT 80.86 72.19 74.14 69.24 71.53 69.68

CDT 82.30 74.02 77.19 72.99 74.66 73.66
BiGCN 81.97 73.48 74.59 71.84 74.16 73.35

kumaGCN 81.43 73.64 76.12 72..42 72.45 70.77
R-GAT 83.30 76.08 77.42 73.76 75.57 73.82
DGEDT 83.90 75.10 76.80 72.30 74.80 73.40

DualGCN 84.27 78.08 78.48 74.74 75.92 74.29
SSEGCN 84.72 77.51 79.43 76.49 76.51 75.32

RAG-TCGCN 84.09 77.02 78.80 75.04 76.66 75.41
BERT-PT 84.95 76.96 78.07 75.08 - -

BERT-SPC 84.46 76.98 78.99 75.03 73.55 72.14
AEN-BERT 83.12 73.76 79.93 76.31 74.71 73.13
BERT4GCN 84.75 77.11 77.49 73.01 74.73 73.76

Ours 86.42 79.70 80.06 76.78 76.81 76.10

Based on the experimental results in Table 4, we offer the following analysis:

(1) Our proposed model achieves better results compared with other last and baseline
models. We believe that the primary reason is that the designed SSEMGAT model cap-
tures syntactic and semantic feature information more efficiently than other models,
which also proves the effectiveness of our work.

(2) The model that considers syntactic structure and semantic information at the same
time is better than the model that considers only semantic information or syntactic
structure, which shows that syntax and semantics do not exist in isolation, and
learning the interaction information between them is also very necessary.

(3) Compared with attention-based models, our proposed model has obvious advantages.
From the analysis of this phenomenon, we believe that the attention mechanism is
easily affected by the noise factor in the sentence when facing complex sentences
and obscure structures and cannot accurately align the contextual and sentiment
information. This reduces the performance of the model.

(4) Compared with syntax-based models, our model also has good results. This may be
because we made up for the inherent defects in dependency trees in sentence parsing,
thus enhancing their ability to capture aspect words and their corresponding opinion
words and improving the model’s ability to resist interference to noise elements
introduced in the dependency tree.

(5) Compared with the model based on pre-training, our model also has better perfor-
mance. BERT has strong representational learning ability and a rich hierarchical
structure, while the dependency tree also has an obvious hierarchical structure, which
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may be related in some way. When we use the enhanced feature extractor for extrac-
tion, we can better capture the correlation between syntax and semantics.

4.6. Ablation Study

We further conducted an ablation study to verify the validity of each module in our
model. The result is in Table 5. In the ablation experiment, we removed the dependency
tree (dep), constituent tree (con), aspect-aware attention (aaa), and multi-head attention
(mha) for comparison and verification.

Table 5. The results of the ablation study.

Restaurant Laptop Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

SSEMGAT 86.42 79.70 80.06 76.78 76.81 76.10
w/o dep 85.69 78.69 79.15 75.97 74.26 73.56
w/o con 85.52 78.16 78.80 74.67 75.62 74.43
w/o aaa 86.05 79.66 79.75 76.00 76.22 75.70
w/o mha 85.25 78.02 78.31 75.73 75.31 75.22

First, removal of the dependency tree (dep) leads to a drop in accuracy of 0.73%, 0.91%,
and 2.65% on the Restaurant, Laptop, and Twitter dataset, respectively, which demonstrates
that the dependency tree is important for extracting syntactic information. Then, with the
removal of the constituent tree (w/o con), the model performance decreases by 0.9%, 1.26%,
and 1.19%, respectively. It is shown that the constituent tree can effectively supplement
the syntactic information extracted from the dependency tree. After, the removal of aspect-
aware attention (w/o aaa) causes a decay in the accuracy of 0.37%, 0.31%, and 0.59%. As for
‘w/o mha’, the accuracy decreases by 1.17%, 1.75%, and 1.5% on the Restaurants, Laptop,
and Twitter datasets, respectively. As a result, the ablation experimental outcomes confirm
the contribution of both components.

4.7. Case Study

To better understand the work of the SSEMGAT model, we selected two samples to
review for visual case studies. In Table 6, we visualize the attention weights, predicted
labels, aspect terms, and corresponding true labels for sentences.

Table 6. Visual analysis of attention in review sample.

Model Aspect Attention Visualization Prediction Label

AOA

environment Its environment is elegant but price is expensive Negative Positive

price Its environment is elegant but price is expensive Positive Negative

room The look of the room is novel Positive Positive

ASGCN

environment Its environment is elegant but price is expensive Negative Positive

price Its environment is elegant but price is expensive Negative Negative

room The look of the room is novel Positive Positive

BERT-BASE

environment Its environment is elegant but price is expensive Positive Positive

price Its environment is elegant but price is expensive Positive Negative

room The look of the room is novel Positive Positive

SSEMGAT

environment Its environment is elegant but price is expensive Positive Positive

price Its environment is elegant but price is expensive Negative Negative

room The look of the room is novel Positive Positive
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The first sample contains two aspect terms where the corresponding sentiment polarity
is opposite, and the second sample contains only one aspect term.

In the first example, the AOA model focuses on “elegant” and “but” at the same
time, misjudges “environment” as negative sentiment polarity, while “price” focuses on
“elegant” and “expensive” and allocates positive sentiment polarity. This shows that there
is interference between different aspect terms. In the second example, with only one aspect
term, the correct sentiment polarity was identified. The ASGCN model may misjudge
sentiment by taking the relationship between “but” and “environment” as clues. The BERT
model does not correctly align the sentiment information corresponding to “price”. We
speculate that the possible reason is that the corresponding sentiment words are randomly
replaced with other irrelevant information when masking. The SSEMGAT model effectively
combined syntactic structure and semantic correlation of the feature information and
correctly predicted all aspects of terms related to sentiment tendency.

5. Conclusions and Future Work

In this paper, we proposed a syntactic and semantic enhanced multi-lay graph atten-
tion neural network (SSEMGAT) to solve the problem of introducing noise in dependent
trees in sentences without obvious syntactic structure. Given the inherent defects in
dependent trees, we introduced the composition tree structure, which can obtain more
field-of-view information at the causal level, and we enhanced the syntactic features by
merging syntactic information at different levels. The multi-head attention mechanism
may misjudge the sentiment polarity due to the noise introduced by the interference of
irrelevant words, so we construct local attention and global attention of specific aspects
based on the attention mechanism to assign the attention weight between aspect and con-
text. Facing feature information with a rich hierarchy, we used the multi-layer stacked
graph attention module to aggregate different hierarchical information separately and used
attention to give higher weight to the information most relevant to the feature. Finally, the
extracted syntactic and semantic features are fused with the pre-training knowledge to
obtain the most specific aspect of rich hierarchical feature information to achieve aspect
sentiment classification.

In future research, we will continue to apply the model to different domains to verify
the generalization performance and observe the model’s performance in multilingual
datasets. Current research still has challenges in mining deeper correlation information
between syntax and semantics, and we will further develop methods that can dig deeper
into the correlation between them.
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