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Abstract: Despite rapid advances in vehicle intelligence and connectivity, there is still a significant
period in mixed traffic where connected, automated vehicles and human-driven vehicles coexist. The
behavioral uncertainty of human-driven vehicles makes decision-making a challenging task in an
unsignalized intersection scenario. In this paper, a decentralized multi-agent proximal policy opti-
mization (MAPPO) based on an attention representations algorithm (Attn-MAPPO) was developed
to make joint decisions at an intersection to avoid collisions and cross the intersection effectively.
To implement this framework, by exploiting the shared information, the system was modeled as a
model-free, fully cooperative, multi-agent system. The vehicle employed an attention module to
extract the most valuable information from its neighbors. Based on the observation and traffic rules,
a joint policy was identified to work more cooperatively based on the trajectory prediction of all the
vehicles. To facilitate the collaboration between the vehicles, a weighted reward assignment scheme
was proposed to focus more on the vehicles approaching intersections. The results presented the
advantages of the Attn-MAPPO framework and validated the effectiveness of the designed reward
function. Ultimately, the comparative experiments were conducted to demonstrate that the proposed
approach was more adaptive and generalized than the heuristic rule-based model, which revealed its
great potential for reinforcement learning in the decision-making of autonomous driving.

Keywords: cooperative decision-making; connected and automated vehicles; multi-agent reinforce-
ment learning; unsignalized intersection

1. Introduction

In recent years, with the development of vehicle-to-everything (V2X) and sensor
technologies, connected and automated vehicles (CAVs) received extensive attention re-
garding their ability to reduce the occurrence of traffic congestion and accidents [1]. Using
environmental sensing sensors, such as cameras, lidar, and radar, the CAVs are able to
obtain the state of roads and vehicles around them. The continuous development of V2X
(vehicle-to-everything) technology has accelerated the development of the automobile
intelligent network. V2X, including vehicle-to-vehicle (V2V), vehicle-to-infrastructure
(V2I), and vehicle-to-pedestrians (V2P), enables each CAV to share information about the
vehicle position, speed, acceleration, orientation, destination, etc. with any traffic partic-
ipating entity, which enhances the range of perception for these vehicles [2]. Equipped
with perception systems and vehicular communications, a CAV acquires a wider range of
information, which is beneficial for cooperative driving to evade crashes and achieve better
traffic performance [3].

According to the intelligent degree of vehicles, vehicles are divided into six levels,
from L0 to L5, by the Society of Automotive Engineers (SAE). By 2030, 82 million L4/L5
intelligent vehicles will be in operation in China, the United States, and Europe [4]. Despite
the dramatic advances in autonomous driving, the predictable transition from purely
conventional vehicles to a purely intelligent and connected environment will require a
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sustained investment in infrastructure and technology development. In the coming years,
the transportation environment will exist in a transition stage of mixed transportation
where the human-driven vehicles (HDVs) and CAVs coexist.

In general, significant research regarding cooperative decision-making and control is
under the assumption that all the vehicles on the road are CAVs [5,6]. Cooperative decision-
making and control in mixed traffic is a challenge in the field of intelligent transportation
systems (ITSs) [7]. This is the reason why the CAVs need to interact with the HDVs,
however the behavior of the HDVs is uncertain. To ensure a safe collaboration in mixed
traffic environments, it is more practical to implement strategies for the CAVs that take
the driver’s behavior into account than expecting drivers to interact with the CAVs with
caution. To imitate the human driving behavior, Treiber et al. developed an intelligent
driver model (IDM) [8]. As a safe distance model, the IDM is able to describe the behavior
of vehicles from free flow to congested flow with fewer parameters and reflects the dynamic
changes of the vehicle position and speed in real time. Peng et al. [9] modeled the HDVs
using the IDM, which were guided by the CAVs to avoid collision and congestion and
achieved a significant traffic efficiency. Li et al. [10] extended the IDM using the Ornstein–
Uhlenbeck process to describe the perceptual error dynamically. Wang et al. [11] proposed
a model that combined a first principles nominal model with a Gaussian process model
to predict human behaviors and then implemented a mixed platoon. However, the HDVs
normally follow traffic rules to drive, rather than following the CAVs. Based on this view,
the CAVs will anticipate the trajectories of the HDVs and cooperate to upgrade their safety
and crossing efficiency in this paper.

An unsignalized intersection scenario does not have traffic lights to govern it. The
existence of conflict areas at the lane interchanges and the changes in the vehicle driving
behaviors can easily cause disorder, resulting in traffic safety accidents, such as rear-end
collisions and traffic jams, which is where a large number of accidents occur [12]. In this
paper, we assumed that all the vehicles, including the HDVs, will be given the right of way
according to the traffic regulations. Based on this assumption, the CAVs learned to adapt to
the HDVs and cooperate with them for safe and efficient crossing. Since multiple CAVs are
required for cooperative driving, it is natural to adopt a multi-agent reinforcement learning
framework to achieve the cooperative goal. The multi-agent proximal policy optimization
(MAPPO) in a cooperative setting [13], which had a surprising effectiveness, was used as
the benchmark algorithm in this paper. The original algorithm directly took the information
from the agent’s neighbors as its own observations. As the number of agents increased,
learning became more difficult [14]. Therefore, an attention representation was utilized
to select the most relevant information from the vehicle’s neighbors. In the context of the
cooperative multi-agent setting, the reward assignment problem concentrated on how to
assign a global return to each agent that accurately reflected the agent’s contribution to the
overall behavior. We noted that the distance between a vehicle and the intersection had
different effects on the safe operation of the system, and thus proposed a weight reward
assignment scheme.

Therefore, to address the above problems in this paper, a decentralized MAPPO based
on the attention representations (Attn-MAPPO) is proposed to make joint decisions at the
intersection based on the trajectory prediction of all the vehicles. The contributions of this
paper are fourfold.

First, decision-making at the intersection where the CAVs and HDVs coexist was for-
mulated as a decentralized MARL problem. Based on the traffic rules and the most valuable
neighbor information extracted by an attention module, the Attn-MAPPO algorithm was
developed to allow vehicles to cross the intersection safely and effectively.

Secondly, a weighted reward assignment scheme was proposed. According to the
position of the vehicles, the contribution of each CAV could be measured to enhance the
cooperation between the vehicles.
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Thirdly, an effective reward function was designed. Due to the uncertain behavior
of the HDVs, all the vehicle’s trajectories at every time step were predicted in a forward
predictive time horizon, which reflected precisely how well the action was taken.

Fourthly, we conducted the comparative experiment about the traditional heuristic
rule-based and our proposed approaches, and the results showed that our proposed
approach was more adaptive and generalized in a complex traffic environment.

The remainder of the paper is organized as follows. Section 2 briefly reviews several
approaches to settle the decision-making problem at an intersection. Section 3 states some
of the problems, including the research scenario, the right of way the rules, and the vehicle
intersection model. The problem formulation and the proposed MARL framework are
described in Section 4. The experiments, results, and discussions are presented in Section 5.
The paper is concluded, and the future works are discussed in Section 6.

2. Literature Review

Due to the complex interactions, the decisions made by the CAVs at the unsignal-
ized intersections are a critical issue. Several approaches have been recommended for a
settlement, namely the rule-based, optimization-based, and data-driven algorithms.

Earlier research mainly used a rule-based approach, where the main idea was to
determine the order of the vehicle passage based on the rules or experience. The most
direct approach was to carry out the first-in-first-out rule reservation scheme based on the
centralized controller [15]. Another distributed approach based on fuzzy logic controllers
was proposed. Milanes et al. [16] used V2V communication to determine the position and
speed of the other vehicles in the intersection and then utilized a fuzzy controller to adjust
the speed according to the speed of the vehicles with right of way. The rule-based approach
was simple to implement, but not optimal.

Optimization-based algorithms take the decision factor as the objective and formulate
the optimization under the constraints. Bian et al. [17] presented a distributed optimization to
schedule the arriving times for the trajectory planning and achieved a satisfactory cooperative
management with a 8.8–18.1% growth in the average passing times. However, the real-time
optimization was limited to a high computational load and could not be achieved. In recent
work, the combination of the above two approaches realized the approximations that dealt with
the optimization via some heuristic rules, leading to a good trade-off between the performance
and the computational complexity. For example, Xu et al. [18] solved a nearly globally optimal
coordinated decision using the Monte Carlo tree search algorithm based on the feasible passing
order that was selected using two heuristic rules. Vaio at el. [19] reformulated the vehicle
coordination as the equivalent virtual platoon control problem based on the ascending order of
the distance to the intersection. Due to the lack of learning and adaptability, these two methods
were intractable to effectively tackle the task without accurate models.

As the field of artificial intelligence evolved, data-driven approaches have been a research
hotspot for model-free problems due to their unparalleled data processing and generalization
ability. Game theory [20] and deep reinforcement learning (DRL) [21] play a significant role
in the decision-making at intersections. DRL addresses the cooperative decision-making
tasks depending on the impressive learning capabilities based on the continuous interaction.
Isele et al. [22] used DRL to identify the strategy that outperforms the common approach
based on the heuristic rules. Lin et al. [23] discovered that when the scenario was modeled
inaccurately, the policy trained by DRL performed better than the optimization approach of
the interior point optimization (IPO). Shi et al. [24] proposed a coordinated control method
with a proximal policy optimization (PPO) to make the CAV adapt to the HDVs. Liu et al. [25]
employed a DRL to guide the expected speed and converge to the planned decision.

However, these studies involved only a single vehicle, disregarding the fact that concur-
rent interaction cooperative decision-making is a typical multi-agent system (MAS). Hence,
it was logical to extend to a multi-agent reinforcement learning (MARL) framework. The
decision at the intersection can be articulated as a fully cooperative MARL problem. MARL
has already been used for research in the field of intelligent transportation, such as traffic
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signal control [26] and highway decision-making [27]. Decision-making at the intersection can
be articulated as a fully cooperative MARL problem, for which very few works exist, even
though it is still a new area of research [21]. Based on the model accelerated proximal policy
optimization (PPO), Guan et al. [28] proposed a centralized coordination method to globally
coordinate the CAVs approaching the intersection by considering their states altogether, which
achieved an increased efficiency. Zhou et al. [29] applied a centralized control for all CAVs
that shared the same learned controller and then enabled the CAVs to form an appropriate
behavior using the deep deterministic policy gradient (DDPG) algorithm. Antonio et al. [30]
used MARL to identify complex real-life traffic scenarios and collaboratively regulate the
CAVs at the intersection, which reduced 59% of the travel time and 95% of the congestion time
compared to the traffic light control method. However, some issues in the MARL settings
were not considered in the aforementioned works. The first issue was how to learn the most
relevant information from other agents in a partially observable environment. The second was
the reward assignment problem. In this study, we attempt to address the abovementioned
issues by adopting a multi-agent reinforcement learning-based approach.

3. Problem Statement
3.1. Scenario Description

The management of an unsignalized intersection is a challenging problem due to the
multiple vehicles with potential conflicts and variable driving behavior. We focused on a
traffic scenario at an intersection where the CAVs and HDVs coexisted and interacted with
the surrounding vehicles to cross safely and efficiently.

As shown in Figure 1, a typical single-lane four-way unsignalized intersection consisting
of four entrances and four exits was introduced. The areas upstream of the entrances and
downstream of the exits were combined with a straight lane of the distance Ls, where only a
rear-end collision was possible since overtaking was not feasible. When the vehicle reached
the end of the entrance lane, it reached the stop line, indicating that the vehicle was about to
enter the intersection. Inside the intersection, there could be a head-on collision, a rear-end
collision, or other hidden dangers. Suppose that a vehicle pre-plans a path p based on its
initial lane and target lane before entering the intersection and follows this path to cross the
intersection. Accordingly, there are 12 paths in total at the intersection, excluding the U-turn.
There are a total of 20 conflicting points on these paths, including 16 crossing points and four
converging points. The possibility of overtaking does not exist at the intersection, hence the
diverging points are not the critical conflicting points. Assume that the preset path can be
tracked perfectly by the vehicle, and thus only the longitudinal velocity along the path needs
to be adapted. Our objective was to select the actions about the acceleration at every time step
for the CAVs to cross the intersection safely and efficiently.
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3.2. Right of Way Rules

Human drivers mainly avoid crash conflicts by following the traffic rules at unsignal-
ized intersections, which helps drivers determine how they should proceed to pass through
successively, i.e., the right of way assignment. In this paper, the traffic rules in China were
used to regulate the vehicles at the intersections. More specifically, each vehicle i that is
about to enter the intersection should yield to the vehicle j that conforms to any of the
following conditions (in order of priority): (a) vehicle j is already engaged in the intersec-
tion or significantly closer to the intersection; (b) vehicle j is on the right side of vehicle i;
(c) vehicle j is proceeding straight and encounters the turning vehicle i; (d) vehicle j is about
to turn and interacts with the vehicle i to turn right, when in the opposite direction.

According to the aforementioned rules, if vehicle i goes before vehicle j, it means i ≺ j.
psi,j is used to represent the passage order. Thus, a priority state between these two vehicles
can be defined as follows.

psi,j =


1, i � j,
−1, i ≺ j,
0, otherwise,

(1)

If there is no potential collision risk between vehicles i and j, the two vehicles have the
same priority, that is, the priority state is 0.

3.3. Vehicle Interaction Model

In the considered scenario, the modeling of the CAV-to-CAV and the CAV-to-HDV
interactions were developed in this paper. The CAVs equipped with V2X communication
devices could exchange information, including the vehicle position, speed, acceleration,
orientation, destination with the vehicles within the communication range, and road infras-
tructure, i.e., vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication.
Based on the road infrastructure, the HDVs’ state information could be observed and
transferred to the CAVs [31]. Unlike the CAVs, the HDVs have the liberty to maneuver
themselves under the premise of obeying the traffic regulations. However, they cannot
send any acknowledgment of their interactions. In this paper, the HDVs were modeled as
cautious drivers and they slowed in response to the dangerous movements of the vehicle
ahead. The intelligent driver model (IDM), which imitates human driving behavior, was
used to control the HDVs. Consequently, the acceleration of an HDV could be anticipated
based on its current speed and headway distance.

4. Cooperative Decision-Making in a Multi-Vehicle Cooperative Task
4.1. Problem Formulation

In this paper, the unsignalized intersection environment, where the CAVs and HDVs
coexist, was modeled as a model-free multi-agent system to solve the cooperative decision-
making and control problems. The system was described as G = (V, E), where
V = {v1, v2, . . . , vN} represents a non-empty finite with N CAVs and the edge set
E ⊆ V × V represents the connections among the CAVs. The CAVi makes decisions
based on its observations of the local sensors, such as cameras and lidars, and its commu-
nication with its neighbors, denoted as Ni

.
=
{

j
∣∣εi,j ∈ E, i 6= j

}
, to enhance the range of

perception. Considering that the decisions of N CAVs are interactive, the problem was
considered a fully cooperative multi-agent task, which was modeled as a partially observed
Markov decision process (POMDP). For the POMDP, each agent received a partial obser-
vation oi ∈ Oi from the global state s ∈ S. Based on the observation, the agents took joint
action, a1, a2, · · · , aN ∈ A from the action set A .

= ×i∈V Ai to interact with the environment
and receive a reward from all the agents R = {r1, r2, . . . , rN} : S× A1 × . . . AN → RN . The
goal was that the agents would attempt to learn an optimal joint policy πi : Oi → Ai to
maximize the expected return G = E

[
∑T

t=0 γtri
t

]
in the interaction with the environment,

where γ ∈ (0, 1] is the accumulated discount factor to quantify the importance of the
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future reward and T denotes the total steps of an episode. It can be defined by a tuple
(S, A, P, R, O, N, γ), where P denotes a state transition function.

Action: In this paper, the control system of the vehicle was split into two levels, the
high-level decision-making and the low-level controller, as depicted in Figure 2. According
to the local observation, the high-level decision-making selected an action in the action
space Ai defined as Ai = {hard acceleration, acceleration, idle, deceleration and hard deceleration}.
Then, based on the decision taken, the lower level controller, i.e., a PID controller, generated
the corresponding throttle signals to maneuver the CAV.
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Observation: The observation oi of the vehicle vi included the information required
to make decisions effectively. It was assumed that each vehicle could sense its state and
exchange information with its neighbors, which is denoted as Ni. The neighbors of a vehicle
were defined as the vehicles that were within Lc meters and with the potential of a collision,
i.e., a different priority on their respective routes. The observation oi was defined as a matrix
of b×W, where b denotes the upper bound of the number of its neighbors and W is the
number of features ci representing the state of a vehicle. Specifically, the observation feature
is defined as ci = [ispresent, x, y, vx, vy, h, ps]T , where ispresent is a binary flag denoting
whether a vehicle can be observable. x, y, vx, vy represent the absolute longitudinal position,
the lateral position, the longitudinal speed, and the lateral speed for the ego vehicle, while
the relative to the ego vehicle for observed vehicles; h denotes the heading; and ps represents
the priority of crossing the intersection. The entire state of the system is the Cartesian
product of the individual observation, that is, S = O1 ×O2 × · · · ×ON ..

Reward: The basic goals of a vehicle at the intersection include driving safely, crossing
the intersection, and reaching its target lane under the right of way rules and in a timely
manner. Several rewards are specified as follows.

(a) The occurrence of a collision is detected by the body circle model. It reduces the
vehicle to a circle with the center of the vehicle as the center and the diagonal of
the vehicle as the diameter. When two vehicles are tangent to each other, a collision
is considered to have occurred. The collision reward rc is defined to penalize the
occurrence of a collision and reward the successful pass, expressed as follows.

rc =


−1, if a collision happens,
1, if all CAVs pass successful,
0, otherwise

(2)

(b) For safety, the vehicle is penalized when the minimum time headway th with other
vehicles is less than desired time headway td. In this paper, td was set to 2 s. Our
study scenario was a mixed traffic scenario where the HDVs and CAVs coexisted. The
uncertain behavior of the HDVs prevented us from directly calculating the time to
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collision (TTC). Therefore, within a prediction horizon Th, all the vehicles’ trajectories
are predicted. The trajectories of the CAVs are predicted via the execution of the
current action, while the HDVs are estimated from the IDM model. At each step
of the prediction, the collision of vehicle i is detected according to the body circle
model. If a collision occurs at step t, the time headway th is determined according to
th = t/ f , where f represents the control frequency of the vehicle. When no collisions
are detected, rh is set to 1. Thus, the headway reward rh is defined as follows.

rh =

{
ln th

td
, if collisions are detected,

1, otherwise
. (3)

(c) To pass though the intersection safely and effectively, the speed should be considered
as appropriate and is punished too low. The speed reward is defined as follows.

rs = min
(

vt − vmin
vmax − vmin

, 1
)

, (4)

where vt, vmin, vmax are the current speed and the minimum and maximum speeds to
be rewarded.

(d) For the vehicle to make decisions under the rules demonstrated in Section 3.2 the rule
reward rr is set to 1 if the rule is obeyed, otherwise rr = −1.

Based on these definitions above, the total reward for the vi at time step t is defined
as follows.

ri
t = ωcrc + ωhrh + ωsrs + ωrrr, (5)

where ωc, ωs, ωh, and ωr are all weighting factors that account for each part of the reward.

4.2. Wighted Reward Assignment

In the fully cooperative MARL setting, each agent was provided with the same goal
and assigned the same reward after executing the action at every step. The same reward
can be represented by the average global reward as rt =

1
N ∑N

i=1 ri,t. However, the shared
rewards scheme is intricate in order to infer each vehicle’s contributions to the system
cooperation. Further, instead of embracing a global reward, a local reward assignment
strategy could alleviate the issue of the credit assignment problem. Specifically, each host
vehicle only focuses on its surrounding vehicles, which considerably impacts the smooth
interaction between the vehicles. Thus, the reward for the ego vehicle vi at the step t is
defined as follows.

ri,t =
1
|Ti|∑j∈Ti

rj,t, (6)

where Ti = i ∪ Ni is a set whose elements include the ego vehicle vi and its neighbor
vehicles and |·| represents the cardinality operator of the set. The local reward assignment
has two advantages. First, the communication burden can be reduced by focusing only on
the nearby vehicles, establishing a more real-time system. Second, the contribution of the
vehicles to their cooperation can be indicated more accurately.

Nevertheless, the regional reward assignment strategy still doesn’t accurately differ-
entiate between the contributions of each ego vehicle at different positions on the road.
Collisions are more likely to occur inside the intersection than outside it, meaning that a
vehicle closer to the intersection should be assigned more rewards, i.e., a weighted reward
assignment according to the vehicle’s position. A weight factor η was defined to measure
the contribution for crossing the intersection safely and efficiently, as shown in Equation (7).

ηi =
Ls − di

∑j∈Ti
(Ls − dj)

, (7)

where di denotes the distance from the vehicle vi not entering the intersection to the entrance
or from vi not exiting the intersection to the exit, and Ls is the length of the entrance or exit
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straight lane. When vi enters the intersection, di = 0. Thus, the reward for the ego vehicle
vi at the step t is as follows.

ri,t = ∑j∈Ti
ηirj,t. (8)

When a vehicle and its neighbors are in the intersection, Equation (8) will degenerate
to the local reward assignment strategy, i.e., Equation (6).

4.3. Cooperative Learning Algorithm for Multi-Agent Task

The MARL method was leveraged to deal with the unsignalized intersection manage-
ment due to the fact that it could produce an optimal policy through a continuous inter-
action with the traffic environment. A cooperative PPO-based decision-making method
(Attn-MAPPO) is proposed in this section, as shown in Figure 3. The algorithm was based
on a centralized training decentralized execution (CTDE) framework to reduce the environ-
mental instability; that is, all the information of the agents was utilized during training and
the agents only made decisions according to their own local observation after the training.
Specifically, after choosing the actions from the policy to interact with the environment, all
the vehicles executed them and reached a new state. Based on the new observation, an
attention module was used to aggregate the information from the neighbors of a vehicle.
Then, the output of the module was used to update the critic network. The critic network
evaluated the taken actions and the agent network was updated.
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In this paper, each vehicle could observe its neighbors and collect their state infor-
mation to make decisions. Although the relevant vehicle was selected as the focus, the
aggregated information was not the most valuable information. For example, the state
information of the neighbors which were more likely to collide required more attention.
The attention mechanism was introduced in this paper to selectively pay attention to the
neighbors’ observations.

More specifically, the structure of the attention representation is defined as Figure 4.
The relevant message from other vehicles, mi

t, is summed by assigning the attention weights
to the embedding of each agent, which is mathematically expressed as the following.

mi
t = ∑j 6=i α

i,j
t Wvej

t, (9)

where ej
t = f j(oi

t) is the embedding where a multi-layer perceptron (MLP) f j(·) is used as

the embedding function and Wv is a matrix to linearly transform ej
t into a “value”. The
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attention weight α
i,j
t between the vehicles i and j was calculated using a softmax function, as

shown in the following.

α
i,j
t =

exp(β
i,j
t )

∑j 6=i exp(β
i,j
t )

, (10)

β
i,j
t = Wqei

t · (Wkej
t)

T
, (11)

where β
i,j
t computes the correlation between the vehicles i and j, the matrix Wq linearly

transforms ei
t into a “query”, and Wk transforms ej

t into a “key”.
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In the cooperative multi-agent setting, each agent shared an actor network (i.e., policy)
and a critic network (i.e., policy evaluation), which were trained using the individual
trajectory (oi

t, ai
t, ri

t). The actor network was trained to maximize the expected return. Each
agent generated its action ai

t from the policy πθ based on its local observations oi
t (i.e.,

π(at
i

∣∣oi
t; θ) at the time slot t. The most valuable information which an attention representa-

tion aggregated from the neighbors of an agent was access to the input of the critic network.
An episodic setting was considered with each vehicle until a crash occurred or until it
proceeded T seconds. Our objective was to obtain the optimal joint policy that maximized
the accumulated reward.

The PPO algorithm based on the actor–critic framework was an improvement of the
policy gradient (PG) algorithm. The objective function of the PG algorithm is expressed as
the following.

∇J(θ) = E(st ,ot)∼πθ
[∇θ log πθ(at

∣∣∣st)Aπθ
(st, at)], (12)

where
Aπθ

(st, at) = Qπθ
(st, at)−Vφ(st) (13)

is an estimation of the advantage function at the step t and θ, φ are the parameters for
identifying the policy and state value functions, respectively.

By modifying the objective, the PPO constructs a clipped surrogate objective function
to confine the policy updates to a small scope of around 1. The objective and update
functions are illustrated as the following.

JPPO(θ) = E(oi
t ,a

i
t)∼πθold

[ψ(ρi
θ , Ai

t)], (14)
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θt+1 = θt + l∇θ JPPO(θ), (15)

where l is the learning rate and ρi
θ =

πθ(ai
t|oi

t)

πθold
(ai

t

∣∣∣oi
t)

specifies the probability ratio of the old and

new policies to select the action and

ψ(ρi
θ , Ai

t) = min(ρi
θ Ai

t, clip(ρi
θ , 1− ε, 1 + ε)Ai

t), (16)

where ε is the penalty factor to prevent the policy from changing extremely. When A ≥ 0,
the return for taking the action ai

t is greater than the expected observation oi
t. Therefore, the

updated policy should increase the probability of the action, but the increase amplitude
should be restrained to (1 + ε)πθold(ai

t
∣∣oi

t) . The opposite is true when A < 0.
To decrease the variance, the advantage function Aπθ

in Equation (13) is replaced by
the generalized advantage estimation (GAE), which is expressed as the following.

Âi
t = δi

t + ∑T
l=t+1 (γλ)l−tδi

l , (17)

where δi
t(γ) = ri

t + γVφ(oi
t+1)−Vφ(oi

t) is the TD error and λ is a factor that balances the
variance and bias of the estimation. When λ = 0, Âi

t = ri
t + γVφ(oi

t+1)−Vφ(oi
t), which is

unbiased with a high variance. The GAE achieves both a low bias and a low variance by
linearly integrating the n-step bootstrapping. The critic network Vφ(·) is updated using the
loss function as follows.

J(φ) = minE(oi
t ,a

i
t)∼πθold

[ri
t + γVφ(oi

t+1)−Vφ(oi
t)]

2
, (18)

φt+1 = φt + l∇φ J(φ). (19)

The whole pseudo-code for the proposed method is presented in Algorithm 1.

Algorithm 1: Attn-MAPPO

1: Initialize the actor network and target the actor network using the parameters θ and θ−;
2: Initialize the critic network and target the critic network using the parameters φ and φ−;
3: Initialize the memory buffer Di and hyper-parameters lr, τ, ε.
4: for episode = 1, . . . , M do
5: for t ≤ T and not terminal do
6: for i ∈ V do
7: Observe oi and select an action ai ∼ πθ− using the ε-greedy strategy.
8: All agents execute the actions and receive their own reward ri.
9: Store trajectories (oi, ai, ri) in Di.
10: end for
11: for i ∈ V do
12: Obtain the attention representation of each agent using Equation (9).
13: Update the critic network θ and the actor network θ using a randomly sampled

mini batch from Di in Equations (15) and (19), respectively.
14: Update the target networks:φ− = τφ + (1− τ)φ−, θ− = τθ + (1− τ)θ−.
15: end for
16: end for
17: Initialize Di ← ∅, and reset the environment.
18: end for

5. Results and Discussion

In this section, the proposed Attn-MAPPO algorithm was evaluated at the unsignal-
ized intersection on an open source platform, called highway-env [32]. A total of 30 episodes
of the evaluation for each contrast were executed using 30 various seeds. Two metrics
were used for the performance of the algorithm, namely the collision rate and the average
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speed. The collision rate was defined as the ratio of the number of episodes where the
collision occurred to the total number of the test episodes. The average speed was defined
as the average speed of all the vehicles in all the episodes. In the scenario, a straight lane
had a distance of Ls = 200 m, the right turn radius was 9 m, and the left turn radius was
13 m. The vehicle’s policy frequency was set to 5 Hz, i.e., the CAVs took an action every
0.2 s. The speed range of receiving a reward was [8,10] m/s. For the actions, the normal
acceleration and deceleration were to add or subtract 1.5 m/s from the current speed, as
the desired speed and the hard were 3 m/s. The PID algorithm was used as the low-level
controller to change the current speed to the expected speed. To avoid the excessive speed,
the maximum speed of CAVs was set to 10 m/s. The HDVs’ desired speed was set to
10 m/s. The communication range Lc was set to 120 m. The setting of the training process
was presented as follows. The model was evaluated every 20 episodes during the training.
ADAM was used as the optimizer and the learning rate was set to 8 × 10−5. The soft
update weighting factor τ was set to 0.001. The trade-off coefficient of the GAE λ was set to
0.95 and the discounting factor was set to 0.99.

5.1. Performance Comparison between the Proposed Attn-MAPPO Algorithm and the Benchmark

In this subsection, we compared the proposed Attn-MAPPO approach with the
MAPPO benchmarks [13]. The architecture was the same for both, but the Attn-MAPPO
used an attention mechanism to extract the most valuable information as the input for the
network. To validate the performance of the proposed Attn-MAPPO algorithm, two traffic
scenarios were set up with (1) two CAVs and three HDVs, and (2) four CAVs and five HDVs.
The first setting was simple due to the sparse traffic density, while the second was complex.
The comparison results of the episode reward in the training is illustrated in Figure 5. The
results showed that in the simple setting, namely with the two CAVs, three HDVs, both
the algorithms performed comparably but moderately better than the benchmark. Yet, as
the number of vehicles increased, the benchmark performance declined significantly and
the Attn-MAPPO algorithm showed a stronger performance. In the 30 tests, one collision
occurred using the proposed method and four collisions occurred using the benchmark
in the complex setting. Table 1 shows that for the proposed algorithm, the collision rate
could be considerably diminished in the complex traffic setting. This implies that the added
attention module was able to extract the critical information for decision-making, whereas
the benchmark did not have this capability.
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Table 1. Performance comparison between the benchmark and the proposed Attn-MAPPO
(proposed) algorithm.

Metrics
Algorithm and Settings

Benchmark +2C3H Benchmark +4C5H Attn-MAPPO +2C3H Attn-MAPPO +4C5H

Collision rate 0 0.13 0 0.03

Average speed (m/s) 10.08 8.77 9.91 8.95

5.2. Performance of the Proposed Reward Scheme Designs

In this paper, the setting of the reward mechanism had two main aspects. The first
was the design of the reward function and the second was the design of the reward
assignment scheme.

There were four components in the reward function, including the collision evaluation,
headway evaluation, speed evaluation, and rule evaluation. In order to validate the
effectiveness of the reward function for decision-making, we set up an intersection crossing
scenario. There were three vehicles in this scenario, where one HDV shown in blue was
going straight and two CAVs shown in green were turning left, denoted as CAV1 and CAV2,
respectively. In order to present the spatial relationship of the vehicles more intuitively, the
positions of the vehicles were represented by the distance from the stop line along their path,
rather than their world coordinates. The positions were negative when the vehicles crossed
the stop line. The position and speed curves of all the vehicles during the whole process
are shown in Figure 6. Figure 7 shows a sequence of the time slices for demonstrating the
inter-vehicle interaction. Apparently, all the vehicles crossed through the conflict zone
safely. As shown in Figure 6a, when there was no interaction between vehicles, they could
accelerate to the maximum speed of 10m/s to obtain a higher reward. In accordance with
the traffic rules introduced in Section 3.2, the vehicle going straight goes first, and the one
on the right has the right of way. Thereby, the passage sequence of the three vehicles was
HDV, CAV1, and CAV2, which was exactly what is shown in Figure 7. There were two
interactions during the crossing. CAV1 and the HDV first interacted in the same lane, where
CAV1 slowed down and pulled away from the HDV ahead of it. The second interaction
took place between the two CAVs. Since CAV2 should have crossed later than CAV1, CAV2
decelerated to make way at 12.4 s. All the above analyses demonstrated that the designed
reward function was qualified for the effective decision-making for the CAVs.
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To validate the performance of the proposed reward assignment scheme, the global
reward, local reward, and the proposed weighted reward scheme were used for the training
in the simple setting, i.e., the two CAVs and three HDVs. As many people are aware,
collisions are more likely to occur in the areas within the intersections than in the straight
lanes. When the system was penalized, the vehicle nearest the intersection should have
been assigned more penalties to help it execute the correct decision. The same went for
receiving a reward. The results are shown in Figure 8. As excepted, the results confirmed
that the proposed weighted assignment outperformed the other two assignment schemes.
Table 2 shows a clear improvement in the collision rates and the average speed metrics. This
was because the global reward was not an accurate representation of the contribution of a
CAV. Although the local reward improved on this, the reward could not be assigned based
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on an agent’s location. The weight reward assignment scheme assigned more rewards to
the vehicles closer to the intersection, which facilitated the cooperation between the agents.
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Table 2. Performance comparison using the different reward assignment schemes.

Metrics
Reward Assignment Scheme

Global Local Proposed

Collision rate 0. 07 0.03 0

Average Speed (m/s) 9.06 9.04 9.91

5.3. Performance Comparison of the Different Forward Predictive Horizons

Our research scenario was a mixed traffic scenario where the HDVs and CAVs coex-
isted. In this paper, the CAVs made decisions based on the predicted trajectories of all the
vehicles over time. To validate the impact of the different time horizon for predicting the
trajectories of all the vehicles, three settings were used for the training. The results are
shown in Figure 9 and the performance metrics are presented in Table 3. The results indi-
cated that a larger prediction time horizon did not imply a better performance. Although
a larger predictive time horizon could reduce the collision rate, it would significantly
reduce the metrics of the average speed. The performance depended on the design of the
headway evaluation in the reward function and the desired headway time, as introduced
in Section 4.1. The desired headway time td was set to 2 s during the training. When
Th = 1 s, even though the current headway time was less than td, the vehicle agent still
received a positive reward because no collision was detected within the predictive horizon.
This could easily result in the vehicle anticipating a collision when the brakes would not
be able to prevent a collision. Compared to Th = 3 s, the prediction horizon of Th = 5 s
was conservative for the decision-making of the vehicle. As long as the collision was not
detected within 3 s, the vehicle received a reward of one with a 3 s prediction horizon. In
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the case of Th = 5 s, the vehicle would be rewarded with the value of ln(5/2) < 1, even
though the collision was predicted at 5 s. This indicated that a suitable prediction time
horizon could achieve a better performance. Th = 3 s achieved a good trade-off between
the collision rate and the prediction efficiency.
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Table 3. Performance comparison for the different forward predictive horizons.

Metrics
Horizon Time

Th = 1 s Th = 3 s Th = 5 s

Collision rate 0.03 0 0

Average Speed (m/s) 9.10 9.91 8.67

5.4. Performance Comparison of the Proposed and Heuristic Rule-Based Algorithm

In this subsection, we verified the adaptability of our proposed algorithm by com-
paring it with the heuristic rule-based algorithm using the same scenario in Section 5.2.
The traditional ruled-based or model-based decision control approaches were capable of
generating stable decision results, accurate control curves, and were easy to implement.
For example, the vehicles coordination of negotiating the access in an intersection was
reformulated as a virtual platoon control problem in [9]. According to the passage se-
quence, the HDV acted as the leader and the two CAVs kept the desired following distance.
Figure 10 shows the results using a virtual platoon. The HDV traveled at the desired speed
of 10 m/s. CAV1 adjusted its speed to keep the desired distance from the HDV and CAV2
followed CAV1.
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Figure 10. The speed and position curves of all the vehicles in the ideal traffic using the heuristic
rule-based algorithm; (a) the speed, (b) the position.

Although the vehicles could cooperatively and efficiently cross the intersections under
the ideal traffic conditions using the heuristic rule-based model, some of the idealized
condition assumptions were difficult to satisfy in many cases. Generally speaking, the
traffic scenarios involving the HDVs were more complex and uncertain for the uncontrolled
human driving. For example, some drivers were conservative and traveled at a low speed
for fear of getting scratched in intersections. The speed and position curves of all the
vehicles when the HDV traveled at a low speed using a heuristic rule-based algorithm are
shown as Figure 11. In order to form a virtual platoon, the speed of both CAVs converged
to that of the leading HDV. Practically, the CAV2 was not in the same lane as the HDV, so it
did not need to keep up with the speed of the HDV, which could greatly enhance the road
efficiency. The results demonstrated that the heuristic rule-based approaches, while easy to
implement, were not adaptive to some special cases.
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A learning-based approach enabled more efficient decision-making. The results are
presented in Figure 12 using the proposed algorithm when the HDV traveled at a low
speed. Based on the trajectory prediction of the other vehicles, CAV2 predicted that the
slow speed of the HDV would not cause a collision. CAV2 made the decision to breaks
traffic rules and pass first, since the reward for following the traffic rules was smaller than
the penalty for crossing the intersection at a low speed. Thus, if no collision was predicted,
the HDV only affected the decision of CAV1 behind it in the same lane but not CAV2’s
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in other lane. As shown in Figure 12b, after the HDV crossed the stop line, that is, when
its position was less than 0, the CAV began to accelerate. This accounted for the fact that
the proposed approach could deal with some special cases, which were more adaptive
and generalized.
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6. Conclusions

In this paper, we modeled the decision-making at the intersection of the CAVs and
HDVs in coexistence as a model-free and fully cooperative multi-agent system. Based on
this, we presented the design of the observation, action, and reward functions to formulate
the cooperative decision-making as a MARL problem. Then, a decentralized MAPPO based
on the attention representations algorithm (Attn-MAPPO) was developed to make joint
decisions to avoid collisions and cross the intersection effectively. Finally, the policy was
trained and evaluated via an open source simulation platform. The results showed the
advantages of our proposed algorithm and the designed reward scheme. In addition, the
comparison of the results using the three prediction time horizons also suggested that a
suitable horizon could achieve a better performance. We compared the performance of the
Attn-MAPPO to an equivalent virtual platoon control, a heuristic rule-based method, which
indicated that the proposed approach could deal with some special cases more adaptively
and generically.

However, there were still some unsolved problems in this paper. The driving behavior
of the HDVs was modeled using the IDM model. In practice, more accurate models may be
needed. Moreover, the scalability of the algorithm needs to be improved, i.e., increasing
the number of CAVs. At the same time, in this paper, only the full cooperation between the
vehicles was considered. In fact, there was also a competition between the vehicles at the
intersection. In future works, we will pay more attention to these issues and continue to
expand from this study.
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