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Abstract: A cerebral stroke is a medical problem that occurs when the blood flowing to a section
of the brain is suddenly cut off, causing damage to the brain. Brain cells gradually die because of
interruptions in blood supply and other nutrients to the brain, resulting in disabilities, depending
on the affected region. Early recognition and detection of symptoms can aid in the rapid treatment
of strokes and result in better health by reducing the severity of a stroke episode. In this paper, the
Random Forest (RF), Extreme Gradient Boosting (XGBoost), and light gradient-boosting machine
(LightGBM) were used as machine learning (ML) algorithms for predicting the likelihood of a
cerebral stroke by applying an open-access stroke prediction dataset. The stroke prediction dataset
was pre-processed by handling missing values using the KNN imputer technique, eliminating
outliers, applying the one-hot encoding method, and normalizing the features with different ranges
of values. After data splitting, synthetic minority oversampling (SMO) was applied to balance the
stroke samples and no-stroke classes. Furthermore, to fine-tune the hyper-parameters of the ML
algorithm, we employed a random search technique that could achieve the best parameter values.
After applying the tuning process, we stacked the parameters to a tuning ensemble RXLM that
was analyzed and compared with traditional classifiers. The performance metrics after tuning the
hyper-parameters achieved promising results with all ML algorithms.

Keywords: cerebral stroke; stoke prediction; oversampling; fine-tuning

1. Introduction

The central nervous system, in particular the cerebrum, plays a critical role in reg-
ulating numerous physiological functions such as memory, movement, cognition, and
speech, as well as autonomic control of the operation of vital organs. However, severe
disruptions or pathologies affecting the brain can have fatal consequences. A stroke is
an acute medical condition that requires prompt attention [1,2]. According to the Global
Stroke Organization [3], 5.5 M will die from strokes, and 13 M will suffer from a stroke
annually. Stroke is the leading cause of death and functional impairment globally, so it
significantly affects all facets of life [4]. Anyone at any age, regardless of gender or physical
condition, can be affected by stroke [5]. There are two types of cerebral strokes: ischemic
and hemorrhagic, where the damage can be temporary or extreme, ranging from mild
to severe. Hemorrhages are rare and entail a brain hemorrhage occurring by the blood
vessel rupture. The most frequent kind of stroke, an ischemic stroke, occurs when an
artery becomes narrowed or blocked, preventing blood from reaching a specific brain part.
Cerebral strokes are the sixth most common cause of mortality in the United States and
the fourth most common cause of death in India. The 795,000 cases/year frequently result
in permanent disability in the United States [6,7]. The India Collaborative Acute Stroke
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Study (ICASS) statistical report indicates that more than two thousand persons in India
had strokes in 2004 [8]. According to statistics from the Stroke Association, five out of every
100,000 children in the United Kingdom experienced a stroke in 2012 [9].

On the other hand, the overall stroke mortality rate in Canada was more than 15 thou-
sand in 2000 [10]. Myocardial infarction increases the risk of stroke, such as heart conditions
that increase the probability of stroke cases [11–13]. A healthy and balanced lifestyle can
help avoid stroke by keeping an appropriate weight index, an optimum glucose level, and
good heart and kidney function. Additional good practices include abstaining from alcohol
and tobacco, maintaining a healthy weight, and exercising regularly. Prompt detection
and proper treatment are necessary to prevent brain injury and associated consequences
in other body areas. Magnetic resonance imaging (MRI) and computed tomography (CT)
investigations are frequently used in early stroke identification.

The paper contains five sections, including the introduction section. Section 2 summa-
rizes the recent studies of cerebral stroke with their results. The proposed methodology
with machine learning algorithms is explained in Section 3. Section 4 provides the imple-
mentation of the methodology and the tuning ensemble for cerebral stroke prediction with
the experimental results. Finally, the paper concludes with an explanation of the results in
Section 5.

2. Literature Review

As presented in [14], different machine learning techniques can predict a patient with
a high stroke risk. The research will use three models of machine learning algorithms:
RF, DT, and NB. After evaluating each approach, the prediction uses the patient’s health
history as the attribute in each mode. The RF method has the highest accuracy, at 94.781%,
followed by the DT method, which recorded an accuracy of 91.906%, and the NB method
recorded the lowest accuracy, at 89.976%. The RF method outperforms the other methods
in terms of accuracy based on these findings. Using a variety of elements that record the
participant profiles, the authors of [15] investigated the efficacy of various ML algorithms,
RF, LR, K-NNs, SGD, DT, stacking, and majority voting, to identify the accurate algorithm
to predict the cases of stroke. Based on the results that exceed 98%, stacking classification
obtains high results. As a result, the stacking technique effectively identifies those who
are eventually likely to suffer a stroke. The authors of [16] trained four distinct models for
accurate stroke prediction with machine learning algorithms and numerous physiological
parameters. With an accuracy of approximately 96%, the RF performed the best for this
task. As proposed in [17], the authors used two datasets. The first dataset is a list of medical
checks, changes in the environment, and changes in the body. The dataset was balanced
using the SMOTE method, missing values were replaced with KNN Imputer values, and
outliers were removed. According to the corresponding features values, diabetes and
obesity were created as two features. The five ML algorithms that ultimately fed these
features were SVM, KNN, DT, RF, and MLP. The MRI scans comprise the second dataset,
where the average filter has been used to optimize each image and eliminate noise.

The dataset has been balanced using a data augmentation technique to prevent over-
fitting of data. Relatively 80% of the dataset was used for training, validation, and 20% for
testing. The AlexNet model and SVM algorithm were used to extract the deep features. The
deep learning model (AlexNet) performed worse than the hybrid algorithm that combined
machine learning and deep learning. AlexNet and the SVM achieve 99.9% accuracy, 100%
sensitivity, 99.80% specificity, and 99.86% AUC, respectively. The authors of [18] demon-
strate how several machine-learning systems may correctly predict stroke cases based on
physiological parameters. The NB Classification exceeds the alternative algorithms with an
accuracy of 82%.

As explained in [19], the authors proposed a comprehensive assessment of patient
characteristics in the digital health record. They used systematic analysis to look at various
features. They carried out feature correlation and stepwise analysis to select the best
features. In addition, they performed a principal component analysis (PCA), and the
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results explained that the principal components are required to account for more variance.
Finally, various features and principal component configurations were used to test three
machine-learning algorithms, neural network (NN), DT, and RF. They discovered that a
feature combination of A, HD, HT, and AG works best for a NN, with an accuracy and miss
rate of 78% and 19%, respectively. As presented in [20], the authors used a stroke prediction
algorithm and an improvised RF ensemble technique to find the risk factor. The prediction
model has a 0.03% of error rate and an accuracy of 96.97%. As presented in [21], the authors
proposed a hybrid framework to predict cerebral stroke disease using classification and
clustering. The authors implemented clustering using an enhanced hierarchal clustering
technique and then implemented LR, RF, SVM, NN, and XGBoost classifiers. According to
accuracy and AUC, all the classifiers produced satisfactory results, and the RF classifier
achieved 97%, which was the best result.

We can conclude from the above literature review of the most recent research that
none accurately classified cerebral stroke. However, our proposed tuning ensemble RXLM
achieved 95.29%, 99.13%, 96.38%, 94.36%, 95.35%, 90.59%, and 90.63%, respectively.

3. Materials and Methods

We proposed a tuning ensemble RXLM composed of RF, XGBoost, and LightGBM to
predict cerebral stroke diseases. The designed methodology and associated algorithms,
which comprise the aim of this study, were achieved successfully. The dataset used in the
proposed classification algorithms and methods is described in this section.

3.1. Stroke Prediction Dataset

The dataset was sourced from the famous benchmark dataset repository Kaggle [22].
We concentrated on participants over the age of 18 from this dataset. The dataset has
11 features and 5110 rows. Table 1 shows the descriptions for each feature, where the input
to the ML is ten features, and one feature is applied for the target class.

Table 1. Stroke prediction dataset features.

Feature Name Description Range

Gender The gender of the participant is the focus of this feature. There
are 1260 men and 1994 women in the population. Male–Female

Age Participants over the age of 18 are the subject of this feature. Float

Hypertension This characteristic indicates whether this participant has
hypertension. 12.54% of participants have high blood pressure.

0→ No Hypertension
1→ Hypertension

Heart Disease If this individual has heart disease, it is indicated by this feature.
The participants’ prevalence of heart disease was 6.33%.

0→ No Heart Disease
1→ Heart Disease

Ever Married The number of participants who are married, which is 79.84%,
is represented by this feature. Yes–No

Work Type This feature has four categories: private, self-employed,
government, and finally, never worked.

Never_worked, Children, Private,
Self-employed, or Govt_job

Residence type This feature has two categories: urban and rural, representing
the participant’s living situations. Urban or Rural

Average glucose level
(mg/dL) This feature tracks the participants’ average blood glucose level. Float

BMI (Kg/m2) This feature records the participants’ BMI. Float

Smoking Status There are three categories for this feature: smoker (22.37%),
never smoker (52.64%), and formerly smoker (24.99%).

Never smoked, smoked, or
Formerly Smoked

Stroke This attribute identifies if the participant has had a stroke in the
past. 5.53% of participants have experienced a stroke.

0→ No Stroke
1→ Stroke
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Most characteristics are categorical, except age, average blood glucose level, and BMI,
which are considered numerical. The dataset includes 2994 females, 2115 males, and one
other, and it includes 249 stroke patients and 4861 normal patients. The dataset was divided
into a training set with 4088 rows (3901 no-stroke and 187 strokes) (80%) and a test set with
1022 rows (20%). Class 0 represents the no-stroke class in the dataset, and class 1 represents
the stroke class.

3.2. Methodology

In this research, we proposed a robust tuning ensemble RXLM from RF, XGBoost,
and LightGBM for predicting cerebral stroke, where an open-access dataset for stroke
prediction is applied. The dataset was pre-processed by handling missing values using the
K-nearest neighbor (KNN) Imputer technique, eliminating outliers, applying the one-hot
encoding method, and normalizing the features with different ranges of values. After
splitting the dataset, we applied the SMOTE to the training set only to balance the samples
of the two classes. Furthermore, we applied the random search technique to tune the
hyper-parameters of RF, XGBoost, and LightGBM to get the best parameter values. After
tuning, we stacked the three ML models to propose the tuning RXLM. Traditional classifiers
and the proposed tuning ensemble RXLM were assessed and compared. The results of the
ensemble’s accuracy, AUC, recall, precision, F1-score, Kappa, and MCC recorded 95.29%,
99.13%, 96.38%, 94.36%, 95.35%, 90.59%, and 90.63%, respectively. The evaluation of the
proposed ensemble showed that the proposed ensemble achieved superior outcomes. The
primary achievements of the research are:

1. We proposed a novel tuning ensemble RXLM from RF, XGBoost, and LightGBM to
predict cerebral stroke diseases.

2. We used the open-access Stroke Prediction dataset and the KNN Imputer technique
to handle the missing values.

3. We applied the SMOTE on the training set to balance the two classes’ samples due to
the imbalance of the training subset.

4. We tuned the hyper-parameters of the RF, XGBoost, and LightGBM using the random
search technique to get the best parameter values and their high performance.

5. Achieving 95.29%, 99.13%, 96.38%, 94.36%, 95.35%, 90.59%, and 90.63% for accuracy,
AUC, recall, precision, F1-score, Kappa, and MCC, respectively, for stroke disease
prediction.

As depicted in Figure 1, we trained three ML methods (RF, XGBoost, and LightGBM)
and stacked them to propose a tuning ensemble RXLM. Each ML model of RF, XGBoost,
and LightGBM has some limitations. However, the proposed tuning ensemble achieved
a high binary classification success because it combined the advantages of the three ML
models to improve the overall accuracy. Figure 1 depicts the steps of the proposed tuning
ensemble model: (1) pre-processing of the Stroke Prediction dataset, (2) splitting the dataset,
(3) applying the SMOTE on the training set, (4) tuning the three ML techniques, (5) stacking
the three tuning ML models, (6) utilizing the measured metrics to evaluate the proposed
tuning ensemble model.
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Figure 1. The methodology for the tuning ensemble RXLM for cerebral stroke prediction.

At the beginning of our experiment, we pre-processed the dataset by replacing missing
values, eliminating outliers, applying one-hot encoding, and normalizing the data. In the
second step, we split the stroke dataset into a training set with 4088 rows (3901 no-stroke
and 187 strokes) (80%) and a test set with 1022 rows (20%). We applied the ten-fold cross-
validation technique that used more than one train–test split of the data to evaluate the RF,
XGBoost, LightGBM, and the proposed ensemble models. The ten-fold cross-validation
uses one fold as a test set and nine folds as train sets. It selected various values for the
train–test split function’s random state seed parameter. By running multiple training–test
splits and then averaging the results, cross-validation provided estimates of how the four
models were likely to perform, on average, more stably and reliably than those based solely
on a single training set. In the third step, we oversampled the training set using the SMOTE.
The SMOTE increased the stroke class to 3901 samples. In the fourth step, we trained the
three ML models: RF, XGBoost, and LightGBM, on the training set, and we tuned their
parameters using the random search method. In the fourth step, we stacked the three
tuning ML techniques, proposed the tuning ensemble RXLM, and trained it on the training
set. The random search method tunes the hyper-parameters to get the best parameter
values. Finally, we applied the test set to evaluate the effectiveness of the proposed tuning
ensemble by calculating the evaluation metrics. We compared its performance with the
performance of the three ML models.

3.3. Data Pre-Processing of Stroke Dataset

The final prediction may be less accurate than the raw data because of missing values
or noisy data. The pre-processing stage in the experiment must be applied to make the data
more suitable for mining and analysis. It includes replacing the missing values, outliers’
elimination, over-sampling, one-hot encoding, and normalization.

3.3.1. Missing Values Handling

In the stroke prediction dataset, 201 missing BMI feature values are 3.93% of the total
BMI feature values. The missing BMI values were predicted using the KNN Imputer
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technique. The mean value from the parameter n_neighbors replaces the missing data in
the KNN Imputer technique, which refers to the training set’s closest neighbors. KNN
Imputer uses of the KNN method. It imputes the missing values using the Euclidean
distance metric by default.

3.3.2. Outlier Elimination

Calculating the top and lower boundaries of the feature allowed the outliers to be
removed. The interquartile range was determined, as well as the first and third quartiles,
for each feature. The avg_glucose_level feature had 166 outliers removed, meaning 166
rows were lost. Therefore, the dataset contains approximately 4944 rows, where 4717 rows
reflect the normal cases with no stroke, while 227 rows reflect the stroke cases.

3.3.3. One-Hot Encoding

In one-hot encoding, k binary features that can only take the values 0 or 1 replace
the categorical feature with k possible values and k > 2. One of these k features, the hot
feature, is exactly equal to 1, hence the name one-hot encoding. If the categorical feature
only has two possible values, 0 or 1 takes their place. The dataset that implements the
one-hot encoding algorithm is shown in Table 2.

Table 2. The stroke prediction dataset after applying the one-hot encoding.

Age Avg Glucose
Level BMI Gender

Male Hypertension_1 Heart_Disease_1 Ever_Married_Yes Work_Type
Never_Worked

67 5.432367 3.600048 1 0 1 1 0

61 5.309307 5.309307 0 0 0 1 0

80 4.662684 4.662684 1 0 1 1 0

49 5.143008 5.143008 0 0 0 1 0

79 5.159745 5.159745 0 1 0 1 0

3.3.4. Normalization

There are several features in the stroke prediction dataset, including various numerical
values. A good model has the potential to learn to choose a relatively small weight when a
feature’s possible range of values is large. Similarly, a weight’s reasonable value will be
relatively large when the feature’s possible values are small. As a result, the prediction
process is impacted by these various feature values, and the training process moves slowly
to attain the cost functions.

To find a much more direct path to the global minimum of the cost functions, we
need to rescale the features so that their ranges of values are comparable. Additionally, the
training process needs to run quickly. We used Z-score normalization to implement feature
scaling, which allows features with very different ranges of values to have similar ranges
of values.

In Z-score normalization, we calculate the feature’s standard deviation and mean
value, subtract each feature value from the mean, and divide it by the standard deviation.
Equation (1) defines the Z-score normalization [23]. Consequently, if the feature value
matches all feature values’ mean, the stroke prediction dataset is normalized to 0. A number
below the mean will be negative, while a number above the mean will be positive. Table 3
shows the dataset after applying the Z-score normalization.

Xnorm =
(value− µ)

σ
(1)

where: µ refers to the mean of the features, and σ refers to the standard deviation of the
features calculated from the Z-score normalization.
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Table 3. The stroke prediction dataset after applying the normalization.

Age Avg Glucose
Level BMI Gender

Male Hypertension_1 Heart_Disease_1 Ever_Married_Yes Work_Type
Never_Worked

67 2.320709 1.027679 1 0 1 1 0

61 1.980714 0.781547 0 0 0 1 0

80 0.194204 0.574693 1 0 1 1 0

49 1.521257 0.791320 0 0 0 1 0

79 1.567499 −0.581283 0 1 0 1 0

3.3.5. Over-Sampling

Since the training set of the Stroke Prediction dataset had 3901 rows for the no-stroke
class and 187 rows for the stroke class, it was an imbalanced set because there was a
significant skew in the distribution of the two classes. Many ML algorithms, where the ratio
of positive to negative samples is very skewed and very far from 50:50, can be influenced
by this bias in the training set, causing the usual error metrics such as accuracy not to
work very well. Therefore, class balancing through an over-sampling technique should be
applied to the training set. We adjusted the unbalanced participant distribution between
the two-stroke and non-stroke in the training set using the SMOTE to balance the samples
of the two classes. In the SMOTE, the stroke class in the training set was oversampled
to 3901 rows. Therefore, after applying the SMOTE, the training set had 3901 rows for
the class no-stroke (normal) and 3901 for the class stroke. Hence, the training set became
balanced, and the ratio of stroke cases and no strokes was 50:50.

3.4. XGBoost

XGBoost is scalable, fast, and the most widely used ML method for implementing
decision tree ensembles because it can handle large datasets and achieve cutting-edge
efficiency in many tasks of classification and regression. It runs quickly, the open-source
implementations are simple to use, and it has been used to win numerous ML competitions
and in numerous commercial applications with great success. It is an ensemble learning
technique that produces a stronger prediction by combining the predictions of multiple
weak models. In XGBoost, we will examine the trained decision trees thus far and the
samples we are still struggling with. When we build the next decision tree, we will pay
more attention to the examples where we are failing. Therefore, rather than examining all
of the training examples, we concentrate more on the subset that still needs to perform well,
resulting in the new decision tree. XGBoost has built-in regularization to prevent overfitting.

3.5. LightGBM

It is a gradient-boosting ML method. Parallel training, sparse optimization, early
stopping, multiple loss functions, regularization, and bagging are just a few of Light GBM’s
many advantages over XGBoost. How the trees are constructed is a major distinction
between the two. The LightGBM does not develop a tree level-by-level, row-by-row.
Instead, it branches into trees and selects the leaf with the highest reduction. In addition,
the sorted-based decision tree learning technique looks for the ideal split point based on
sorted feature values and is not used by LightGBM. A significantly improved histogram-
based decision tree learning calculation is carried out by LightGBM, which has a remarkable
impact on both productivity and memory usage. In order to operate more quickly while
maintaining high precision, the LightGBM algorithm uses two special approaches called
Exclusive Feature Bundling (EFB) and Gradient-Based One-Side Sampling (GOSS).

4. Implementation and Evaluation
4.1. Tuning Parameter Using Random Search Optimization

Hyper-parameters are used in ML models. An ML model’s hyper-parameters are
points of choice or configurations that can be tailored to a specific task or dataset. In
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addition, ML models have parameters, which are the internal coefficients set when the
model is trained or optimized using a training dataset. Hyper-parameters are not the same
as parameters; automatically learned parameters direct the learning process, and hyper-
parameters are manually set. The process of optimizing involves defining a search space.
Geometrically, this can be considered an n-dimensional volume, with each hyper-parameter
representing a different dimension and the values the hyper-parameter can take on, such
as real-valued, integer-valued, or categorical, based on the scale of the dimension.

Random search is the simplest and most widely used optimization technique. Random
search is a method for training a model that selects and applies random hyper-parameter
combinations. The best possible combinations of random hyper-parameters are used. For
each hyper-parameter, we select values from a statistical distribution. For a random search,
a sampling distribution is established for each hyper-parameter. We can identify the models’
numbers to train using a random search. We used the random search algorithm to tune
the hyper-parameter in this step. The best parameters for the RF, XGBoost, and LightGBM
models are presented in Tables 4–6. These tables show the meaning and best value for
each parameter.

Table 4. Tuned parameters for RF.

Parameter Meaning Best Value

bootstrap Bootstrapping generates simulated datasets by resampling the original
dataset with replacement many thousands of times. True

ccp alpha Minimal cost-complexity pruning (ccp) employs a complexity parameter. 0.0

class weight Weights that are related to classes. None

criterion The capability to assess a split’s quality. gini

Max depth The leaf and root nodes are measured by the maximum number of levels in
the tree. None

Max features The aspect number must be taken into consideration when selecting the
best data split. Auto

Max leaf nodes The trees are grown using the maximum nodes of the leaf. None

Max samples How many samples from X need to be taken to train each base estimator None

Min impurity decrease A split node will experience an impurity reduction greater than or equal
this amount. 0.0

Min samples leaf The smallest number of required samples at each leaf node. 1

Min samples split This setting instructs the decision tree in a random forest to divide any
node with less observation than necessary. 2

Min weight fraction leaf A leaf node must contain a minimum weighted percentage of the total
weights from all of the input samples. 0.0

N estimators This parameter refers to the number of trees required to be built before
taking the maximum voting or averages of predictions. 100

Random state Random number seed. 123

N jobs The number of concurrent jobs to run −1

Oob score Score from an out-of-bag estimate of the training dataset. False

verbose Regulates the amount of jargon used in fitting and predicting. 0

Warm start If True is set, use the previous fit call’s solution and add more estimators to
the ensemble; if not, just fit a new forest. False
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Table 5. Tuned parameters for LightGBM.

Parameter Meaning Best Value

Boosting type Gradient boosting methods. gbdt

Class weight Weights that are related to classes. None

Colsample bytree Column subsample ratio used to construct each tree. 1.0

Importance type The kind of importance of a feature that should be entered into
feature_importances. split

Learning rate The learning rate of boosting. 0.4

Max depth The leaf and root nodes are measured by the maximum number of levels in
the tree. −1

Min child samples The minimum level of data required for a child. 6

Min child weight Minimum required child weight. 0.001

Min split gain The minimum loss reduction is required to construct a second partition on a
tree leaf node. 0.3

N estimators How many boosted trees can fit? 20

N jobs The number of concurrent jobs to run. −1

Num leaves Maximum number of base learners’ tree leaves. 150

Objective Choose a custom objective function or the associated learning objective
and task. None

Random state Random number seed. 123

Reg alpha Represents L1 regularization parameter on weight. 0.005

Reg lambda Represents L1 regularization parameter on weight. 0.0005

Subsample The ratio of the subsamples in the training instance. 1.0

Subsample for bin A number of samples are needed to make bins. 200,000

Subsample freq A frequency of 0 indicates that there is no enablement. 0

Verbosity Whether messages are printed during construction. warn

Table 6. Tuned parameters for XGBoost.

Parameter Meaning Best Value

Objective Output probability, logistic regression for binary classification. binary:logistic

Base score Global bias, the overall initial prediction score. 0.5

booster Gradient boosting methods. gbtree

Colsample bylevel Ratio of columns in the subsample for each level. 1

Colsample bynode The column-to-node subsample ratio (split). 1

Colsample bytree Column subsample ratio used to construct each tree. 1

Learning rate The learning rate of boosting. 0.300000012

Max bin The maximum number of discrete bins can be used to group
continuous features. 256

gamma The least loss reduction is needed for a subsequent part on a tree leaf node. 0

Max cat to onehot A threshold for determining whether categorical data should be split using a
one-hot encoding-based split in XGBoost. 4

Max delta step Utilized to safeguard optimization. 0
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Table 6. Cont.

Parameter Meaning Best Value

Max depth The leaf and root nodes are measured by the maximum number of levels in
the tree. 6

Min child weight Minimum required child weight. 1

N estimators How many boosted trees can fit? 100

N jobs The number of active jobs at once. −1

Num parallel tree The number of parallel trees that are built in each iteration. 1

Predictor Which predictor algorithm to employ? It allows the use of a GPU or CPU but
delivers the same results. auto

Eval metric Metrics for evaluation of validation data. None

Random state Random number seed. 123

Reg alpha Represents L1 regularization parameter on weight. 0

Reg lambda Represents L1 regularization parameter on weight. 1

Sampling method How to sample the training scenarios using this method. Uniform

Tree method The XGBoost tree construction algorithm. Auto

Scale Pos weight Adjust the balance between positive and negative weights, which is helpful for
unbalanced classes. 1

Subsample The ratio of the training instances’ subsamples. 1

Validate parameters XGBoost will validate input parameters to determine whether a given
parameter is utilized when the value is True. 1

4.2. Evaluation Metrics

The Kaggle environment was used to implement and evaluate the three ML models
and the proposed tuning ensemble RXLM. Data scientists and developers can host their
datasets, share their code, and compete in ML competitions with Kaggle. The three ML
models and the suggested tuning ensemble RXLM were assessed by applying the different
predictions of the confusion matrix, as follows [23,24]:

• The true positive (TPx) of class x means that the observed value output and predicted
value output for class x are true or correct.

• The true negative (TNx) of class x means that the output of the testing dataset is
negative compared to the predicted output of class x.

• The false positive (FPx) of class x means that the output of the testing dataset is
positive, whereas the predicted output of the experiments is false.

• The false negative (FNx) of class x means that the observed value output and predicted
value output for class x are false or incorrect.

In addition, various evaluation metrics are used to evaluate the overall performance
of the experimental results, as follows [23]:

• Accuracy is the degree to which the result matches the required value. It is calculated
by measuring the overall number of correct expectations or predictions on the dataset
by the total number of expectations.

Accuracy =
(TPx + TNx)

(TPx + FPx+TNx + FNx)
(2)

• Precision is the percentage of positive samples that the model properly predicted.

Precision =
TPx

(TPx + FPx)
(3)
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• The recall is the percentage that correctly identifies the positive samples from the
overall number of samples.

Recall =
TPx

(TPx + FNx)
(4)

• Sensitivity is the proportion of true positives to actual positive values of the samples.

Sensivity =
TPx

(TPx + FNx)
(5)

• Specificity is the ratio of the number of actual negatives to the number of true negative
values.

Specifity =
TNx

(TNx + FPx)
(6)

• F1-score is the harmonic average of precision and sensitivity.

F1-score =
2× Precision× Recall

Precision + Recall
(7)

• AUC is a number used to summarize a classifier’s performance by determining the
total area beneath the receiver operating characteristic (ROC) curve. The Mathew
correlation coefficient (MCC) is a statistical method for assessing models. It performs
the same function as chi-square statistics for a 2× 2 contingency table, measuring the
difference between expected and actual values.

MCC =
(TP x × TNx)−(FP x × FNx)((

TPx + FPx) (TPx + FNx)(TNx + FPx)(TNx + FNx))
0.5

(8)

• The Kappa Coefficient, or Cohen’s Kappa score, is used with two raters, but can also
be modified to work with more than two raters. One of the raters takes on the role
of the classification model in ML binary classification models. In contrast, the other
rater assumes the role of the real-world observer who is aware of the true categories
of each record or dataset. Cohen’s Kappa can be used to calculate overall agreement
and agreement after chance has been considered, and it considers the number of
agreements (TPx and TNx) and disagreements (FPx and FNx) between the raters.

Kappa =
2× (TP x × TNx)−(FP x × FNx)

((TPx + FPx)×(FPx + TNx)× (TPx + FNx)× (TNx + FNx))
. (9)

4.3. Model Evaluation

This section discusses the two experiments’ outcomes regarding the prediction of
cerebral stroke. The first experiment was performed before hyper-parameter optimization,
and the second, after hyper-parameter optimization. The accuracy of cerebral stroke
prediction has been improved by using the proposed tuning ensemble RXLM based on
the tuning RF, XGBoost, and LightGBM. The evaluation of the proposed tuning ensemble
RXLM and the tuning three RF, XGBoost, and LightGBM was performed using the ten-fold
cross-validation method that uses more than one train–test split of the data to evaluate the
RF, XGBoost, LightGBM, and the proposed ensemble models. The ten-fold cross-validation
uses one-fold as a test set and nine folds as train sets. It selected various values for the
train–test split function’s random state seed parameter.

Figures 2–5 showed the first experiment’s results. In this experiment, we evaluated the
RF, XGBoost, LightGBM, and RXLM with measurement metrics before hyper-parameters
optimization. The ensemble RXLM had 96.08%, 99.2%, 95.5%, 96.65%, 96.06%, 92.16%, and
92.2% for accuracy, AUC, recall, precision, F1-score, Kappa, MCC, respectively. The RF
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had 94.49%, 98.84%, 96.56%, 92.73, 94.6%, 88.98%, and 89.06% for accuracy, AUC, recall,
precision, F1-score, Kappa, MCC, respectively. The XGBoost achieved 95.29%, 99.13%,
96.38%, 94.36%, 95.35%, 90.59%, and 90.63% for accuracy, AUC, recall, precision, F1-score,
Kappa, MCC, respectively. The LightGBM achieved 94.82%, 98.89%, 96.19%, 93.64%,
94.89%, 89.64%, and 89.69% for accuracy, AUC, recall, precision, F1-score, Kappa, MCC,
respectively. The accuracy of the RF, XGBoost, and LightGBM was 94.49%, 95.29%, and
94.82 %, respectively. The accuracy, precision, F1-score, Kappa, and MCC of ensemble
RXLM were the highest, at 96.08%, 96.65%, 96.06%, 92.16%, and 92.2%, respectively. The
XGBoost achieved the highest AUC, at 99.13%. The RF achieved the highest recall, at
96.56%. The RF had the lowest accuracy, AUC, precision, F1-score, Kappa, and MCC, at
94.4%, 98.84%, 92.73%, 94.6%, 88.98%, and 89.06%. The RXLM had the lowest recall, at
95.5%.
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Figures 6–9 showed the results of the second experiment. In the second experiment,
we used the random search technique to evaluate the RF, XGBoost, LightGBM, and RXLM
with measurement metrics after tuning the hyper-parameters on the training set. The
proposed ensemble RXLM achieved 96.34%, 99.38%, 96.12%, 96.55%, 96.33%, 92.68%, and
92.69% for accuracy, AUC, recall, precision, F1-score, Kappa, MCC, respectively. The
RF had 84.73%, 92.75%, 89.27%, 81.88%, 85.4%, 69.46%, and 69.78% for accuracy, AUC,
recall, precision, F1-score, Kappa, MCC, respectively. The XGBoost had 92.42%, 99.12%,
98.65%, 87.74%, 92.87%, 84.84%, and 85.52% for accuracy, AUC, recall, precision, F1-score,
Kappa, MCC, respectively. The LightGBM had 95.18%, 98.86%, 94.91%, 95.45%, 95.17%,
90.37%, and 90.39% for accuracy, AUC, recall, precision, F1-score, Kappa, MCC, respectively.
The accuracy, AUC, precision, F1-score, Kappa, and MCC of ensemble RXLM were the
highest, at 96.34%, 99.38%, 96.55%, 96.33%, 92.68%, and 92.69%, respectively. The XGBoost
achieved the highest recall, at 98.65%. The RF had the lowest accuracy, AUC, recall,
precision, F1-score, Kappa, and MCC, at 84.73%, 92.75%, 89.27%, 81.88%, 85.4%, 69.46%,
and 69.78%, respectively.
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Using the confusion matrix (CM) of the first experiment, an examination of the pro-
posed RBSVM and the five ML models is depicted in Figures 10–13 by contrasting the
actual and predicted labels of the stroke and no-stroke classes of the test dataset. The stroke
class had 968 rows, and the no-stroke class had 976. The KNNs, the RF, the CatBoost,
the XGBoost, and the proposed ensemble RBSVM correctly predicted 986 cases for class
stroke, achieving 100% accuracy. With 880 examples accurately predicted, the SVM model
has a 90.9% accuracy rate. For the no-stroke class, the RBSVM model was 94.1% accurate
in predicting 919 samples. The KNNs model correctly predicted 838 samples out of 976,
giving it an accuracy of 85.8%. The SVM model correctly predicted 755 samples, giving it a
77.3% accuracy. With 961 samples properly predicted, the RF model has a 98.4% accuracy
rate. While predicting 912 samples, the CatBoost model had a 93.4% accuracy rate, and the
XGBoost model had a 95.5% accuracy rate.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 19 
 

 
Figure 9. The metrics of the RXLM model after tuning the hyper-parameters. 

Using the confusion matrix (CM) of the first experiment, an examination of the 
proposed RBSVM and the five ML models is depicted in Figures 10–13 by contrasting the 
actual and predicted labels of the stroke and no-stroke classes of the test dataset. The 
stroke class had 968 rows, and the no-stroke class had 976. The KNNs, the RF, the Cat-
Boost, the XGBoost, and the proposed ensemble RBSVM correctly predicted 986 cases for 
class stroke, achieving 100% accuracy. With 880 examples accurately predicted, the SVM 
model has a 90.9% accuracy rate. For the no-stroke class, the RBSVM model was 94.1% 
accurate in predicting 919 samples. The KNNs model correctly predicted 838 samples out 
of 976, giving it an accuracy of 85.8%. The SVM model correctly predicted 755 samples, 
giving it a 77.3% accuracy. With 961 samples properly predicted, the RF model has a 
98.4% accuracy rate. While predicting 912 samples, the CatBoost model had a 93.4% ac-
curacy rate, and the XGBoost model had a 95.5% accuracy rate. 

 
Figure 10. The ROC curve for the RF model after the hyper-parameter tuning. Figure 10. The ROC curve for the RF model after the hyper-parameter tuning.



Appl. Sci. 2023, 13, 5047 16 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 19 
 

 
Figure 11. The XGBoost model’s ROC curve after the hyper-parameter tuning. 

 
Figure 12. The lightGBM model’s ROC curve after the hyper-parameter tuning. 

 
Figure 13. The RXLM model’s ROC curve after the hyper-parameter tuning. 

  

Figure 11. The XGBoost model’s ROC curve after the hyper-parameter tuning.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 19 
 

 
Figure 11. The XGBoost model’s ROC curve after the hyper-parameter tuning. 

 
Figure 12. The lightGBM model’s ROC curve after the hyper-parameter tuning. 

 
Figure 13. The RXLM model’s ROC curve after the hyper-parameter tuning. 

  

Figure 12. The lightGBM model’s ROC curve after the hyper-parameter tuning.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 19 
 

 
Figure 11. The XGBoost model’s ROC curve after the hyper-parameter tuning. 

 
Figure 12. The lightGBM model’s ROC curve after the hyper-parameter tuning. 

 
Figure 13. The RXLM model’s ROC curve after the hyper-parameter tuning. 

  

Figure 13. The RXLM model’s ROC curve after the hyper-parameter tuning.



Appl. Sci. 2023, 13, 5047 17 of 19

4.4. Ensemble’s Result Comparison with the Literature

Current methods and the proposed ensemble are contrasted to demonstrate the novelty
of the proposed ensemble. The various ML and deep learning classification strategies for
cerebral stroke are presented in Table 7. The two most recent studies are [15,17], with
98% and 99% accuracy rates, respectively. Since the accuracy of the proposed RXLM was
96.97%, our proposed ensemble RXLM outperformed the most current methods. Hence, the
proposed ensemble RXLM will be used by doctors to detect early cerebral stroke effectively.

Table 7. Comparative results of the proposed RBSVM and recent ML algorithms.

Ref. Methodology Accuracy Feature Selection Datasets

[14] RF, DT, and NB 94.781% No Stroke prediction dataset

[15]
NB, RF, LR, KNN, SGD, DT,
MLP, Majority Voting, and

Stacking, which was the best.
98% No Stroke prediction dataset

[16] LR, DT, Voting, and RF, which
was the best. 96% No Stroke prediction dataset

[17] SVM, KNN, DT, MLP, and RF
which was the best 99% Recursive Feature

Elimination Dataset of medical record

[18] LR, DT, KNN, SVM, RF, and
NB, which was the best 82% No Stroke prediction dataset

[19] SVM, LASSO, and NN, which
was the best 79% Perceptron Neural

Network and (PCA)
Electronic health records

dataset

[20] NB, LR, Logistic R, KNN, DT,
AdaBoost, Improvised RF 96.97% NIHSS Medical record

[21] LR, SVM, ANN, XGBoost, and
RF, which was the best 97% No Stroke prediction dataset

Proposed RXLM RF, XGBoost, and LightGBM 96.34% No Stroke prediction dataset

Accelerating the diagnosis process and delaying the disease’s progression will assist
the patient in lowering the cost of diagnosis. The evaluation of the suggested ensemble
RXLM showed that it reaches an unmatched level of perceptiveness with hyper-parameters
optimization compared to previous models. As presented in Table 7, the proposed RXLM
provided high results with 96.34% accuracy, which is considered relatively lower than
other proposed methodologies. The proposed methods presented in [15,17,20,21] applied
oversampling techniques used in datasets to address class imbalance issues by increasing
the number of samples in the minority class. However, if we use oversampling before
splitting the data into training and testing sets, the same data points may end up in both.
As a result, the model may overestimate its performance on the testing set, resulting
in overly optimistic results. The problem with oversampling data before splitting can
cause data leakage, leading to model overfitting and biased results. Oversampling was
exclusively applied to the training data after splitting it into training and testing sets to
prevent data leakage in the research. This approach ensures that the model can effectively
generalize to unseen data, leading to a more precise estimation of its performance on new
data. However, this model may perform slightly worse than other research studies that
utilize oversampling before splitting, as such methods can lead to optimistic performance
estimates due to data leakage.

5. Conclusions

In this research, we proposed a robust and tuned ensemble RXLM using the random
search algorithm. The proposed ensemble improves the diagnosis of cerebral stroke disease.
It will speed up diagnosis and halt the progression of the cerebral stroke disease, while
also assisting doctors in efficiently detecting early cerebral stroke disease. We began by



Appl. Sci. 2023, 13, 5047 18 of 19

pre-processing the Stroke Prediction dataset by employing the KNN Imputer technique for
handling missing values, eliminating outliers, using one-hot encoding, and normalizing
the features with different ranges of values. After splitting the dataset, we implemented the
SMOTE to achieve a balance between the samples of the two classes of the training dataset.

Additionally, a random search technique was used to fine-tune the hyper-parameters
of the three ML models (RF, XGBoost, and LightGBM) to select the optimal parameter
values. The proposed ensemble RXLM was evaluated and compared to the recent ML
models. The proposed ensemble RXLM’s accuracy, AUC, recall, precision, F1-score, Kappa,
and MCC were 96.34%, 99.38%, 96.12%, 96.55%, 96.33%, 92.68%, and 92.69%, respectively.
The proposed tuned ensemble outperformed the most recent classifiers in terms of accuracy.
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