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Abstract: Orthodontic tooth movement is of interest to both the medical and the engineering commu-
nities. Recent studies focused their attention mainly on the stress distribution within the periodontal
ligament and the surrounding alveolar bone prior to the remodeling stage. Yet, although motion is
indeed triggered by the exerted stress distribution, these remodeling processes are the main driver
for significant (and permanent) tooth movements. Other studies attempted to provide such a holistic
mechanical model for both the stress distribution and the remodeling processes to describe the
movement of the tooth along an orthodontic treatment. Nevertheless, these methods are cumbersome
and slow to run, and therefore, are unlikely to provide a clinical decision support platform. This
paper aims to bridge this gap by providing a relaxed, simplified numerical model. The scheme is
described, and its limitations and main assumptions are stated. The model is then optimized to
accommodate clinical accuracy needs. Lastly, validation is provided by comparing the model to a
recent study, which demonstrates the good agreement between the model and actual real-world
clinical cases.
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1. Introduction

Orthodontic tooth movement (OTM) is initiated and controlled by mechanical stimuli
generated by forces applied on the crown of the tooth [1]. The forces are partially governed
by the periodontal ligament (PDL), which connects the teeth to the surrounding alveolar
bone and decreases the rigidity of the jaw [2]; thus, the stress–strain responses of teeth
and the PDL to orthodontic loading are of importance (i.e., for better understanding and
for improving orthodontic yield). OTM is governed by several factors, some of which
are not completely known for each patient, such as the PDL properties (i.e., thickness,
stiffness, etc.) [3]. The applied forces, if not sufficiently known [4], might result in clinical
side effects, such as uncontrolled tipping of the tooth or excessive stresses on the root apex
that may result in root resorption. Therefore, revealing the stress–strain responses of the
teeth, alveolar bone and PDL to orthodontic loading is of great importance in order to apply
optimal forces during treatment. It may also be beneficial for studies of new orthodontic
techniques, such as clear aligners [5]. Moreover, recent studies, such as [6], which suggest
the use of machine learning in orthodontics may benefit from an efficient OTM model, such
as the one suggested here.

The PDL width ranges from 0.15 to 0.38 mm and consists of 53–74% collagen fibers
(see [2,7]). The literature specifies a wide range of the PDL modulus of elasticity—some
suggest a range of 6–12 MPa [8]; however, most specify values of 0.6–1.2 Mpa [2,9–15].
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Moreover, it is worth mentioning that the modulus of elasticity is reported to be depen-
dent on the strain rate [16]. The PDL, as a soft tissue, has viscoelastic, inhomogeneous,
anisotropic and nonlinear properties [17], but is commonly approximated to have isotropic
behavior [9,12,18,19], and so we shall assume thus here.

The alveolar bone’s inner structure consists of an interconnected network of trabecular
rods and plates, while its outer shell presents with the more compact structure of a cortical
bone [7].

The biological process of orthodontic tooth movement includes three stages [20].
(1) The first is tooth movement within the dental alveolus, with no substantial deformation
upon the bone. (2) The second is a biological process, during which no movement takes
place. This stage is triggered when force is applied to the tooth and is completed after a
sufficient time period. (3) Once the second stage is completed, the last stage of the alveolar
bone remodeling begins, during which the bone is resorbed and formed, depending on the
nature of the stresses exerted upon it (i.e., compression or tension). The main portion of
tooth movement occurs during this stage.

In what follows, the biological stages are modeled first as an instantaneous tooth
elastic transformation, which aims to reduce the system’s total energy. This is followed by
an irreversible bone remodeling, which aims to reduce the (local) energy of each individual
PDL fiber (see Figure 1). Yet, note that at the end of this process, the total energy of the
system as a whole will not assume a minimum value.
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Sparse research results provide force magnitudes that were tested and produced good
treatment results [21]. For example, Lee [22] recommended the usage of an optimum force
of 150–260 gf with a range of applied stress of 165–185 gf/cm2 or a bit higher, and later on,
the same author [23] suggested an average stress of 197 gf/cm2 where a minimal 1500 µ

strain is required for the remodeling process to take place [17,24]. However, measuring
the pressure and strain in vivo in the microenvironments of the tissues involved in tooth
movements is still not applicable [3,7].

Due to the lack of rigor, orthodontists commonly classify the applied forces as light
forces or heavy forces (below or above 100 gf, respectively), which, from experience, are
known to produce different apparent results (e.g., sustained heavy force may result in an
increase in bone mass and/or structural rearrangement, while light forces will not [25]).

The bone resorption and formation processes are quite involved (e.g., the instants in
which these processes initiate are not fully known). Schepdeal et al. [13] noted that the bone
resorption process is faster than bone formation. For example, 2–3 weeks of resorption
may require 3 months of bone formation for replacement; however, since the orthodontic
movement is directed towards the resorption side, the movement rate is limited by the
bone resorption rate. The mechanics of tooth movement due to these forces is of interest to
the research and orthodontist communities, most of which rely on finite element methods
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(FEMs) for simulation purposes (cf. [3,11,12,19,26]). A somewhat different approach is
provided in [27], in which the authors suggest a simulation of the gingival surface mesh
instantaneous deformation in orthodontics by the Mass–Spring mesh model, where the
PDL tissue is represented by a triangular mesh of masses linked to its neighbors by springs
and dumpers, yielding a set of equations that may be numerically solved. Dot et al. [28]
offered a numerical model based on the FEM method derived from CBCT scans coupled
with intraoral scanner images.

Limbert et al. [29] developed constitutive laws for modeling PDLs using FEM based
on continuum fiber-reinforced composites theory and defined a transversely isotropic
nonlinear strain energy function. Yet, note that these studies focus their attention on the
intermediate stress distributions rather than the actual tooth movement, while a holistic
model of tooth movement should address the remodeling process, as well.

Initial attempts to address the entire OTM process was first made by Bourauel et al. in
1999 [30]. In their paper [30], the researchers tested the now well-established assumption
that deformations of the PDL are the key stimulus for orthodontic tooth movement (a
similar work was provided in [31]). Later on, Lee et al. [32] introduced a method that
monitors every stage of treatment by means of optical impressions to correlate their FEM
analysis with the clinically observed movements (cf. [33,34]). In 2021 Luchian et al. assessed
the effect of orthodontic load over the periodontium using the FEM approach [35]. To
simulate the remodeling process in each given instant, one is required to re-mesh the
alveolar bone model whenever reaching an intermediate equilibrium [3]. This approach is a
time-consuming procedure, on top of requiring an enormous number of model nodes. In a
more recent study [3], Hasegawa et al. aimed to overcome the time-consuming procedures
by applying an image-based voxel level set method on the infinitesimally translated tooth
(after remodeling) and used it as their new mesh model for their iterative procedure.

Here, a fast scheme is proposed for retrieving orthodontic tooth movement, using a
simplified spring model to calculate the intermediate stress distribution and the correspond-
ing tooth movement (translation and rotation). The remodeling process, during which
the developed stresses are relaxed, is also taken into consideration. This two-step process
is repeated until equilibrium is reached. By employing this approach, a computer-aided
design of long-term clinical treatments and their expected stress distributions at each step
can be facilitated. Furthermore, relevant research studies that attempted to provide a
numerical model for OTM are rarely validated against clinical data [28]; therefore, a brief
clinical validation will be provided in this study.

2. The Orthodontic Mathematical Model

Based on the behavior and the biological processes of the relevant tissues described in
Section 1, a numerical model to calculate the movement and stresses of the treated tooth
is formulated. In the proposed model, the PDL is considered isotropic [19]; in addition,
the spatial shape of the tooth is assumed to be known (e.g., by a CBCT scan). The PDL
properties (thickness and modulus of elasticity) can be estimated according to literature
data (Tables 1–3). Currently, the PDL thickness and shape can be determined directly by
applying the Hounsfield scale [36] according to a CT scan. However, it is expected that in
the future, CBCT scans, which are much more common, will improve, and their resolution
will suffice and enable one to extract the PDL thickness [37,38].

Table 1. Acceptable PDL thickness in literature.

Citation PDL Thickness [mm]

[39] 0.125–0.375

[7,10] 0.15–0.38

[9] 0.229

[40] 0.15–0.25

[3] 0.225, 0.5
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Table 2. Acceptable PDL range of strains or stresses in OTM. The maximal strains or stresses in the
remodeling stage are denoted by εM or σM. Beyond these values, significant pathological biological
processes may occur. These may require adjustments in the model, which is beyond the scope of this
research. The minimal strain εm required for the remodeling process to take place is considered in the
proposed model.

Citation εM or σM εm

[17] 3000µstrain 1000–1500µstrain

[7] 3000µstrain 1500µstrain

[41] - 1500µstrain

[12] 16 [KPa] -

Table 3. Acceptable PDL elasticity modulus and Poisson ratio values.

Citation PDL Young Modulus [MPa] PDL Poisson Ratio

[2,9–11,13–15] 0.66–0.69 0.45–0.49

[12] 1.18 0.45

[39] 44 0.49

[42] - 0.45

[8] 0.5 -

[35] 0.71 0.4

[3] 0.17 0.4

[43] 0.1–0.3 (shear modulus) -

2.1. Instantaneous Behavior of the PDL

The extracted tooth geometry is provided as a set of faces F (commonly in STL file
format). The PDL is modeled as a set of springs, each of which is connected to the center
of a tooth face, while its other end is anchored to the surface of the alveolar bone. The
system energy relaxes by changing the tooth position and orientation towards equilibrium
under the orthodontic force and PDL stress. Therefore, to calculate the PDL springs’ elastic
energy, one should be provided with the tooth shape. Each spring i ∈ I, positioned on the
ith face Fi ∈ F , is given two mechanical coefficients: a linear stiffness coefficient k`i

and
a shear stiffness kSi ; both are normalized to the relative area Ai they occupy. The latter
is introduced to define the relaxed spring configuration as normal to its associated face.
Following the conclusions of [9], one sets the ith spring to be normal to the ith face area.
Recalling that the PDL is assumed to be isotropic tissue having a Poisson ratio of ν = 0.45
(Table 3), the isotropic assumption also implies the connection G = E/(2 + 2ν) [44], from
which one can extract a connection between the kSi and k`i

values.
Moreover, as the PDL tissue is thin (∼ 0.3 mm), a single layer of springs will suffice to

model it, as depicted in Figure 2. As expected, the shear strain in all our simulation studies
did not exceed 4o, so the small-angle assumption holds. The orthodontic appliances are
also modeled as springs (as in most cases, they are indeed springs).

To account for the six-dimensional tooth movements (three-dimensional translations
and three-dimensional rotations), all calculations were conducted in the configuration
space. To do so, define the elastic energy of a tooth configuration c ∈ C as the sum of all
(PDL) springs’ energies and those of the external orthodontic springs:

Utot = ∑ UPDL
i + ∑ Uext

j (1)
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where the energy of the ith PDL spring is given by:

UPDL
i =

k`i
∆`2

i
2

+
∫ θi

0
Midθ (2)
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Figure 2. PDL model: A single spring block occupying a portion of the tooth surface (lower end) is
anchored to the alveolar bone (upper end). Each block is comprised of paired linear and torsional
springs (left). The springs undergo both linear `i − `0 and shear tan(θi) deformations (right), where
`0 denotes the spring’s initial length.

The tensile stiffness coefficient k`i
is AiE/l0. In the second term, the integrand M is

the torque given by M = Fl cos θ. Since Fi = τi Ai and τi = Gtanθi, where G is the shear
modulus of the PDL, this implies that Mi = GAili sin θi. The change in length of the linear
spring is marked by ∆`i = `− `0, and θi denotes the angle between the spring and the
tooth face normal (see Figure 2). Obviously, the total energy Utot should be relaxed with
each incremental step so that it approaches a minimum value at equilibrium.

As indicated, the tooth configuration c is defined as the 6-vector:

C 3 c = (x, y, z|θx, θy, θz)

Describing the tooth’s centroid position, followed by its orientation, C indicates the
six-dimensional configuration space—the totality of the allowed tooth positions and orien-
tations. Apply the gradient descent method [45] to advance at each timestep m towards the
intermediate solution. In other words, one follows the gradient:

∇Utot =

(
∂

∂x
,

∂

∂y
,

∂

∂z
,

∂

∂θx
,

∂

∂θy
,

∂

∂θz

)
Utot

and applies:
cm+1 = cm − ε∇Utot (3)

at each timestep. Here, ε is a predetermined coefficient that ensures an efficient algorithm
convergence. Note that Equation (1) only has a single minimum with respect to ∆`i and
tanθi for all i ∈ I since θi has a limited range. This is so because the PDL fibers are bound
to the free space above the tooth surface.

Figure 3 illustrates such a movement due to an orthodontic force where remodeling
behavior was disabled. Note that for display purposes, the PDL is set tissue with excessive
thickness located only on the top apex of the tooth, and the orthodontic force is exaggerated.
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start position of the tooth is overlayed (green).

During the energy reduction process, springs that exceeded the edge of the alveolar
bone due to tooth movement were removed. This corresponds to a situation where PDL
fibers are severely damaged.

Lastly, it should be noted that throughout this paper, it is assumed that the boundary
of the alveolar bone is a plane (depicted in Figure 10 as a mesh). Although it is believed
that this is sufficient, future work will examine the importance of applying a curved surface
based on the exact shape of the gums, which may result in more accurate outcomes.

PDL Compression Constraints

A physically sound model for OTM may be that while the PDL is overloaded, it
undergoes a strain-hardening process as the alveolar bone alters its elasticity, and as a
result, bone remodeling takes place [3]. Here, a simplified approach is considered, where
each spring is limited to its elastic linear behavior, with a maximal allowed strain limit.
It should be noted, though, that this is merely a simplified model since tissue damage
processes in the biological PDL are likely to occur in cases, which exceeds this limit.
Nevertheless, the simulation bone remodeling relaxes the PDL; hence, this limit hardly
takes place throughout the OTM simulation, and when it does, it is only local.

Recall that the PDL tissue can be compressed up to a given limit, beyond which the
resistance of the tissue becomes large enough to prevent further elastic movement. This is
modeled by applying a minimal length constraint of the spring’s projection on the normal
ni of the tooth face Fi. Marking the associated spring vector by si, this may be formalized
as the inequality:

n̂i · ŝi ≥ ri (4)

where `i is the spring’s relaxed length, and ri is the minimal ratio for each i ∈ I. A fixed
value ri = 0.4 was set for all i ∈ I to prevent the PDL tissue thickness from dropping below
40% of the original thickness (see Figure 2). To account for the set of constraints for all
i ∈ I upon violation, the six-dimensional movement of the tooth should agree with the
constraint (negative) gradients.

Specifically, if a spring i ∈ I is over-compressed, the corresponding constraint is added
to the lists of the “currently active” constraints. The final trajectory is determined as the
product of the tooth movement trajectory, which reduces the overall energy (Equation (1)),
and the null space to the list of constraints. The result is a tooth movement, which corre-
sponds to a path in C that “crawls” over the set of currently active constraints [46].

The set of constraints may be formalized as a matrix Cr×6, with r the number of
over-compressed springs. Since each constraint reduces the dimension of the preliminary
movement trajectory by 1, the remaining trajectory dimension is 6− dim(Cr×6). Therefore,
whenever six springs or more are over-compressed, no movement is allowed.

In this situation, the remodeling step should be applied. This reflects a biological stage
where tissue cannot be further compressed, and the bone resorption stage is triggered. This
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almost completes the model for the instantaneous spatial movement of the tooth. Next, we
introduce the shear stiffness to account for the remodeling process.

Since the remodeling process relaxes the PDL springs, the highest mean stress values
averaged over the tooth surface are typically introduced just before the remodeling pro-
cess starts. However, the maximum stress over the tooth surface often appears after the
remodeling process begins.

2.2. Remodeling Process

The remodeling process is modeled as the anchorage displacement of the springs. For
example, the ith pair of springs depicted in Figure 2, which is subjected to a strain, will
eventually result in a movement of the anchorage point when the remodeling process initi-
ates. The rate at which the repositioning of the ith-associated springs takes place depends

on the exerted strains εi =
∆`i
L and εsi = tan(θi), yielding the stresses σi = Eε =

k`i
∆`i

Ai
and

τi = Gtan(θi) =
kSi

tan(θi)

`i Ai
. Note that our model also applies when the tooth undergoes

pure rotation. For clarity, recall that the remodeling stage initiates when no instantaneous
movement can be applied. Resorption refers to the case where the PDL springs’ length
changes towards their neutral length, removing bone tissue, while formation refers to the
case where the PDL springs shorten. Moreover, the remodeling process is not uniformly
distributed. In every instant, some PDL springs may undergo remodeling, while others
will not. Explicitly, remodeling occurs under the following stress criterion, which is directly
derived from the strains criterion:

σm < σi < σM (5)

For values above σM, the behavior of the PDL significantly differs, and thus, it is
beyond the scope of this study. σm is the corresponding stress that realizes the minimal
1500µstrain requirement (Table 1). Equation (6) describes the repositioning ∆si of the spring
anchorage in the alveolar bone due to the tensile stress.

∆si = ∆`ik`i
β` ŝi + tan(θi)βs

G(`0n̂i − `i ŝi)

`i ‖ `0n̂i − `i ŝi ‖
(6)

This encapsulates the fact that the spring anchoring point si aims to align back
(Figure 2). k`i

and kSi are the normal and shear coefficients of spring i, and θi is the angle
between the spring and the normal to i-th facet. The force-to-distance conversion coefficient
is denoted β` and is set to 1 for formation and to 4 for resorption, reflecting the acceptable
resorption and formation rates’ ratio. βs is 1 since tangent movement is symmetric in all
directions in the isotropic assumption. Equation (6) implies that the anchorage movement
rate is proportional to the stress applied upon the spring.

Apart from straining the PDL fibers in their longitudinal axes, the PDL has incom-
pressible qualities that should be accounted for in the model. The magnitude of the tangent
stress is calculated using the properties of the shear modulus for isotropic materials:

E
2(1 + ν)

= G =
Fs

A
cot(θi) (7)

Here, E, G and ν are the PDL modulus, shear modulus and Poisson ratio, respectively,
and recall Hooke’s law for shear stress τ = G tan θ. Therefore, the new position of the
spring’s anchorage is the accumulation of the movements due to strains in the PDL fibers’
directions and shear strains.

2.3. The Combined Orthodontic Process

As mentioned, orthodontic tooth movement is modeled as a sequence of instantaneous
tooth transformations and bone remodeling. However, tooth movement is an instant oc-
currence, while remodeling is a formation and resorption processes of the tissue requiring
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longer periods of time. With that said, for each iteration, one should first verify that the
equivalent forces applied by the orthodontic appliance and the PDL springs exceed a
minimal value that will result in non-negligible tooth movement (Table 2). Otherwise, if
the PDL springs’ compression/tension strains are above the predefined threshold, remod-
eling initiates (i.e., remodeling occurs once tooth movement reaches equilibrium). The
remodeling process continues reducing the PDL total energy, while increasing the overall
energy, since the applied appliance and PDL equivalent forces are in different directions.
The process continues until the net generalized force vanishes, and the procedure ends (see
Algorithm 1). By trial and error the translation threshold is determined to be 10−4 times
the PDL thickness, where the angular threshold is tan−1

(
tooth mean radius

translation threshold

)
. The pseudo

code is provided below.

Algorithm 1: Tooth orthodontic movement pseudo-code

While Appliance connected do
If Orthodontic force—PDL springs not in equilibrium (threshold) then

Apply tooth movement
else if PDL springs not in equilibrium(threshold)

Apply remodeling
else

break loop
end if
if reached required movement then

Disconnect appliance (loop ends)
end if

end while

The stress distribution over the tooth, and, more specifically, on its root, is a valuable
piece of information for clinicians. This is so since, for example, when stresses exceed a
certain value, an undesirable side effect called the root resorption process may be triggered.
Following the above, the normal stress and shear stress are calculated at each time stamp
{(σnn, τns, τnt)}i∈I ; therefore, the “equivalent” von Mises stress [47] can be extracted:

σi,max =
√

σ2
nn + 3

(
τ2

ns + τ2
nt
)

It should be noted, though, that the rationale behind von Mises stress is based on the
premise that the material fails by shear strain, which, to the authors’ knowledge, is a claim
that has not yet been examined. Figure 10 depicts the von Mises stress distribution when
subjected to an orthodontic force compared to the applied torque. The von Mises stress
values presented are low due to the remodeling process.

3. Results

FEM models for OTM typically consist of > 1 M degrees of freedom (for example, [3]).
Here, since our entire model was specially designed for OTM analysis, we can make do
with much less. Specifically, since the actual PDL is comprised of short fibers, it suffices to
introduce only two springs normal to each tooth facet, as depicted in Figure 2, to model
its behavior. However, to accommodate clinical accuracy needs, a series of tests was
conducted. For this purpose, an upper canine was subjected to a 300 gf (2.94 N) load
with 26,608 facets, 6652 facets, 1662 facets and 830 facets calculated in the initial loading
stage before the remodeling process commences (see Figure 4). The model was then tested
under the same conditions where remodeling takes place until a 0.5 mm movement of the
coil anchorage point was obtained (Figure 6). Our results show that, qualitatively, these
choices exhibit very similar behavior. To quantify the differences, 32 experiments were
conducted, where the direction of the orthodontic load was varied from distal to mesial on
the vestibular plane, with an increment of 6◦ in each experiment. To solidify our conclusion,
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we followed the Bland–Altman method [48] to validate the results. The Bland–Altman
method is typically used to assess the agreement between two measurements that measure
the same quantity. It involves plotting the differences between the two measurements
against the average of the two measurements. Next, the mean difference and the limits of
agreement are calculated. The mean difference indicates the systematic bias between the
two measurements, while the limits of agreement provide information about the magnitude
of the random error.
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(c) 1662 facets and (d) 830 facets.

To implement this, a 100-bin histogram of the stress levels in each face resolution was
generated. The area of each face was then normalized, such that the total area of the PDL
faces was 1 in order to form an area distribution. Next, the histograms of the different
resolutions were compared to that of the 26,608-facet resolution case (the maximal one).
We also conducted a similar scenario with a 0.5 mm movement of the load anchorage on
the tooth, where the remodeling process was ongoing (Figure 6). This experiment was also
repeated 32 times for loads with the same orientations as described above.

The same process was repeated for a mandibular molar tooth that also includes a
concave surface (Figure 7). A load of 300 gf (2.94 N) was positioned at the mid-buccal
surface of models having 29,103 facets, 6834 facets, 1708 facets and 854 facets. The model
was simulated during the instantaneous movement, until the remodeling process takes
place (Figure 5).

The experiments of the canine and the molar tooth were repeated for a 0.5 mm
anchorage movement, where the remodeling process was ongoing (see Figures 6 and 7).
This experiment was also repeated 32 times.

One can conclude that 6652 facets suffices for the estimated requirement of 0.86%
(1.4 KPa) accuracy compared with the maximal stress values in the 26,608-facet resolution
for the canine case. For the molar case, 6834 facets suffice for a 2.1% (0.7 KPa) accuracy
compared to the 29,103-facet resolution in the molar case.
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Figure 7. Comparison of stresses and movement for various facet resolutions in mandibular right
molar after anchorage movement of 0.5 mm. Black arrows plotted using [49]. The red spiral represents
the external force.

Note that Figures 6 and 7 demonstrate significant differences between the stress levels
in the molar and canine teeth under the same load; this is due to the difference in the
surface area size of the teeth. Similarly, to compare pairs of resolutions, for example, (a)
and (b) in Figure 7, a Bland–Altman analysis was applied. Typical diagrams are provided
in Figure 8 for the cases of the 6652- and 6834-facet resolution for the canine and molar
cases, respectively.
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Figure 8. Bland–Altman plots of selected resolutions compared to the highest resolution. Values
provided in units of SD.

The Bland–Altman plots for the low-resolution cases still demonstrated a significant
agreement with regard to the highest one. As expected, lowering the number of facets
increases the error standard deviation, as demonstrated in Table 4.

Table 4. The 95% confidence level (1.96) standard deviation of the produced Bland–Altman plots for
lower resolutions. The benchmark resolutions are 26,608 facets for Canines and 29,103 for Molars.

Movement Type
Tooth & Resolution Canine 1662

[SD]
Canine 830

[SD]
Molar 1708

[SD]
Molar 854

[SD]

Instantaneous movement 0.006 0.0096 0.0064 0.0104

0.5 mm movement 0.0055 0.0102 0.0064 0.0090

For conciseness, our study continues with the 6652-facet canine resolution in the
following figures.

3.1. Validation
Intermediate Movement

The root surface of the simulated maxillary canine tooth is 2.64 cm2, and the average
root surface area is about 2.73 cm2 [19,50]. The Modulus of Elasticity was taken as 0.68 MPa
and the Shear Modulus G as 0.23 MPa. Applying these values implies that under a pulling
force of F = 2 N located at the tooth center of rotation (i.e., a point where applying an
orthodontic force will yield negligible rotation and mainly bodily movement), the mean
normal stress is expected to be ∼7.4 kPa, which is indeed the case when remodeling is
deactivated, and no tooth movement constraint is applied. Observe that some differences
are expected when the angle of the PDL springs is subject to a predefined limitation
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(preventing them from entering the tooth body). The produced values were in close
agreement with previous literature results published in [23].

To further validate the model, the results were compared to the study of Field et al.
(2009) [12]. In their study, they applied the finite element method to analyze the mechanical
responses due to orthodontic loading [12], which corresponds to our model when the
remodeling process is suppressed. Thus, we ran the spring model introduced in this paper
on the same scenario provided by Field et al. (2009) [12]. The results of our model and the
reference model are provided in Figure 9; the results seem to match well. Further observe
that as expected, both cases experience large strains in the alveolar crest and the apex.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 17 
 

For conciseness, our study continues with the 6652-facet canine resolution in the fol-

lowing figures. 

3.1. Validation 

Intermediate Movement 

The root surface of the simulated maxillary canine tooth is 2.64 cm2, and the average 

root surface area is about 2.73 cm2 [19,50]. The Modulus of Elasticity was taken as 0.68 

MPa and the Shear Modulus G as 0.23 MPa. Applying these values implies that under a 

pulling force of 𝐹 = 2 N located at the tooth center of rotation (i.e., a point where apply-

ing an orthodontic force will yield negligible rotation and mainly bodily movement), the 

mean normal stress is expected to be ∼ 7.4 kPa, which is indeed the case when remodeling 

is deactivated, and no tooth movement constraint is applied. Observe that some differ-

ences are expected when the angle of the PDL springs is subject to a predefined limitation 

(preventing them from entering the tooth body). The produced values were in close agree-

ment with previous literature results published in [23]. 

To further validate the model, the results were compared to the study of Field et al. 

(2009) [12]. In their study, they applied the finite element method to analyze the mechan-

ical responses due to orthodontic loading [12], which corresponds to our model when the 

remodeling process is suppressed. Thus, we ran the spring model introduced in this paper 

on the same scenario provided by Field et al. (2009) [12]. The results of our model and the 

reference model are provided in Figure 9; the results seem to match well. Further observe 

that as expected, both cases experience large strains in the alveolar crest and the apex. 

 

Figure 9. Comparison of equivalent strain [ESTRN] between a FEM study (a) by Field et al. [12] and 

(b) the proposed model. The colormap was adjusted to that used in [9] to allow convenient compar-

ison and the same PDL properties as in [9], that is, (𝐸 = 1.18 Mpa, 𝜈 = 0.45), the applied orthodontic 

force of 0.5 N (purple) was located at about the same location and angle as depicted in the reference. 

In both cases, the major strains are observed in the alveolar crest and the apex, as expected. Figure 

9a provided courtesy of Prof. Michael Swain. 

  

Figure 9. Comparison of equivalent strain [ESTRN] between a FEM study (a) by Field et al. [12]
and (b) the proposed model. The colormap was adjusted to that used in [9] to allow convenient
comparison and the same PDL properties as in [9], that is, (E = 1.18 Mpa, ν = 0.45), the applied
orthodontic force of 0.5 N (purple) was located at about the same location and angle as depicted
in the reference. In both cases, the major strains are observed in the alveolar crest and the apex, as
expected. Figure 9a provided courtesy of Prof. Michael Swain.

3.2. Remodeling Induced Movement

To validate the remodeling process, which is time-dependent and governed by a
biological growth process, a limited real-time comparison was conducted; the model was
implemented in MATLAB software on a 32 GB RAM Intel Core i7_9700 PC. A set of compar-
ison tests on two healthy subjects with a total of four buccally erupted canines was used as
clinical validation. The patients were 12 and 14 years old during a conventional orthodontic
treatment with an orthodontic rubber band procedure. The subjects participated in this
study after their legal guardians gave written informed consent, in accordance with the
Ariel University ethical committee.

The layout of the teeth was imaged before and after a stage of orthodontic treatment
(Figure 10). The applied initial force was 2.9 N, and the measured movement of the tooth
anchorage was approximately 4 mm, with a rotation angle of 0.045 rad. The simulated
movement of the tooth resulted in anchorage movement of 4 mm and a rotation angle of
0.0695 rad. The colors represent the von Mises stresses suggesting the highest values at the
alveolar crest.

The brackets were attached to the canines, and a stretched orthodontic rubber (Chain
plastic by American-Orthodontics, Sheboygan, WI, USA) was anchored to premolars;
the measurements confirmed no premolar movement during treatment. The mechan-
ical properties of the 0.6 mm thick orthodontic rubber were measured using a stress
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meter. Since the thickness of the bracket was 0.75 mm, the orthodontic appliance was
assumed to be anchored 0.75 + 0.3 = 1.05 mm away from the tooth. Our tests indicate
a translational accuracy of <0.1 mm and rotational accuracy of <1◦, which are below our
measurement capabilities.
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Figure 10. Comparison between a clinical case of orthodontic treatment conducted by one author
and a model simulation (a,b). The clinical case before (a) and after treatment (b). The model at its
initial configuration displaying the (von Mises) stresses before significant movement (c) and at the
end of treatment, with an overlay of the original tooth position displayed in white (d). The gingival
surface is displayed as a red mesh and the orthodontic appliance as a red coil. The applied initial
force was 2.9 N, and the measured movement of the orthodontic tooth anchorage was approximately
4 mm. The anchorage is at the tooth power chain connection in (a,b) and at the edge of the red coil in
(c,d). The tooth rotation angle was 0.045 rad.

For validating the model, it was compared to the clinical OTM cases of 4 canines in a
pair of 12- and 14-year-old males, and the initial and final configurations were compared:
the translation differences were negligible. In addition, the following differences in rotations
were observed (rotation was measured around the camera view axis).

• Patient 1: Upper right canine—Clinical observed rotation: 6.88 [deg], Model observed
rotation: 5.46 [deg], resulting in 1.42 [deg] of difference.

• Patient 1: Upper left canine—Clinical observed rotation: 2.61 [deg], Model observed
rotation: 3.98 [deg], resulting in 1.37 [deg] of difference.

• Patient 2: Upper right canine—Clinical observed rotation: 4.01 [deg], Model observed
rotation: 6.62 [deg], resulting in 2.21 [deg] of difference.
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• Patient 2: Upper left canine—As the image taken did not allow accurate measuring
of the rotation, we compared the orthodontic anchorage vertical Z-axis movement to
measure our model’s accuracy, which was measured at 0.1 [mm] in the clinical case,
whereas in our numeric model, 0.31 [mm] was measured.

4. Discussion and Limitations

Throughout the paper, an isotropic PDL is assumed [18], and the orthodontic force
was modeled as having a constant modulus of elasticity (cf. [51]).

Under these assumptions, it was noted that the von Mises stresses grow after the
remodeling process is initiated. This is so as the tooth continues to move. Our results indi-
cate that the remodeling process decreases the normal stress, allowing the tooth to further
move; this can increase the shear stress faster than the relaxation rate. After a significant
movement, the accumulated relaxation of the remodeling process compensates for the
increased shear stress, resulting in the overall von Mises stress decrease. Figures 6 and 7
suggests that after a significant remodeling process occurs, the main contributors to the von
Mises stresses’ distribution are the shear stresses since the remodeling process relaxes the
normal stress faster than it relaxes the shear stresses. This claim should be further examined;
as the PDL is not an isotropic material, this may also imply updating Equation (6).

The importance of this study lies beyond that of engineering: as the algorithm pro-
vided here is rather fast (for example, calculating Figure 9 took five minutes on a MAT-
LAB platform), one can create a “motion planning” algorithm to optimize the treatment
time/forces applied, etc. [52]. In this regard, although there are studies in the field of
biology, it is unknown to science what exactly governs the time duration of the remodeling
process (this may depend, for example, on the exerted stress, the extent of the movement
and the biological state of the tissue). Therefore, the time duration of each remodeling
iteration in our scheme is obviously unknown. Nevertheless, having the model in hand,
one may calibrate the time axis of the model by a set of controlled clinical OTMs.

It is worth noting that the current model can be utilized to address similar cases
involving other teeth that are anchored using miniscrew-guided mechanics, while taking
into account various diameters [53] and lengths [54]. In the general case, the forces applied
on a treated tooth by neighboring teeth should be incorporated; we shall consider this
in future work. The effect of both surrounding tissues—other teeth and bone—could be
modeled by the same method under different conditions, as both could be calculated by the
stresses of the PDL springs introduced. Lastly, a set of clinical conclusions may be derived
from our method, for example, that when a tooth is vertically loaded (extrusion), the
resulting stresses are lower than in the case where horizontal forces of the same magnitude
are applied. This will be the focus of our future work.

5. Conclusions

We introduced a twofold model that includes the tooth’s intermediate movement
and the movement due to the biological growth of the loaded tissues (the remodeling
processes). Although many studies that concern the former process are available in the
literature, as it is well known to the orthodontic community, the lion’s share of orthodontic
tooth movement lies in remodeling, thus, the importance of this study. A set of experi-
ments was carried out to validate our model and showed that it follows previous studies
regarding the intermediate movement. Furthermore, a real-time in vivo clinical comparison
demonstrated sufficient agreement with our model (approximately 2 [deg] and 0.3 [mm]
errors), which indicates that the remodeling process is captured well by our scheme. The
spring model introduced here is specifically designed to capture PDL tissue behavior and,
therefore, reduces the required computational resources compared to available models
in the literature. To examine this, a set of simulations under different resolutions was
performed, and using Bland–Altman analysis, demonstrated that relatively low resolutions
may indeed suffice.
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