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Abstract: The typical hypothesis testing issue in statistical analysis is determining whether a pattern
is significantly associated with a specific class label. This usually leads to highly challenging multiple-
hypothesis testing problems in big data mining scenarios, as millions or billions of hypothesis tests in
large-scale exploratory data analysis can result in a large number of false positive results. The per-
mutation testing-based FWER control method (PFWER) is theoretically effective in dealing with
multiple hypothesis testing issues. In reality, however, this theoretical approach confronts a serious
computational efficiency problem. It takes an extremely long time to compute an appropriate FWER
false positive control threshold using PFWER, which is almost impossible to achieve in a reasonable
amount of time using human effort on medium- or large-scale data. Although some methods for
improving the efficiency of the FWER false positive control threshold calculation have been proposed,
most of them are stand-alone, and there is still a lot of space for efficiency improvement. To address
this problem, this paper proposes a distributed PFWER false-positive threshold calculation method
for large-scale data. The computational effectiveness increases significantly when compared to the
current approaches. The FP-growth algorithm is used first for pattern mining, and the mining process
reduces the computation of invalid patterns by using pruning operations and index optimization for
merging patterns with index transactions. The distributed computing technique is introduced on this
basis, and the constructed FP tree is decomposed into a set of subtrees, each corresponding to a sub-
task. All subtrees (subtasks) are distributed to different computing nodes. Each node independently
calculates the local significance threshold according to the designated subtasks. Finally, all local
results are aggregated to compute the FWER false positive control threshold, which is completely
consistent with the theoretical result. A series of experimental findings on 11 real-world datasets
demonstrate that the distributed algorithm proposed in this paper can significantly improve the
computation efficiency of PFWER while ensuring its theoretical accuracy.

Keywords: false positives; data mining; significance threshold; distributed computing

1. Introduction

In statistical analysis, we often need to test whether a pattern is significantly associated
with a given class label, which is the classical hypothesis testing problem [1]. We frequently
need to conduct this task on large datasets due to the increasing data size. For example,
detecting whether a certain genetic pattern in massive bioinformatics data is significantly
associated with a certain disease [2], focusing on whether a certain user behavior pattern is
significantly associated with the sale of a certain item in massive market shopping data,
etc. [3]. This raises a challenging issue of multiple hypothesis testing because millions or
billions of hypothesis tests in large-scale exploratory data analysis can result in many false
positives, resulting in a substantial waste of resources [4].

The FWER control method based on permutation testing (PFWER) has been the-
oretically shown to be an effective method for mitigating multiple hypothesis testing
problems [5,6]. Compared with traditional FWER control methods (e.g., Bonferroni correc-
tion [7], the SRB algorithm [8], the Simes algorithm [9], Hochbeg [10], etc.), it has received
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much attention for its ability to control the overall probability of false positives at a lower
level without assuming independent identical distributions. The PFWER control method is
based on the principle of perturbing the class labels in the original data and then perform-
ing a certain number of random combinations and recalculating the significance threshold
(i.e., p-value) that satisfies the FWER constraint [11]. The p-values corrected by the PFWER
control technique can better control the false positives of the overall results in a more
realistic scenario because the initial association of class labels with datasets is randomly
perturbed. (i.e., where the assumption of an independent identical distribution between
variables is not required).

Although the PFWER control method can theoretically produce more reasonable
FWER thresholds, it is highly computationally intensive. Each class label permutation
requires the calculation of the corresponding p-value for all patterns embedded in the
data (typically in the order of the original data size), and the selection of the smallest
p-value among them, and the same process is typically repeated 1000 to 10,000 times [11,12].
The FastWY algorithm [13] exploits the inherent properties of discrete test statistics and
successfully reduces the computational burden of the Westfall–Young permutation-based
procedure. The Westfall–Young Light algorithm [5] is based on an incremental search
strategy where the enumerated frequent patterns are computed only once. Several orders
of magnitude in the p-value pre-computation reduce the corresponding running time of the
p-value computation task. These PFWER control methods, however, are all single-machine
algorithms, and there is still space for significant efficiency improvements.

To address the aforementioned problem, a distributed FWER false positive threshold
calculation method for large-scale data is proposed in this article. The computational effi-
ciency is greatly improved when compared to current methods. The FP-growth algorithm
is used first for pattern mining, and the mining process lowers the computation of invalid
patterns by merging patterns with index transactions via pruning operations and index
optimization. On this basis, the concept of distributed computing is introduced, and the
constructed FP tree is decomposed into a set of subtrees, each of which corresponds to
a subtask, and all subtrees (subtasks) are distributed to different computing nodes, each
of which independently computes the local significance threshold based on the assigned
subtasks. Finally, the results of all nodes’ local computations are aggregated, and the FWER
false positive control thresholds that are completely consistent with the theoretical results
are calculated.

The main contributions of this paper are as follows.

(1) A distributed PFWER false positive control algorithm is proposed. Based on the proof
that the threshold calculation task is decomposable, the PFWER false-positive control
threshold calculation problem on large data is extended to a distributed solvable
problem through task decomposition and the merging of local results. Theoretical
analysis and experimental findings indicate that the algorithm outperforms similar
algorithms in terms of execution efficiency.

(2) An FP tree with an index structure and a pruning strategy is proposed. The prun-
ing strategy can reduce the number of condition trees constructed, and the index
structure can reduce the computation of redundant patterns in FP tree construction.
The experimental findings show that the two strategies can significantly reduce the
number of traversals of the dataset and the pattern computation overhead, which
greatly improves computational efficiency.

The paper is structured as follows: Section 2 is an introduction to the relevant concepts
and techniques. Section 3 introduces the distributed PFWER false positive control algorithm.
Section 4 tests the correctness and computational efficiency of the distributed PFWER false
positive control algorithm through experiments and provides a theoretical analysis of the
experimental results. Section 5 concludes the paper and discusses the focus of future work.
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2. Related Concepts and Techniques

The main purpose of false positive control is to correct for multiple hypothesis testing
to reduce the occurrence of errors in multiple hypothesis testing, which has a wide range of
applications in both scientific research and practical production life. With the continuous
improvement of technology, a large amount of data has been generated. The correction
of multiple hypothesis testing in the era of big data has become the focus of more and
more researchers and companies. This chapter introduces the concepts of hypothesis
testing, multiple hypothesis testing, false positives, and p-value calculation. Next, three
false positive control methods are introduced, namely the direct adjustment method, the
replacement-based method, and the retention method. Finally, several popular distributed
computing frameworks at this stage are introduced.

2.1. Concepts Related to False Positives
2.1.1. Hypothesis Testing

In statistics, hypothesis testing is a method of inferring the total from the sample based
on certain hypotheses. Hypothesis testing begins with the formulation of the hypothesis
to be tested based on the idea of the counterfactual method and the calculation of the
probability that the hypothesis holds using appropriate statistical methods, applying the
principle of small probability. The specific implementation steps of hypothesis testing
are as follows, first, establishing the null hypothesis H0 and the alternative hypothesis
H1. The null hypothesis is usually set as the hypothesis that is opposite to the conclusion
the researcher wants to draw, and the null hypothesis is the hypothesis to be tested.
The alternative hypothesis is usually the conclusion that the researcher wants to reach.
Next, the appropriate method is chosen to calculate the statistic for the test. Next, the
magnitude of the probability, p, that the null hypothesis is true is calculated based on the
magnitude of the statistic. If p > α, then the null hypothesis H0 is not rejected. Otherwise,
the null hypothesis H0 is rejected and the alternative hypothesis H1 is accepted, where α is
referred to as the significant level. Researchers usually set the significance level to 0.05 in a
one-tailed hypothesis test.

Hypothesis testing is a statistical judgment based on “small probability events”. The oc-
currence or non-occurrence of a particular type of event depends on the sample of events
selected and the level of significance chosen. Since the sample is random and the selected
significance level α is different, the results of the test may differ from the real situation, so
the hypothesis test may be incorrect. Errors that occur in hypothesis testing are generally
classified into two categories [14,15] and Type I errors [16] are those that reject the null
hypothesis H0 when the null hypothesis H0 is correct and then commit the error of rejecting
the true null hypothesis. The second type of error is accepting the false null hypothesis
H0 when the null hypothesis H0 is false. Hopefully, the probability of both of these errors
occurring during hypothesis testing is relatively small, but when determining the sample
size, it is not possible to reduce the probability of both of these errors at the same time. That
is, if the probability of one error decreases, then the probability of the other error increases.
To solve this problem, the only way to reduce the probability of both types of error is to
increase the number of data to be tested. Therefore, for a given amount of data to be tested,
the probability of only one type of error can be controlled.

2.1.2. Multiple Hypothesis Testing

Hypothesis testing can solve the single hypothesis testing problem, but in the era
of big data, the amount of data involved is huge, and hypothesis testing is no longer
sufficient to deal with such a huge amount of data. Therefore, multiple hypothesis testing
is used in order to satisfy the problem of dealing with large-scale data [17,18]. Multiple
hypothesis testing is an effective method for calculating large-scale statistical inference
problems. It takes all the individual hypothesis tests proposed in the sample as a whole,
i.e., a test cluster, and tests each hypothesis in the test cluster simultaneously. For example,
n hypotheses {H1, H2, . . . , Hn} can be proposed in a given sample and each re-evaluation
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of the hypothesis test commits the first I type of error, and the first II class error; for each
heavy hypothesis test, the summary of the results can be obtained as shown in Table 1.

Table 1. N-hypothesis test result table.

Do Not Reject H0 Reject H0 Total

Original hypothesis H0 is true U V n0
Original hypothesis H0 is false T S n-n0

Total n-R R n

As shown in Table 1, the results calculated in the n-weight hypothesis test are obtained
in four cases, denoted by U, V, T, and S, respectively. The meaning of R in the table is the
number of rejections of the null hypothesis H0. The number of correct rejections of the null
hypothesis H0 is S, the number of correct acceptances of the null hypothesis H0 is U, the
number of committing the I type errors (false positives) is V, and the number of II type
errors (false negatives) is T. Similar to the single hypothesis testing, the false positive error
of the I type in the process of multiple hypothesis testing can cause incalculable harm to
daily applications and subsequent scientific research, so this paper focuses on multiple
hypothesis testing in the false positive control problem. In Table 1, the number of false
positive errors committed in n-fold hypothesis testing is V. In order to reduce the harm
caused by the false positive phenomenon to daily applications and subsequent scientific
research, it is necessary to control the false positive phenomenon, i.e., to reduce the number
of false positive errors V.

In multiple hypothesis tests, as in a single hypothesis test controlling for p ≤ α, even
though α is a small value, it can lead to an overall significant level that is too high after the
multiple hypothesis tests, resulting in a large number of false positives. For example, if
the significant level in an n-weight hypothesis test is α, then the number of false positives
generated in that n-weight hypothesis test is nα, and if n is very large, nα will also become
very large, which will generate a large number of false positives. Therefore, it is necessary
to correct for multiple hypothesis tests to reduce the occurrence of false positives.

The FWER (family-wise error rate) is the probability of making at least one false
positive error in an n-fold hypothesis test. The use of the cluster error rate is the more
commonly used control method for multiple hypothesis testing. The commonly used
methods for correcting FWER are the Bonferroni correction method [7], the step-down
algorithm [9], and the step-up algorithm [10].

The FDR (false discovery rate) [19] indicates the number of false positives as a pro-
portion of the rejected null hypothesis. The FDR method relaxes the control of false
positives compared to the above methods but can significantly improve the power. The com-
monly used methods for FDR correction are the BH method [19], ABH method [20], TST
method [21], etc.

2.1.3. False Positive

A false positive is the testing of a result that, for various reasons, does not have positive
characteristics as a positive result for various reasons. In statistics, it refers to the I type of
error in hypothesis testing, where the null hypothesis H0 was originally correct, but after a
series of calculations, the conclusion that H0 was wrong was rejected, while the alternative
hypothesis H1 (the result expected by the researcher) was incorrectly accepted. When the
alternative hypothesis H1 was chosen as the conclusion, a positive result was obtained.
If the null hypothesis H0 is chosen as the conclusion, a negative result is obtained, and a
false positive is the incorrect acceptance of the alternative hypothesis H1. The probability of
making this type of error does not exceed α. To illustrate a false positive error with a simple
example, a man goes to a hospital for a physical examination, and the doctor reads the
physical report and tells the patient congratulations on being pregnant. The null hypothesis
H0 in this example is that the patient is not pregnant, and the alternative hypothesis H1
is that the patient is pregnant. In the case where the patient is not pregnant, i.e., the null
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hypothesis is true, the report shows that the patient is pregnant, which means that the
alternative hypothesis is true and the alternative hypothesis is false. This is clearly a false
positive error. It is also clear from the above example that making false positive errors
in hypothesis testing causes incalculable damage to routine applications and subsequent
scientific studies by reporting to the researcher a phenomenon that does not exist at all.

2.1.4. Calculation of p-Value

Parametric tests make assumptions about the parameters, and nonparametric tests
make assumptions about the overall distribution. Since the overall distribution is assumed
to be unknown in the efficient control of false positive experiments in large datasets,
nonparametric tests are used [22,23]. Commonly used methods are the Barnard Exact Test
and the Fisher Exact Test, and these two tests are described separately below.

(1) Fisher’s exact test

Fisher’s exact test [24,25] is a method used to analyze the statistical significance of a
column-linked table. It is based on the hypergeometric distribution and is usually used
to test the association between two categories. Fisher’s exact test can be used to analyze
and verify whether the row variables are associated with the column variables in the 2× 2
column linkage table. The null hypothesis H0 established by Fisher’s exact test in the
2× 2 column association table is that there is no association between the row and column
variables. Now we need a method to calculate the cumulative probability p, and reject the
null hypothesis if p ≤ α. Where pi conforms to the hypergeometric distribution, as shown
in Equation (1).

pi =

(
a + b

a

)(
c + d

c

)
/
(

n
a + c

)
=

(
a + b

b

)(
c + d

d

)
/
(

n
b + d

)
(1)

One of the methods of Fisher’s exact test, the SF algorithm, can be divided into a
one-sided test and a two-sided test, and the one-sided test is divided into a left-sided test
and a right-sided test. Using a0 to denote the number of frequencies shown in the current
table, the probability from the left-hand side test is shown in Equation (2). The probability
from the right test is shown in Equation (3). The two-sided test is the probability of p0 when
the probability is less than or equal to a = a0, then the probability of Fisher’s two-sided test
is shown in Equation (4).

p = ∑a≤a0
pi (2)

p = ∑a≥a0
pi (3)

p = ∑ pi < p0 (4)

The above formula uses a 2× 2 column table, as shown in Table 2.

Table 2. 2× 2 contingency table.

B1 B2 Total

A1 a b a + b
A2 c d c + d

Total a + c b + d n

(2) Barnard’s exact test

Barnard’s exact test is an unconditional test [26], which is implemented by assuming
that the observed frequency of the hypothesis to be tested in the real dataset is a random
variable. Therefore, the unconditional test also needs to take into account the frequency
of the pattern before assessing the association between the hypothesis and the label and
the different scenarios that occur in the real dataset. The p-value of the unconditional
test requires artificial exploration of the space of possible values to obtain perturbation
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parameters that describe the unknown in the process of generating the database. Barnard’s
exact test can also be used to analyze the relationship between the ranks of the 2× 2 column
association table, which will be followed here using Table 2. To calculate the p-values for
the exact Barnard’s test, it is first necessary to introduce the concept of the perturbation
parameter π ∈ [0, 1]. Let x = a + c find the p-value according to the 2× 2 column table, as
shown in Equation (5). For all y ∈ [0, n] and fixed perturbation parameters π, π ∈ [0, 1],
the Barnard exact test probability is found, as shown in Equation (6).

p(x, c|π) =

(
c + d
x− a

)(
a + b

a

)
πx(1− π)(n−x) (5)

p(y, ε, π) = ∑
(x,a)∈{(x,a)|p(x,a|π)≤p(y,ε|π)}

p(x, a|π) (6)

The Barnard exact test must eliminate the dependence on the nuisance parameter π
when calculating the actual p-value, but the computational effort required to eliminate the
dependence on the nuisance parameter π is large.

Comparing Fisher’s exact test and Barnard’s exact test, two nonparametric test meth-
ods for calculating p-values according to the 2× 2 column table, it is found that Barnard’s
exact test needs to use an unknown perturbation parameter in the calculation process
for subsequent calculation, which is more complicated than Fisher’s exact test, and the
difference between the two calculation accuracies is not significant, so this paper will use
Fisher’s exact test for subsequent p-value calculation.

2.2. False Positive Control-Related Methods

False positive control methods for multiple hypothesis testing can be broadly classified
into two categories: FWER control methods and FDR control methods. FWER control
methods are more stringent than FDR control methods, and FDR control methods will
achieve better efficacy than FWER control methods. Therefore, for multiplex problems that
require strict control of the number of false positives, the FWER control method is required.
For a multiple testing problem in an exploratory study, the FDR control method is preferred.
After further problem analysis from the perspective of hypothesis testing, this paper will
use two types of labels W1, W0 to denote the “range” of parameters, since “hypothesis” is
a kind of virtual determination of the range to which the real parameters belong. Since
“hypothesis” is a virtual determination of the range of the real parameters, then the null
hypothesis H0 can be regarded as the range of the real parameters belonging to the label
W1, and the alternative hypothesis H1 can be regarded as the range of the real parameters
belonging to the label W0. In this paper, we will choose the transaction dataset as the real
parameter, and obviously, the null hypothesis H0 becomes that transaction Ti belongs to
label W1. Let Si be the set of items contained in a transaction Ti, then if a transaction Ti
contains the set of items Si and the label of that transaction is W1, then we can define a rule
L: Si ⇒ W1, which obviously also becomes a false positive control problem for multiple
hypothesis testing in association rule mining. This section briefly describes three methods
for correcting multiple hypothesis testing in association rule mining: the direct adjustment
method, the permutation-based approach, and the holdout evaluation method.

1. Direct adjustment method: The direct adjustment method is the direct control of false
positives using the implementation algorithm of FWER or FDR. A common direct
adjustment method for FWER is the Bonferroni correction [27,28], which calculates
the hypothesized p-value and considers it significant if the p-value is not greater than
α/n . A common direct adjustment method for FDR is the BH procedure [19], where
the p-values are sorted in ascending order p1, . . . , pn, if pi ≤ iα/n, i = n, . . . , 1 holds,
it is considered that H1, . . . , Hi is statistically significant.

2. Permutation-based approach: The permutation-based approach [29] is to randomly
disrupt the class labels and then recombine them with the transactions and recalculate
the p-values [30,31]. Since the individual hypothesis tests are dependent on each other,
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the random disturbance is used to break the association between the transactions
and the class labels. The distribution of the recalculated p-values is, therefore, an
approximation of the null distribution, which allows a more precise determination of
the truncation threshold (corrected significance threshold) of the p-values.

To keep the FWER under the α level, an operation is performed that randomly gener-
ates a set of n labels is performed as a way to break the association between transactions
and class labels. A truncated p-value (significance threshold) is eventually found such
that the probability of having at least one false positive error is no greater than α. To find
the truncated p-value, the smallest p-value obtained after the calculation in each permu-
tation is ranked from lowest to highest, and the αnth value among them is used as the
truncation threshold.

To control the FDR at the α level, n-label permutations are randomly generated and
adjusted for each p-value by the following method. Let αn be the number of hypotheses to
be tested, and let H = {p1, p2, . . . , pn×nα} be the p-values calculated from the hypotheses
to be tested after arranging the labels. Finally, the method proposed by Benjamini and
Hochberg will be used for subsequent calculations until the truncated p-value is found.

3. Maintenance assessment method: The hold-evaluation method [32] divides the dataset
into two parts, the exploration dataset and the evaluation dataset. First, the hypotheses
to be tested need to be identified from the exploration dataset first, and then the
hypotheses with p-values no greater than α are passed to the evaluation dataset for
validation. To control the FWER at the α level, the Bonferroni correction [27,28] can be
used to adjust the p-values of the hypotheses to be tested on the evaluation dataset.
To control the FDR at the α level, the method proposed by Benjamini and Hochberg
can be used in a similar way.

The permutation-based approach preserves the dependencies between hypotheses
and finds corrected significance thresholds more accurately than the direct adjustment ap-
proach, but the permutation-based approach requires significant computational overhead.
The replacement-based method is less computationally expensive than the holdout-based
method but its performance may be affected by data partitioning, resulting in a hypothe-
sis simply not being found. The advantages and disadvantages of various false positive
control methods are analyzed, and according to Liu’s research [33], this paper will use the
permutation-based method for FWER false positive control.

2.3. Pattern Mining-Related Techniques

Frequent pattern mining [34] is one of the most widely studied problems in data min-
ing. Compared to deep learning, which gradually transforms the initial “low-level” feature
representation into a “high-level” feature representation through multi-layer processing by
simulated neural networks [35,36], and completes complex classification and other learning
tasks with a “simple model”, frequent pattern mining is a key step of association rule
mining in data mining. Frequent patterns generally refer to the set of items that occur with
high frequency in a dataset. For example, items that appear frequently in the shopping
basket dataset (e.g., toothbrush and toothpaste) can form a frequent item set. For a sequence
in the shopping basket database (e.g., first buy flour, then eggs, then basin), it is said to be
a frequent sequence if it appears frequently in the shopping cart data. Commonly used
frequent pattern mining algorithms include Apriori, FP-Growth, and others.

The Apriori algorithm [37] is a commonly used pattern mining algorithm. The algo-
rithm usually uses prior knowledge in its process. The core idea of the Apriori algorithm
for performing pattern mining is that if an item set is a frequent item set, then all its
subsets are also frequent, i.e., if {toothbrush,toothpaste} is frequent, then {toothbrush},
{toothpaste} must also be frequent, and if {insoles} is not a frequent item set then its superset
{shoes,insoles} must also not be a frequent item set.

The Apriori algorithm uses an iterative approach to computation. The algorithm uses
the k-item set in the process of finding frequent patterns for the k + 1-item set. The specific
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implementation steps of the Apriori algorithm are: traversing the dataset, obtaining the
count of each item, and determining the support of each item. The set of all items that
satisfy the minimum support is the frequent 1-item set. The frequent 1-item set is then used
to find the frequent 2-item set, and so on, until all frequent patterns are found.

The FP-Growth algorithm [38] is a frequent item set mining method proposed by
Jiawei Han, which stores the items in the dataset sorted by support degree in FP-Tree and
labels the support degree of each node; it mines frequent item sets according to FP-Tree.

The FP-Growth algorithm is implemented in the following steps: first, the dataset is
scanned, and the purpose of this operation is to prepare for the construction of the item
header table. While scanning, the items with support greater than the minimum support
threshold are constructed as frequent item sets and then arranged in descending order
of support; secondly, the dataset is scanned again to create the item head table and FP
tree in descending order of support. After the creation of the head table and the FP tree,
the pattern mining operation is performed. This recursively invokes the tree structure to
construct the conditional pattern base for each item in each node of the item header table.
The conditional pattern base for each item is the set of all paths from the root node to that
item in the conditional tree. If the resulting tree structure is a single path, the recursion
ends by enumerating all combinations; if a non-single path is obtained, the tree structure
continues to be invoked until a single path is formed.

2.4. Distributed Computing Frameworks

1. Hadoop framework: Hadoop [21] is a distributed infrastructure framework developed
by the Apache Foundation, which is mainly used to solve the problem of massive
data storage and massive data analysis and can be applied to logistics warehouses,
the retail industry, recommendation systems, the insurance and finance industry, and
the artificial intelligence industry. Hadoop is suitable for processing large-scale data,
and it can handle more than one million data [39,40]. Hadoop uses HDFS for dis
tributed file management, which automatically saves multiple copies of the data and
can recover the data from backups of other nodes in case of power failure or program
bugs, thus increasing the system’s tolerance for errors.

The core components of Hadoop 2.x are HDFS, Yarn, and MapReduce. HDFS is a
distributed file system used to manage and store some data information.

The MapReduce framework is a computing model that works on top of Hadoop.
It automatically divides computational data and computational tasks, automatically assigns
tasks and computes them on each node of the cluster, and finally aggregates the results of
the computation on each node. In the Reduce phase, each Reduce task obtains the results of
the computation on each machine performing the Map task according to its own partition
number and merges them.

2. Spark Framework: Spark is an in-memory-based big data processing engine [41].
Spark makes up for the shortcomings of the Hadoop 1.x framework, which is not
suitable for iterative computing, has very slow performance, and has high coupling.
Spark itself can support multiple programming languages, so big data developers
can choose the most suitable language for program development according to the
program usage scenarios and their own coding habits. Spark can be installed and
used on laptops as well as on large server clusters. It can not only provide learning
convenience for beginners but also process large-scale data in actual production
applications [42]. Spark supports SQL and stream processing as well as machine
learning tasks.

Spark is a unified platform for writing big data applications, and it has a unified API,
which makes it easier and more efficient to write applications. Spark does not provide
persistent data storage, so it needs to be used in conjunction with distributed data systems
such as HDFS, message queues, etc. Spark is more powerful than previous big-data
processing engines, and it has a software library that can be used to process structured
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data and machine learning algorithms, and also supports library packages provided by the
open-source community.

The Spark application consists of a driver process and a set of execution processes.
The driver process is located on the master node of the cluster, and its role is mainly to main-
tain Spark-related information, user input and output, and task distribution. The execution
process executes the specific tasks assigned to it, and it handles the actual computation
work. It also reports the computation status to the master node after the actual computation
work has been completed.

3. PFWER-Based Distributed False Positive Control Algorithm

The FWER control method can control multiple hypothesis detection problems that
require strict control of false positive errors. In this paper, a transactional dataset with
binary labels is selected as the computational vehicle for the distributed false positive
control algorithm. Considering that there is a certain degree of dependence among the
hypotheses in the transactional dataset, and therefore, the computed p-values also have a
certain degree of dependence, this chapter will use the Westfall–Young Light algorithm [5]
based on the Westfall and Young [30,43] substitution process for the computation. This
algorithm can control FWER under the α level, but the implementation of this algorithm
involves a large number of resampling and replacement operations, and the computation
is very slow. Therefore, the main objective of this chapter is to improve the computational
speed and accuracy of the false positive control algorithm in large-scale data computation
using a distributed strategy.

3.1. Problem Definition

Definition 1. Let
{

l0, l1} be two class labels, and the transaction dataset is
D = {(T1, l1), (T2, l2), . . . , (Tn, ln)}, where each transaction Ti is composed of a set of items
set, i.e., Ti = {t1, t2, . . . , tk}. Each transaction Ti in the transaction dataset carries a binary class
label li ∈

{
l0, l1}.

Definition 2. Let the pattern S be a set of items, i.e., S = {t1, t2, . . . , ti}, ti ∈ {1, . . . , m}. Let
σ(S) denote the number of dataset D containing pattern S, σ1(S) denote the number of dataset D
labeled l1 as containing pattern S, σ0(S) denote the number of dataset D labeled l1 as containing
pattern S, and σ0(S) denotes the number of datasets D in which the label l0 is the number of
containing patterns S. Based on the above two definitions, a 2× 2 column-linked table can be
constructed, as shown in Table 3.

Table 3. A 2× 2 contingency table

Variables Do Not Reject H0 Reject H0 Column Total

li = l1 σ1(S) n1 − σ1(S) n1
li = l0 σ0(S) n− n1 − σ0(S) n− n1

Row total σ(S) n− σ(S) n

Definition 3. The null hypothesis H0 is that the pattern S is not significantly associated with the
label li and let δ be the corrected significance level, the null hypothesis is rejected, and the pattern S
is considered to be significantly associated with the label li if and only if the p-value ≤ δ.

Definition 4. A false positive is the probability of finding an incorrect association (Type I error) [5].

Section 2.1.4 has shown that the p-value calculation method used in this paper is the
Fisher exact test. The Fisher exact test observes that the values (n, n1, σ(S)) of the edges
of the 2× 2 column table are fixed. Thus, under the null hypothesis that mode S and the
labels li are independent of each other, the calculation of σ1(S) follows the hypergeometric
distribution, as shown in Equation (7).
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pF(σ1(S) = a|σ(S), n1, n) =

(
n1
a

)(
n− n1

σ(S)− a

)
(

n
σ(S)

) (7)

Let b be the observed value of σ1(S) in the S column table, and the p-value obtained
using Fisher’s exact test is shown in Equation (8). The p-value of Fisher’s exact test is the
value of all σ1(S) = a than the cumulative sum of probabilities that are lower.

pF
S(b) = ∑

pF
S(a|σ(S),n1,n)≤pF

S(b|σ(S),n1,n)

pF
S(a|σ(S), n1, n) (8)

3.2. Overall Framework of the Algorithm

The general framework of the distributed PFWER false positive control algorithm
proposed in this paper is shown in Figure 1.

① Parallel 

substitution 

operations on 

label ℓi

②Combining 

the replaced 

labels with 

transaction 

data

Phase I: Label 

replacement

Phase 2: Hypothesis 

determination

③Find the pattern S 

and its corresponding 

replaced label

δ*

δ*

δ*

Phase 3: FWER control 

calculation

Corrected 

significance level δ

④ False positive correction 

using Westfall and Young 

permutation methods

Figure 1. Overall framework of distributed PFWER false positive control.

Since the null hypothesis, H0, proposed in this paper is that pattern S is not signifi-
cantly associated with label li, more than one pattern S can be mined in the transactional
dataset D. There is a dependency between different patterns, S, and the p-values computed
from the labels li, so the PFWER false positive control is performed using the permuta-
tion method proposed by Westfall and Young [30,43]. The permutation-based method is
very computationally intensive, so the Spark framework is used for parallel computing to
improve the overall computational rate. The algorithm proposed in this chapter can be
broadly divided into the following three stages.

1. Label permutation operation. According to the replacement method proposed by
Westfall and Young [30,43], it is known that to calculate the truncated p-value (cor-
rected significance level δ) more accurately, it is necessary to perform a replacement
operation on the label li (generally performing jr = 103 ∼ 104 times replacement) to
achieve the purpose of breaking the association between pattern S and label li.

2. Finding the hypothesis to be tested in multiple hypothesis testing. Since the null
hypothesis is composed of two key elements, pattern S and label li, the main task of
the second stage of the algorithm is to find all patterns S and their corresponding
labels li in the transactional dataset D.
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3. False-positive correction calculation. After finding the hypotheses to be tested and
permuting the labels, the p-value of each hypothesis was calculated according to
Fisher’s exact test. The false-positive correction was then performed according to the
Westfall and Young [30,43] replacement method, and finally, the FWER was controlled
at the α level.

3.3. Index-Tree Algorithm

In order to solve the problem, the hypothesis determination process will dig out
a large number of redundant patterns, which affects the computational speed. In this
paper, we propose an Index-Tree algorithm, which uses a reduction strategy to reduce the
construction of conditional trees and, thus, the computation of patterns. It also adopts
an index optimization strategy to reduce the computational overhead caused by multiple
traversals of the dataset, further reducing the computation of redundant patterns and
speeding up the overall computational speed of the false positive control.

3.3.1. Pattern Mining

The main purpose of pattern mining in this paper is to find all hypotheses. The hy-
pothesis is composed of two key elements patterns S with labels li, so in the hypothesis
determination phase, it is necessary to mine all patterns S by pattern mining methods.
Then the hypothesis is determined by traversing the dataset to find the labels that contain
the corresponding pattern transactions.

As shown in Figure 2, this paper uses the FP-Growth algorithm for pattern mining.
However, since this paper wants to control the false positives in multiple hypothesis testing,
that is, to find all patterns S for which the p-value is calculated, the false positive control
is performed using the PFWER control method. In other words, the minimum support
count in the FP-Growth algorithm is to be set to 1. This makes the computational efficiency
of the FP-Growth algorithm for pattern mining very low. Since pattern mining is also
only one step in all the computational aspects of this paper, there is a subsequent PFWER
false positive control calculation. Therefore, it is necessary to improve the FP-Growth
algorithm without changing the effect of the PFWER false positive control in order to
reduce the memory overhead and improve the computational efficiency. To solve the above
problems, a pruning operation and an index optimization operation are adopted to reduce
the redundant patterns and improve the computational efficiency.

Mining 

Pattern S
Using FP-Growth 

algorithm

Transaction 

Data

Finding 

labels

Find 

Hypothesis

Figure 2. Pattern mining purpose.

3.3.2. Pruning Operation

This chapter focuses on controlling the number of false positive errors in multiple
hypothesis testing using the PFWER control method. According to the concept of FWER
control, it is known that FWER (family-wise error rate) is the probability of at least one false
positive error, and to ensure that the probability of error is as small as possible is to make
FWER(δ) ≤ α. This means that reducing the significance level of pF

S(b) from the original α
to δ is a guarantee that FWER(δ) ≤ α. In this way, the problem becomes one of computing
the significance threshold δ, where δ = max{δ|FWER(δ) ≤ α}. Since the Westfall–Young
Light algorithm [5] requires jr = 103 ∼ 104 times permutation operation for label i in order
to make the label unassociated with the pattern, and determines whether a false positive
error has occurred by checking whether there is pmin ≤ α where pmin ≤ min pF

S(b). Then
the cluster error rate is calculated as shown in Equation (9).
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FWER(δ) =
1
jr

jr

∑
i=1

1[p(i)min ≤ δ] (9)

where 1
[

p(j)
min ≤ δ

]
means that if p(j)

min ≤ δ is true, then it is 1, otherwise it is 0. The final δ to

be found is the
{

p(i)min

}jr

i=1
of α quantile point.

Theorem 1. If there exists S1 ⊆ S2 and σ(S1) = σ(S2), then σ1(S1) = σ1(S2), σ0(S1) = σ0(S2)
and for each permuted label, σ1(S1) = σ1(S2), σ0(S1) = σ0(S2).

Theorem 2. If S1 ⊆ S2 and there exists σ(S1) = σ(S2), then pF
S1
(b) = pF

S2
(b).

Proof. Since σ(S1) = σ(S2), the values (n, n1, σ(S)) of the edges in the 2× 2 column table
are fixed, so for S1 and S2, the three values n, n1, and σ(S) are equal. Equations (10) and
(11) can be obtained from Equation (7). Obviously, Equation (12) can be derived from
Equations (10) and (11). By substituting Equation (12) into the Fisher exact test formula, it
can be deduced that pF

S1
(b) = pF

S2
(b).

pF(σ1(S1) = a|σ(S1), n1, n) =
(

n1
a

)(
n− n1

σ(S1)− a

)
/
(

n
σ(S1)

)
(10)

pF(σ1(S2) = a|σ(S2), n1, n) =
(

n1
a

)(
n− n1

σ(S2)− a

)
/
(

n
σ(S2)

)
(11)

pF(σ1(S1) = a|σ(S1), n1, n) = pF(σ1(S2) = a|σ(S2), n1, n) (12)

Theorem 3. If S1 ⊆ S2 and σ(S1) = σ(S2), then only the p-value of mode S1 needs to be computed.

Proof. According to Equation (9), it is known that the final estimate of FWER(δ) is related
to p(i)min after each permutation and pmin = min pF

S(b). By Theorem 2, we know that if
S1 ⊆ S2 and there exists σ(S1) = σ(S2), then pF

S1
(b) = pF

S2
(b). If pF

S1
(b) = pF

S2
(b) is the

minimum value of the p-value in this substitution, then pmin picks pF
S1
(b) as the same as the

result of pmin picking pF
S2
(b). Therefore, it is sufficient to compute only the p-value pF

S2
(b)

of the mode S1, without computing the p-value of the mode S1. If pF
S1
(b) = pF

S2
(b) is not the

minimum value of p-value in this replacement, since pF
S1
(b) = pF

S2
(b), then pmin and pF

S1
(b)

are the same as the result of comparing pF
S2
(b), so it is sufficient to perform the calculation

only once.

Theorem 4. In FP-Tree, if there exists σ(I1) = σ(I2) and I1.next = I2 in the item header
table, while for all I1.link.next and I2.link.next there are σ(I1.link.next)=σ(I2.link.next), and in
the FP-Tree I1.link.next.child = I2.link.next and I2.link.next.parent = I1.link.next, such that
S1 = S ∪ {I1}, S2 = S ∪ {I1, I2}, we have S1 ⊆ S2 and σ(S1) = σ(S2).

Proof. According to {{I2, I5 : 1},{I1, I3 : 2},{I1, I2, I3 : 1},{I1, I2, I3, I5 : 1} , {I1, I2, I3, I4 : 2},
{I2 : 4} , {I1, I3, I4 : 2}} the dataset constructed by the FP-Tree is shown in Figure 3.
Where σ(I1) = σ(I3), the number of nodes in the item header table is I1 at one posi-
tion on I3 and for all I1 and I3 chains on the number of supported nodes (σ(I.link.next))
is the same for all I1 and I3 links. In FP-Tree, all I3 nodes’ parent nodes are I1 nodes
and all I1 nodes’ children are I3 nodes. Obviously, there is σ({I1}) = σ({I1, I3}). Let
S1 = S ∪ {I1}, S2 = S ∪ {I1, I3}, then S1 ⊆ S2, σ(S1) = σ(S ∪ {I1}) = σ(S) ∩ σ({I1}),
σ(S2) = σ(S ∪ {I1, I3}) = σ(S) ∩ σ({I1, I3}), so σ(S1) = σ(S2).
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Figure 3. Pattern mining purpose.

The nodes I1 and I3 that satisfy the condition of Theorem 4 in the FP-Tree can be
combined into one node I1; that is, patterns S1 and S2 can be combined into one pattern,
and then according to Theorems 1–3, it is only necessary to calculate the p-value of pattern
S1 to reduce the amount of computation in memory and speed up the computation of the
single-machine algorithm.

3.3.3. Index Optimization

From the 2× 2 column table, we know that after mining pattern S, we need to find all
the S ⊆ Ti, li = l1 support numbers σ1(S), and this process requires traversing the whole
dataset once. Since the Westfall–Young Light algorithm [5] starts from a minimum support
number of 1, the number of patterns to be mined is very large, and it would be too expensive
to traverse the dataset once for each pattern mined to find its σ1(S). When performing
pattern mining, an index can be added to speed up the query, which is the position of
transaction Ti, so that counting li = l1 takes only linear time to find. The transaction dataset
D with the index added is shown in Table 4.

Table 4. Transaction dataset with index.

Index TID Labels Transaction

0 0 I2, I5
1 1 I1, I3
2 1 I1, I2, I3
3 0 I2
4 0 I1, I2, I3, I4
5 1 I1, I2, I3, I4
6 1 I2
7 1 I1, I3
8 0 I1, I2, I3, I5
9 0 I1, I3, I4
10 1 I2
11 1 I2
12 0 I1, I3, I4

The FP-Tree with indexed structure is constructed based on the above dataset, as
shown in Figure 4. The conditional pattern bases are constructed on the basis of the
indexed FP-Tree, and the conditional pattern bases are constructed from the smallest
to the largest support counts, that is, from I5 :< I2, I1 : {8} >< I2 : {0} >,I4 :<
I2, I1 : {3, 5} >< I1 : {9, 12} >,I1 :< I2 : {2, 3, 5, 8} >. Next, we construct the indexed
conditional FP-Tree based on the indexed conditional pattern base and find the pattern
SI = ({ti}, {TIDi}) with the index structure. The conditional pattern bases are constructed
based on the index FP-Tree by supporting the degree counts from small to large; that is, start-
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ing from I5 : {< I2, I1 : {8} >,< I2 : {0} >},I4 : {< I2, I1 : {3, 5} >< I1 : {9, 12} >},I1 :
{< I2 : {2, 3, 5, 8} >}. Next, we construct the indexed conditional FP tree based on
the indexed conditional pattern base and find the pattern with the index structure
SI = ({ti}, {TIDi}).

Items’ID
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count σ Node 

Chain link

null{}
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I3

I4

I5
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8

4

2

I2:9:{0,2,3,4,5,6,8,10,11}

I1:4:{2,3,5,8}

I5:1:{8}
I4:2:{3,5}

I1:4:{1,7,9,12}

I5:1:{0}

I4:2:{9,12}

{0,2,3,4,5,6,

8,10,11}

{1,2,3,5,7,8,

9,12}

{3,5,9,12}

{0,8}

{1,2,3,5,7,8,
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Index
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Figure 4. Pattern mining purpose.

The null hypothesis H0 proposed in this paper is that pattern S is not significantly
associated with the label li, and the parameter to be tested in this paper can be set as
θ = {(S, li)|S ⊆ Tj, j = 1, . . . , n, i = 0, 1}. According to Table 3 and Equation (9), the
key variables for false positive control for the selected dataset D and the determined
null hypothesis h0 are n, n1, σ(S), and σ1(S) in the case of li = l1 obtained after label
replacement. Where n,n1 can already be determined when the sample dataset is selected,
and n,n1 is fixed. While σ(S) and σ1(S) are the support counts when S ⊆ Ti and li = l1

and S ⊆ Tj, respectively. It is easy to see from the structure of dataset D that once the
set of transactions {Ti} to which the pattern S belongs is known, the set of labels {li}
corresponding to it can be found, and the support count σ(S) is the size of the set {Ti}, and
it is also not difficult to determine σ1(S) based on the correspondence between transactions
and labels. Therefore, it is not necessary to know what the specific pattern S is when
performing the PFWER false positive control calculation, but only to know what sets of
transactions {Ti} are available to mine the pattern S. Finding out which transaction sets
exist that can be mined for patterns is more important for subsequent computation. In this
way, it is clearly more advantageous to use a vertical data format for data mining.

The transactional dataset of Table 4 is converted into a vertical data format representa-
tion, as shown in Table 5. Data mining is performed to find the patterns to be computed by
intersecting the index set of each pair of items in the item set. For example, the index set of
the pattern {I1, I2} is TID(I1, I2) = TID(I1) ∩ TID(I2) = {2, 3, 5, 8}.

Table 5. Vertical data format transaction dataset.

Item Set TID-Set

I1 {1, 2, 3, 5, 7, 8, 9, 12}
I2 {0, 2, 3, 4, 5, 6, 8, 10, 11}
I3 {1, 2, 3, 5, 7, 8, 9, 12}
I4 {3, 5, 9, 12}
I5 {0, 8}

Theorem 5. If there exists TID(S1) = TID(S2), then pF
S1
(b) = pF

S2
(b).

Proof. If there exists TID(S1) = TID(S2), then it means that the number of transac-
tions containing patterns S1 and S2 are equal, i.e., |TID(S1)| = |TID(S2)|, so there is
σ(S1) = σ(S2). Again, since labels have a one-to-one correspondence with transactions,



Appl. Sci. 2023, 13, 5006 15 of 28

although jrpermutations are performed, pattern s1 belongs to the same transaction set as
pattern s2. Therefore, for each permutation, there is σ1(S1) = σ1(S2). The total number of
transactions n is fixed with the number of labels li = l1 for the same dataset n1, substituting
σ(S), σ1(S), n and n1 into Equations (7) and (8) to find pF

S1
(b) = pF

S2
(b).

Substituting pF
S1
(b) = pF

S2
(b) into Equation (9) (FWER false positive control formula)

shows that pF
S1
(b) has the same effect as pF

S2
(b) on Equation (9), so their calculated p-values

have the same influence on Equation (9) for different patterns with the same index set, so it
is sufficient to perform the p-value calculation only once.

Based on the above problem analysis, it is clear that mining the set of transactions
containing pattern S is more useful for the subsequent computation than mining all patterns
in the dataset and then computing the corresponding dataset. Inspired by the vertical data
format, the index tree is pruned again according to Theorem 5 to reduce the computation
of invalid patterns generated in the data mining process.

The conditional pattern base of I4 is < I2, I1 : {3, 5} >< I1 : {9, 12} > according to
the item header table in Figure 4, and the conditional tree constructed from this condi-
tional pattern base is shown in Figure 5. The conditional tree using I4 is pattern mined
using the FP-Growth algorithm by combining all nodes on this single path and then com-
bining the combined set with that node to form the pattern output. According to the
above statement, from the conditional tree of I4, we will receive S1 = {I1, I4, {3, 5, 9, 12}},
S2 = {I2, I4, {3, 5}}, S3 = {I1, I2, I4, {3, 5}}, but actually patterns S2 and S3 are exactly
equal for the PFWER false positive control calculation, and there is no need to repeat
the calculation; therefore, it is only necessary to know the index set of each node to sub-
stitute into the FWER control formula for the calculation. When the number of nodes
contained in a single-path conditional tree is very large, it can reduce a lot of additional
computational overhead.

null{}

I1:4:{3,5,9,12}

I2:2:{3,5}

I4 {3,5,9,12} 2

Figure 5. Condition tree of I4.

The purpose of Algorithm 1 is to mine the index set containing the patterns and
to provide computational preparation for the subsequent PFWER false positive control.
The first line of the algorithm constructs the set of frequent1 -items and calculates their
support counts. The second line of the algorithm constructs the index tree. In the third line
of the algorithm, it calls Algorithm 2 to perform pruning operations on the index tree. If the
condition tree contains only a single path, then the index set of nodes on this path is output,
otherwise, the condition tree is constructed for the pattern β ∪ α in the tenth to thirteenth
lines of the algorithm, and if the condition tree is not controlled, then the algorithm is
recursively called for mining, and finally, all index sets containing the pattern are obtained.

The first line of Algorithm 2 iterates through the nodes in the item head table, and the
second to fifth lines determine whether two adjacent nodes with the same support count
in the item head table are to be merged. If the nodes in the FP tree satisfy the pruning
condition in Section 3.3.2, the nodes in the FP tree are merged in the sixth line of the
algorithm, the term header table is updated, and the pruned index tree is returned.
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Algorithm 1 Index Tree

Require: D = {(Ti, li)}
Ensure: In = {TIDi}

1: create(item_1), σ← size(index)
2: IFP_Tree← createTree(item_1, D)
3: tree← IPFP_Tree(IFP_Tree)
4: IFP_Growth(tree, β)
5: if path ∈ tree then
6: for node ∈ path do
7: TID(β ∪ node)
8: end for
9: else

10: for each ai ∈ (ai, TIDb) do
11: b← β ∪ ai TIDb ← TIDa σ← size(TIDb)
12: create(Db)
13: create(treeb)
14: treeib ← IPFP− Tree(treeb)
15: if treeib 6= ∅ then
16: IFP− Growth(treeib, b)
17: end if
18: end for
19: end if

Algorithm 2 IPFP Tree
Require: items
Ensure: IPFP− tree

1: for i ∈ items do
2: if σHead(i)) = σHead(i− 1)) then
3: for nodei ∈ linki ,nodei-1 ∈ linki-1 do
4: if σ(nodei) = σ(nodei−1) then
5: if nodei.child = nodei−1 and nodei−1.parent = nodei then
6: remove(nodei−1)
7: update(Head)
8: end if
9: end if

10: end for
11: end if
12: i← i + 1
13: end for

3.4. Distributed PFWER Control Algorithm
3.4.1. Label Replacement

The first stage of the distributed PFWER false positive control algorithm is the label
replacement stage, where the purpose of label replacement is to make no relationship
between labels and patterns. Therefore, it is necessary to disrupt and reshuffle the labels,
which generally requires jr = 103 ∼ 104 times the permutation of the labels. This process
can be run in parallel on the cluster, and the execution is shown in Figure 6.

LL

labelRDD

LL

LL

LL

… …

Shuffle L

Shuffle L

Shuffle L

Shuffle L

Figure 6. Parallel label replacement.

First, we read the label data using the sc.textFile() method and store it in labelRDD;
then we perform a random permutation operation on the read labels in parallel. Then we
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perform a merge operation on the disordered set of labels in the cluster, and finally, we
receive a permuted set of labels.

3.4.2. Hypothesis Determination

The second part of the distributed PFWER false positive control algorithm is to find
the parameters to be tested in the multiple hypothesis test. Since the null hypothesis is
composed of two key elements, pattern S and label li, it is known from the theorem in
Section 3.3 that the parameters to be determined in the actual computation are the set of all
indexes mapped to pattern S and their corresponding labels li in the transaction dataset D,
so the main task in this stage is to find the above two parameters.

Based on the PFWER false positive control characteristics combined with the Index-
Tree algorithm in Section 3.3, this leads to a distributed computational method for hypothe-
sis determination and the parallel computation of index sets and their labels mapped to
patterns. The method consists of three important phases divided into a dataset-partitioning
phase, a frequent 1-item set and FP tree construction phase, and a group mining phase with
pattern-mapped index sets and their labels. Figure 7 shows the computational framework
of distributed hypothesis determination, where the dataset is divided into n partitions in
the dataset partitioning phase and subsequent computations are performed in parallel.
The main objective of the frequent 1-item set and FP tree construction phase is to construct
frequent 1-item sets with index structures and to construct FP trees with index structures
based on frequent 1-item sets and transactional datasets. Figure 8 illustrates the process of
constructing a frequent 1-term set as follows

Input Transaction Data Set

Partition 1

Results

Frequent 1 item set

Partition 2 Partition 3

Mapper 1 Mapper 2 Mapper 3

Reducer 1 Reducer 2 Reducer 3

Grouping

Group 1 Group 2 Group 3

CPU CPU CPU

Build FP tree

Figure 7. Find hypothetical computing frameworks in parallel.

1. First, the items in the dataset should be split using the flatMap operator to construct
<key = item,value = index> key-value pairs in parallel and the map operator to
construct <key = item,value = 1> key-value pairs.

2. Secondly, the key-value pairs of <key = item,value = 1> are computed cumulatively
using the reduceByKey algorithm. The computed key is the item name, and the value
is the number of items in the dataset.

3. Next, the key-value pair <key=item,value = index> is computed using the groupByKey
operator to obtain a new key-value pair <key = item,value = index>, where the value
is the index set containing the key values.
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4. Finally, use the join operator to combine <key = item,value = index> and <key =
item,value = count> into a new key-value pair <key = item,value = count + index>
and output it in descending order of the count of the values in each key-value pair to
get the item header table for subsequent calculations.

0

1

2

3

4

5

Index

0

1

2

3

4

5

Index

I2,I5

I1,I3

I1,I2,I3

I1,I2,I3,I4

I2

I1,I2,I3,I4

Transactions

I2,I5

I1,I3

I1,I2,I3

I1,I2,I3,I4

I2

I1,I2,I3,I4

Transactions

Mapper 1

Mapper 2

Mapper 3

Reducer 1

Reducer 2

I2

I1

I3

I4

I5

Frequent 1 
item set

I2

I1

I3

I4

I5

Frequent 1 
item set

{0,2,3,4,5}

{1,2,3,5}

{1,2,3,5}

{3,5}

{0}

Index set

{0,2,3,4,5}

{1,2,3,5}

{1,2,3,5}

{3,5}

{0}

Index set

5

4

4

2

1

Number

5

4

4

2

1

Number

Transaction Datasets

OutputI2

I1

I3

I4

I5

Key

I2

I1

I3

I4

I5

Key

{0,2,3,4,5}

{1,2,3,5}

{1,2,3,5}

{3,5}

{0}

value

{0,2,3,4,5}

{1,2,3,5}

{1,2,3,5}

{3,5}

{0}

value

I2
I1
I3
I4
I5

Key

I2
I1
I3
I4
I5

Key

Join

5

4

4

2

1

Number

5

4

4

2

1

Number

Figure 8. Constructing frequent 1-item sets.

The FP tree with index structure is constructed by traversing the transaction dataset
based on the frequent 1-item sets with index structure. Next, the frequent 1-item set is
divided into h groups, the group numbers are denoted by hid, and each group contains a
complete FP tree with an index structure. The conditional pattern base and the conditional
pattern tree are constructed for each hid group, and then the index set containing the pat-
terns is mined using the Index-Tree algorithm. Since the labels correspond to the transaction
data, the index set containing the patterns can be computed while the corresponding label
set can be determined, and obviously, the two parameters related to the null hypothesis in
the hypothesis test have been determined.

3.4.3. False Positive Control

This section mainly uses the false positive control method proposed by Westfall and
Young [30,43] to control the FWER at the α level, which is implemented with the main idea
that a new resampled transactional dataset with no relationship between patterns and labels
can be generated by just randomly arranging the class labels. This allows one to determine
whether a false positive error has occurred by computing the minimum p-value after each
permutation, pmin = min pF

S , and checking whether pmin ≤ δ holds. The subsequent
sections of this paper refer to this method as the WY replacement algorithm.

The disadvantage of the WY replacement algorithm is that it is computationally
expensive in addition to having a large number of replacement operations. Terada [13] and
other researchers found that in Fisher’s exact test, when 2× 2 columns are fixed, then the
value (n, n1, σ(S)) at the edge of the table is also fixed, and according to Equations (7) and (8)
it is not difficult to find that the p-value is ultimately a function about σ1(S). Since the
objects in the 2 × 2 column table are discrete and can only take finitely many values,
it can be determined that σ1(S) is bounded, i.e., σ1(S) ∈ [σ1(S)min, σ1(S)max]. Where
σ1(S)max = min(n1, σ(S)), σ1(S)min = max(0, σ(S)− (n− n1)). From the bound of σ1(S),
it can also be further deduced that there exists a minimum reachable p-value ϕ(σS) strictly
greater than 0 as follows.

ϕ(σS) = min{pF
S(a)|σ1(S)min ≤ a ≤ σ1(S)max} (13)

According to Equation (8), the p-value calculated for Fisher’s exact test is the cumula-
tive sum of the results obtained using Equation (7), and the values calculated in Equation (7)
are all greater than 0. It can be inferred that when σ1(S) = σ1(S)min or σ1(S) = σ1(S)max,
the minimum reachable p-value ϕ(σS). It is then possible to call all patterns S of ϕ(σS) ≤ δ
the set of measurable patterns so that patterns not in the set of κ(δ) cannot be statistically
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significant under δ. On this basis, a monotonically decreasing lower bound ϕ̂(σ) on the
minimum achievable p-value can be introduced, as shown in Equation (14).

ϕ̂(σ)=


ϕ(σS) 0 ≤ σS ≤ n1

1/
(

n
n1

)
n1 ≤ σS ≤ n

(14)

The monotonically decreasing lower bound ϕ̂(σ) on the minimum achievable p-value
gives κ̂(δ) = {S|ϕ̂(σ) ≤ δ}, which satisfies κ(δ) ⊂ κ̂(δ), which, in turn, can be rewritten as
κ̂(δ) = {S|σS ≥ σδ} due to monotonicity. That means only the mode S satisfying condition
κ̂(δ) = {S|σS ≥ σδ} is valuable for the PFWER false positive control calculation. Based on
the above, the pseudo-code of the distributed PFWER false positive control algorithm is
proposed, as shown in Algorithms 3 and 4.

Algorithm 3 DS-FWER(D)
Require: D
Ensure: δ

1: label ← DistributedLabelPermutation(D)

2: p(i)min ← 1
3: σ← 1,δ← ϕ̂σ
4: itemIndex ← f latMap(D),itemOne← map(D)
5: itemCount← reduceByKey(itemOne),itemIndexs← groupByKey(itemInedx)
6: item← itemCount.join(itemIndexs)
7: tree← createF1Tree(item),F1_tree← IPFP− Tree(tree)
8: itemGroup← group(item)
9: index ← Index− tree(itemGroup, F1_tree)

10: WY(index, label)

11: Return α quantile of
{

p(i)min

}jr

i=1

Algorithm 4 WY Algorithm

Require: index, label
Ensure: σ

1: pF
S(σ1(S))

2: for i = 1, . . . , jr do
3: Compute σ1(S)
4: p(i)min ←

{
p(i)min, pF

S(σ1(S))
}

5: end for
6: FWER(δ) = 1

jr ∑
jr
i=1 1

[
p(i)min ≤ δ

]
7: while FWER(δ) > α do
8: σ← σ + 1 δ← ϕ̂(σ)

9: FWER(δ) = 1
jr ∑

jr
i=1 1

[
p(i)min ≤ δ

]
10: end while
11: for index′ ∈ List{index} do
12: Compute σ(S)
13: if σ(S) ≥ σ then
14: WY(index′, label)
15: end if
16: end for

The first line of Algorithm 3 uses distributed label permutation to obtain the permuted
label set with indexed positions, the second line initializes all minimum p-values in jr
permutation calculations to 1, the third line initializes the minimum support of the pattern,
and the modified significance threshold δ is initialized according to this minimum support
for subsequent calculations. The fourth to seventh lines of the algorithm uses parallel
methods to construct frequent 1-item sets with indexed structures with FP trees, and the
eighth line groups the frequent 1-item sets and distributes the grouped data to each node
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in the cluster. We rewrite the Index-Tree algorithm and change its input to FP tree and
frequent 1-item sets, and mine its index set on each node according to FP tree and the
grouped frequent 1-item sets. Finally, the index set and label set are substituted into

the WY replacement algorithm to obtain the set of jr minimum p-values
{

p(i)min

}jr

i=1
, then

the significance threshold of p-value calculation is set to
{

p(i)min

}jr

i=1
of the α quantile will

eventually control the FWER under the α level.
Algorithm 4 is the WY permutation algorithm. The first line of the algorithm computes

all p-values pF
S(σ1(S)) in the bounds using Fisher’s exact test. The second to fourth lines

of the algorithm calculate the σ1(S) value of the index set for each permutation for jr
permutations and calculate the minimum p-value p(i)min. The fifth line of the algorithm

finds the current FWER(δ) value based on
{

p(i)min

}jr

i=1
. Lines six to eight of the algorithm

perform a round-robin operation where the minimum support is the current minimum
support plus 1 if FWER(δ) > α and update the significance threshold at the same time until
FWER(δ) ≤ α. For all the mined index sets of σ(S) ≥ σ, the WY replacement algorithm is
executed to find the final modified significance threshold. Finally, the corrected significance
thresholds found on each node are compared, and the smallest significance threshold
among all nodes is the final result.

3.5. Proof of Correctness

The first is the correctness of the data cut, and the second is the correctness of the final
result obtained by executing the WY permutation algorithm in parallel.

According to Section 3.3, we can find the index sets of all patterns S and perform the
de-duplication operation on these index sets before performing the PFWER false positive
control computation to reduce the amount of data to be computed while ensuring the
correctness of the result computation. This chapter uses the distributed false positive
control algorithm process to group the frequent 1-item sets with index structure, and each
node will use the index FP tree and the grouped frequent 1-item sets for index set mining.
The Index-Tree algorithm determines the conditional pattern base for each item in the head
table based on the FP tree and then constructs a conditional tree based on the conditional
pattern base to perform subsequent pattern mining. Therefore, as long as the initial index
FP tree is consistent for each set of item headers, the index set obtained by the distributed
computation will be the same as the index set obtained in the stand-alone case.

Theorem 6. The minimum value of the significance threshold among all nodes is the overall signifi-
cance threshold, and the overall significance threshold is the same as the result of the significance
threshold computed by a single machine.

Proof. The WY replacement algorithm for example performs σ = σ + 1 and δ = ϕ̂(σ)
operations whenever it meets FWER(δ) > α. Let In1 and In2 be two different index sets at
different nodes with In1 and In2 support of σIn1 and σIn2 , and σIn1 < σIn2 . According to
Equation (9) and δ′ = max{δ|FWER(δ ≤ α)} we can find δ

′
In2

< δ
′
In1

, which also verifies
the property that δ decreases monotonically with σ. Therefore, In2 index sets smaller than
the current support count can be directly ignored and will not have an impact on the final
result, so the final significance threshold is the minimum of the significance thresholds
obtained for all nodes and is the same as the result of the stand-alone calculation.

4. Experiments and Performance Analysis

This chapter validates the algorithm through experiments in the following four areas:
Section 4.3.1 determines the parameters used in the distributed PFWER false positive
control. Section 4.3.2 tests the pruning efficiency of the algorithm and verifies the effect
of the pruning operation on the algorithm. Section 4.3.3 focuses on verifying the accuracy
of the calculation of the distributed PFWER false positive control algorithm. Section 4.3.4
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tests the operational efficiency of the distributed PFWER false positive control algorithm
by comparing the runtime of the distributed PFWER false positive control algorithm with
that of the stand-alone PFWER false positive control algorithm using different datasets.
The above four experimental directions verify the difference between the distributed false
positive control algorithm and the stand-alone false positive control algorithm for false
positive control results on the one hand. On the other hand, the distributed false positive
algorithm is verified for its ability to improve the computation rate. The experiments use
different datasets to demonstrate the robustness and general applicability of the algorithms.

4.1. Experimental Environment Configuration

The algorithm in this paper is written in Java language and uses the Spark frame-
work for distributed computation. The experimental code writing environment is shown
in Table 6.

Table 6. Coding environment description.

Encoding Software
and Hardware Environment

CPU Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz 2.59 GHz
Memory 16.00 GB

Hard disk 500 GB
Operating System Windows 10

System type 64-bit OS, x64-based processor
Development tools IEDA

Development environment JDK1.8, Hadoop2.7.7, Spark2.4.4

The algorithm proposed in this paper is a distributed false positive control algorithm,
so the main experimental part of the algorithm is completed on the cluster. The test cluster
environment of the experiment is shown in Table 7.

Table 7. Experimental environment description.

Test Software and Hardware Environment

CPU Intel(R) Xeon(R) CPU E5-2420 0 @ 1.90 GHz
Memory 24.00 GB

Hard disk 2TB
Operating system Red Hat Enterprise Linux Server release 6.3

System type X86_64
Experimental environment JDK1.8,Hadoop2.7.7,Spark2.4.4

4.2. Experimental Dataset

The information on the datasets used in the experiments of this paper is shown in
Table 8. We performed our experiments using 11 datasets: they are available at FIMI’04 (http:
//fimi.ua.ac.be, 7 June 2022), UCI (https://archive.ics.uci.edu/ml/index.php, 7 June 2022)
and kdd2018 (https://github.com/VandinLab/TopKWY, 10 June 2022). The datasets
labeled with (L) in the dataset description are the datasets with binary classification labels,
and the datasets labeled with (U) are the datasets without classification. For datasets
without transactions classified into two categories, a single item with a frequency closer to
0.5 is chosen to be removed from the transaction dataset to artificially divide the dataset
into two groups, and n/n1 is used to represent the ratio of the number of transactions in
the dataset to the number of transactions labeled l1, with two decimal places retained.

http://fimi.ua.ac.be
http://fimi.ua.ac.be
https://archive.ics.uci.edu/ml/index.php
https://github.com/VandinLab/TopKWY
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Table 8. Experimental dataset.

Dataset |D| Number of
Items

Average Length
of Transactions n/n1

Mushroom(L) 8124 118 22 2.08
Breast Cancer(L) 7325 1129 6.7 11.11

A9a(L) 32,561 247 13.9 4.17
Bms-Web1(U) 58,136 60,978 2.51 33.33
Bms-Web2(U) 77,158 330,285 4.59 25

Retail(U) 88,162 16,470 10.3 2.13
Ijcnn1(L) 91,701 44 13 10

T10I4D100K_new(U) 100,000 870 10.1 12.5
Codrna(L) 271,617 16 8 3.03
Covtype(L) 581,012 64 11.9 2.04

Susy(U) 5,000,000 190 43 2.08

4.3. Distributed PFWER False Positive Control Experiment
4.3.1. Determination of The Number of Permutations

1. Experimental description: This section focuses on determining the parameter used in
the distributed PFWER false positive control, i.e., the number of label replacements, jr.
Label replacement is an important element to ensure the accuracy of the distributed
PFWER false positive control results, and its purpose is to make sure there is no
relationship between labels and patterns. The null hypothesis proposed in this paper
is satisfied by the absence of an association between the mode and label and by
avoiding the influence of inter-mode dependencies on the computational results.
The experiment is to test the effect of the PFWER false positive control algorithm
on the false positive control effect by setting different numbers of substitutions in
the label substitution stage. In this paper, the FP-Growth algorithm will be used to
perform the pattern mining operation for all comparison experiments.

2. Experimental analysis: The distributed PFWER false positive control uses a permutation-
based approach for the control calculation. The known cost in setting the permutation
value, jr, is that the larger the jr, the more accurate the final corrected significance
threshold is estimated, but the cost is that the running time increases with the increase
in jr. The following figure represents the computation for different datasets with
different jr.

The horizontal coordinate of Figure 9 is the number of permutations, jr, and the
vertical coordinate indicates the final support count. Figure 10 indicates the running
time corresponding to different datasets selected with different replacement counts, the
horizontal coordinate is the replacement count jr, and the vertical coordinate indicates the
running time in (s). Since the label replacement is a random replacement process, there
will be individual label disruptions that are not very good in the process of disrupting the
label order. However, from the overall experimental results, the support count tends to be
stable at jr = 103 ∼ 104; if the number of permutations is increased on this basis, it has
little effect on the calculation but will greatly increase the running time of the algorithm, so
the experimental parameter chosen in this paper is jr = 103 or jr = 104.
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4.3.2. Pruning Efficiency Analysis

(1) Experimental description

The PFWER false positive control algorithm needs to find all the hypotheses to be
tested in the dataset, and these hypotheses to be tested are composed of the patterns mined
in the transaction set and their corresponding permuted labels. Therefore, it is necessary
to use techniques related to pattern mining. In the computation process, it is found that
using Fisher’s exact test to calculate the p-value and using the WY replacement process
for false positive control can reduce the computation of PFWER false positive control by
some pruning operations and speeding up the computation, which does not affect the
computation results.

The purpose of the experimental tests in this section is to verify the effect of pruning
operations on the algorithm. From the above experimental description, it can be seen that
the execution of the pruning operation reduces the number of patterns to be calculated for
PFWER false positive control and does not affect the false positive control effect. Therefore,
the experiments in this section will verify the efficiency of the pruning operation in terms
of both the number of patterns that need to be computed before and after the pruning
operation and the change in the significance threshold.

(2) Experimental analysis

The purple bars in Figure 11 show the number of patterns mined before the pruning
operation, and the green bars show the number of patterns mined after the pruning
operation. The experimental results show that the use of the pruning operation in the
calculation of the PFWER false positive control can effectively reduce the number of patterns
calculated, thus reducing the number of p-values that need to be calculated by Fisher’s exact
test and thus can effectively improve the efficiency of the PFWER false positive control.
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Figure 11. The number of modes before and after pruning operations in different datasets.

Table 9 shows the effect of pruning on the run speed of different datasets before and
after the pruning operation, and it can be seen from the data in the table that for most of
the datasets, the pruning operation can improve the run efficiency.
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Table 9. Time comparison before and after pruning.

Dataset Mushroom A9a Bms-
Web2

Breast
Cancer

Cod-
Rna Retail Ijcnn1

Before pruning (s) 656.3 1706.9 226.0 833.9 1066.3 53.4 8837.0
After pruning (s) 77.5 1016.5 119.25 526.3 844.2 39.5 7157.1

Figure 12 represents the changes in the support counts of different datasets before
and after the pruning operation. From the experimental results in Figure 12, we can see
that the results calculated by the PFWER false positive control algorithm before and after
performing the pruning operation are basically the same, thus verifying the correctness of
the pruning operation.

 4

 6

 8

 10

 12

 14

 16

 18

 20

mushroom

a9a
bms-web2

breast-cancer

cod-rna

retail
ijcnn1

T10l4D100K_new

Before pruning
After purning

Figure 12. Impact of pruning operation on support count.

Figure 13 shows the comparison of the significance thresholds of the PFWER false
positive control after performing pruning operations with and without the pruning opera-
tion on different datasets, with the vertical coordinate as the logarithm with base 10. Since
the PFWER false positive control performs random permutations of jr times labels that
affect the final significance threshold results, it is acceptable to have some deviation in the
significance thresholds after performing the pruning operation with and without pruning
on individual datasets.
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Figure 13. Significant threshold before and after pruning operation.

4.3.3. Accuracy Test

(1) Experiment Description

The experiments in this section focus on verifying the accuracy of the computation
of the distributed PFWER false positive control algorithm. The distributed PFWER false
positive algorithm will process the data in the transaction dataset and then perform the
PFWER false positive control calculation in parallel on each node of the cluster. The most
important point in this process is to ensure that the calculation results of the algorithm in
the distributed case are consistent with the results of the stand-alone calculation. The most
important point in this process is to ensure that the algorithm’s computational results in
the distributed case are consistent with those of the stand-alone computation. The main
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reason for ensuring the same results of the two runs is that the corrected saliency thresholds
obtained in the end are the same.

(2) Experimental Analysis

Figure 14 gives a comparison of the minimum support calculated by the distributed
PFWER false positive control with that of the stand-alone PFWER false positive control,
from which it can be seen that the final minimum support obtained for different datasets
performing PFWER false positive control is basically the same in the distributed and
stand-alone cases, demonstrating the accuracy of the distributed algorithm calculation.
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Figure 14. PFWER support for different datasets.

Figure 15 shows the final corrected significant threshold for the distributed PFWER
false positive control versus the corrected significant threshold obtained from the PFWER
false positive control in the stand-alone case, with the vertical coordinate as the logarithm
with base 10. The experimental results show that the results of the corrected significance
thresholds obtained for the single machine on different datasets are in general agreement
with the results calculated by the distributed PFWER false positive control algorithm
proposed in this paper.
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Figure 15. Modified significance thresholds for different datasets of PFWER.

4.3.4. Operational Efficiency Test

(1) Experimental Description

The main purpose of using distributed techniques for PFWER false positive control
calculations in this paper is to improve the computational efficiency of the procedure.
The distributed PFWER false-positive control algorithm reduces the time spent on the
experiment and does not affect the final results of the experiment, as the model is reduced
in the hypothesis determination. In this section, the runtime of the distributed PFWER
false positive control algorithm, the stand-alone PFWER false positive algorithm, and the
existing FastWY [13] and WYlight [5] algorithms are compared using different datasets to
test the efficiency of the distributed PFWER false positive control algorithm.
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(2) Experimental Analysis

The running time units for the algorithms in Figure 16 are seconds (s). The experi-
ments focus on showing a comparison of the run times of the distributed PFWER false
positive control algorithm, the stand-alone PFWER false positive algorithm, the FastWY
algorithm [13], and the WYlight algorithm [5] running different datasets. The experimental
results show that the use of the distributed PFWER false positive control algorithm can
effectively improve the computational speed of the algorithm while avoiding the limita-
tions of the stand-alone in-memory computation and can efficiently perform false positive
control computations in large-scale data situations, which is of good use.
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Figure 16. Runtime comparison of distributed PFWER control algorithms with existing algorithms.

4.4. Summary

The distributed PFWER false positive control algorithm has been analyzed and tested
experimentally. The experimental data show that the distributed PFWER false positive
control algorithm has the same control results as the stand-alone case and is better in
terms of operational efficiency than running on a single machine. The algorithm can
effectively address the problem of excessive computation in multiple hypothesis testing of
false positive control for large data.

5. Conclusions

The PFWER control algorithm can obtain a single hypothesis-test significance thresh-
old subject to an arbitrarily specified overall false positive level constraint without assuming
an independent identical distribution. Since the PFWER control algorithm is highly time-
consuming, this paper proposes a distributed solution to the PFWER control algorithm,
which significantly improves the execution efficiency of the PFWER control algorithm
without any loss in theoretical accuracy. Specifically, we abstract the PFWER control prob-
lem as a frequent pattern mining problem, and by adapting the FP growth algorithm and
introducing distributed computing techniques, the constructed FP tree is decomposed into
a set of subtrees, each corresponding to a subtask. All subtrees (subtasks) are distributed to
different computing nodes, and each node independently computes the local significance
threshold according to the assigned subtasks. The local computation outcomes from every
node are aggregated, and the FWER false positive control thresholds are calculated to be
exactly in line with the theoretical outcomes. To the best of our knowledge, this is the
first paper to present a distributed PFWER control algorithm. Experimental results on
real datasets show that the proposed algorithm is more computationally efficient than the
comparison algorithm.

In the future, we may also consider using unconditional exact tests, i.e., Barnard’s exact
tests, to calculate p-values in false positive control methods for multiple hypothesis testing.
Unconditional tests, on the other hand, are generally more expensive than conditional
tests (often Fisher’s exact tests) because unconditional tests take into account the various
scenarios observed in the pattern frequencies and the actual dataset and require the use of
an unknown perturbation parameter for subsequent calculations. Another possible path is
to extend this paper’s distributed algorithm to multi-categorically labeled transactional
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datasets, and to explore efficient distributed control of false positives in multiple hypothesis
testing processes in other types of datasets.
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