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Featured Application: Semi-automatic or automatic systems supporting rehabilitation of laryn-
gectomised patients by improving the quality of oesophageal speech.

Abstract: This paper presents an approach to extraction techniques for speaker recognition following
total laryngectomy surgery. The aim of the research was to develop a pattern of physical features
describing the oesophageal speech in people after experiencing laryngeal cancer. Research results
may support the speech rehabilitation of laryngectomised patients by improving the quality of
oesophageal speech. The main goal of the research was to isolate the physical features of oesophageal
speech and to compare their values with the descriptors of physiological speech. Words (in Polish)
used during speech rehabilitation were analyzed. Each of these words was divided into phonetic
segments from which the physical features of speech were extracted. The values of the acquired
speech descriptors were then used to create a vector of the physical features of oesophageal speech.
A set of these features will determine a model that should allow us to recognize whether the speech-
rehabilitation process is proceeding correctly and also provide a selection of bespoke procedures that
we could introduce to each patient. This research is a continuation of the analysis of oesophageal
speech published previously. This time, the effectiveness of parameterization was tested using
methodologies for analyzing the phonetic segments of each word.

Keywords: science; medical informatics; acoustic analysis; laryngectomy; phonetic segments; speech
signal; vocal rehabilitation; voice pathology

1. Introduction

According to the Head Office of the National Health Fund, Department of Analyses
and Innovation [1], laryngeal cancer is the most common malignant tumour among head
and neck cancers. In the case of a very advanced neoplastic disease, a laryngectomy is
necessary [2–5]. The consequence of this surgical procedure is the loss of the complete
ability to communicate with the physiological voice. However, a patient deprived of a
larynx has a chance to learn substitute speech during phoniatric rehabilitation. Therefore,
the analysis of oesophageal speech is a very important research issue. Control of the course
of the rehabilitation process should be supported by an observation of the physical features
of speech. For this purpose, the values of speech descriptors of sick and healthy people
are extracted in order to analyze their numerical differences. Professional methods of
Signac processing and analysis, in particular acoustic methods, provide several options for
assessing the quality of the speech signal, enabling multilateral analysis. Appropriately
applied methods of speech analysis allow for the definition of a set of features that will
determine the physical pattern of oesophageal speech [6,7]. In this paper, an attempt was
made to analyze the voices of patients after total removal of the larynx (laryngectomy). The
results of the tests will support the process of speech rehabilitation in order to increase the
quality and reduce the time for complete rehabilitation. Speech rehabilitation of people
following total laryngectomy can be carried out using three options [6,7]:
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1. Oesophageal speech: This is a kind of substitute speech following laryngectomy. After
a laryngectomy, the folds of the esophageal mucosa may act as a sound source of
sound. This is the so-called pseudoglottis in the oesophagus. During oesophageal
speech, it is necessary to swallow small amounts of air, which then comes back
up via “burping”. The column of swallowed air causes the oesophagus to vibrate
and generate sound, which is modified by the tongue and lips to form words. The
advantages of oesophageal speech is are:

• Non-surgical method;
• Hands-free talking;
• Closest to physiological speech;
• No need to implement a foreign body.

Disadvantages of oesophageal speech are:

• Learning takes a lot of time and must be intensive;
• Not all people are able to master this method well;
• Speech may be incomprehensible;
• Speaking in short sentences and at a slower pace—having to swallow air while

speaking.

2. Speaking with a voice prosthesis provides the most natural-sounding and easiest-to-
understand voice. The prosthesis is placed between the oesophagus and the trachea
during a total laryngectomy procedure. The prosthesis has a one-way valve that opens
during speak and closes during breathing and eating. When speaking, it is necessary
to close the valve with a finger. There are many models of voice prostheses, such as
Provox. The advantages of voice prostheses are:

• Ability to speak immediately after a laryngectomy;
• Greater speech efficiency (no need to swallow air);
• Clearer speech.

The disadvantages of voice prostheses are:

• Need to implant a foreign body, which may result in tinea or infections;
• Periodic replacement;
• Occurrence of leaks around the prosthesis;
• Spontaneous prolapse of the prosthesis;
• Appearance of inflammation.

3. Electrolarynx speech—this is an electrolarynx device. This method requires the use of
a hand-held device which, when applied to the neck, generates vibrations that are then
shaped by the tongue and mouth into speech. The voice produced by this method
sounds very artificial and the modulation depends on the device used. Advantages:

• Easy- to- master speech;
• Non-surgical method.

Disadvantages:

• The artificial sound of speech;
• The need to wear the device;
• The need to use the hand when speaking;
• Periodic service of the device required.

A very common opinion among laryngectomized people is that oesophageal speech is
the real one, in the natural sense—in contrast to the use of speech prosthesis [8–10]. The
analysis of oesophageal speech can be carried out by examining the spoken vowels, conso-
nants, whole words, or individual fragments of these words separately. In [2], the authors
focused on the parameterization of oesophageal speech by examining the pronounced
vowel “i”. Patients uttered the same vowels repeatedly over a period of time. In the
literature, different languages are considered when examining oesophageal speech. This is
due to the fact that each language has inherently different characteristics that have a direct
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impact on the learning of oesophageal speech. This results from the particular articulation
of consonants, vowels and individual words spoken in a particular language. In paper [4],
the authors focused on the lexical tones of the Taiwanese language. This analysis took
place in the time–frequency space of the signal. This research focused on the observation of
changes in the fundamental frequency (F0), the slope of the F0 contour, and the duration
and the amplitude of the vowels of parts of syllables containing seven Taiwanese tones. The
study involved seven people undergoing speech rehabilitation after total laryngectomy [4].
In this paper, the acoustic analysis revealed no significant effects of the linguistic level
on the acoustic parameters except for duration. This result seems justified due to the use
of a small set of speech-signal physical characteristics of the speech signal. The authors
in [8] attempted to improve the voice quality of oesophageal speech. In this case, working
with time-, spectrum- and cepstrum-function descriptors aimed at improving the quality
of oesophageal speech and thus increasing the effectiveness of communication. Available
publications on the analysis of oesophageal speech prove that this analysis should take
place in the time–frequency space and the cepstrum. In addition, the parameterization
should take into account the language in which the test words are spoken. The study
of oesophageal speech was also undertaken in [7]. The results of this analysis showed
that the feature vectors obtained from the time domain, frequency domain, cepstrum and
mel coefficients allow for precise parameterization of oesophageal speech. Audio features
(including speech features) are extracted directly from the samples of the audio signal.
Typical examples are the short-term energy and short-term zero-crossing rate. Such features
offer a simple way to analyze audio signals, although it is usually necessary to combine
them with more sophisticated frequency-domain features. Two approaches are possible:

• Based on the so-called signal macrostructure—calculations are performed in time
segments after initial segmentation, the obtained parameters are the amplitude and
rate of change;

• Based on the so-called the signal microstructure, i.e., the time course, analyzing the
zero-crossing rate of the speech signal. This leads to obtaining two types of parameters:
the density of zero crossings and the distribution of time intervals.

The aim of the authors of this paper was to parameterize oesophageal speech using
words that are used during the rehabilitation of patients following total laryngectomy.
The studied patients were under the care of the Bydgoszcz Laryngectomy Association
(Bydgoszcz, Poland), where they underwent speech rehabilitation. These people spoke
Polish, so all the analyzed words were spoken in Polish. The choice of words was deter-
mined by the rehabilitation process and depends on the specificity of the Polish language
(Figure 1) [11]. This study aimed to analyze oesophageal speech using the division of
the examined words into phonetic segments (phonetic syllables). Phonetic segments are
changes in loudness between consecutive sounds in a stream of speech sounds. The center
of the phonetic segment is the voice segment that differs in loudness level from the imme-
diate surroundings. Its loudness is almost always greater than the loudness of the sound
immediately before or after it. Each tested word was divided into phonetic segments, which
were then parameterized with descriptors of time domain, frequency domain, cepstrum
and mel coefficients. Separate parameterization of oesophageal speech, including the study
of phonetic segments, is used to determine which of them show the most significant differ-
ences in descriptor values in relation to physiological speech (speech of healthy people).
It means that for intelligent systems, we do not need to provide the whole word (as an
input argument) but only its fragment in the form of a key phonetic segment of the studied
word. This approach will lead to the acceleration of the functioning of speech recognition
systems.
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Figure 1. View following total laryngectomy. The pseudo-glottis is visible (own version).

The paper is divided into the following sections:

• Introduction: This section covers general issues related to laryngeal cancer, laryn-
gectomy and available speech rehabilitation options, including their advantages and
disadvantages;

• Materials and methods: This section lists the studied words, indicates the phonetic
segments, and describes the recording conditions of the test words;

• Approach for obtaining feature vectors: This section discusses the time domain and
spectrum domain descriptor definitions that were used during the research;

• Cepstrum analysis: This section discusses the definition of cepstrum and its interpre-
tations;

• Mel-frequency cepstral coefficient (MFCC): This section of the paper discusses the
MFCCs coefficients and how to extract them from a speech signal;

• Results: The results of the research are discussed here, and the effectiveness of the
applied classification algorithms and learning methods in relation to the defined
vectors of oesophageal speech features is indicated;

• Discussion: This is a place for summarizing the research and planning further research
related to speech analysis.

2. Material and Methods
2.1. Material

A group of total laryngectomy patients participated in the study: three men aged
30–70 years and three women aged 30–60 years. The patients were undergoing speech
rehabilitation related to learning oesophageal speech. Speech samples from healthy subjects
were also studied from: three men aged 25–60 years and three women aged 20–50 years.

Speaker recognition was based on the classification algorithms used and the specific
order of the feature vector. This is in line with [1,3,5].

The study was approved by the bioethics committee (KB 178/2020).
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2.2. Methods

During the research, speech samples from the laryngectomy patients and healthy
people were analyzed. People who had had a laryngectomy were undergoing speech
rehabilitation aimed at learning oesophageal speech. For this reason, adequate words
spoken, which are included in the rehabilitation programme, were examined. All words
were spoken in Polish. In addition, speech samples were also taken from healthy people—
the same spoken words were tested. The features of physiological speech provided a
model (reference point) for comparing the values of speech descriptors in people after a
laryngectomy. Taking into account the linguistic characteristics of the Polish language and
the process of speech rehabilitation, the research covered the following words (spoken in
Polish) [6]: a barrel, a bread roll, an egg, a package.

For this study, a set of scripts (a program) was written in the Octave environment
(about 30 functions). The Octave environment is an alternative to Matlab but has the same
capabilities and similar libraries. The use of this environment for speech analysis is one
of the generally accepted research methods described in [12–14]. The functions created
calculate indicator values or control the running of a specific function—e.g., changing a
domain, loading a*.wav file for analysis, windowing signals, etc. The returned results are
saved to various files, and from these files are created for the WEKA target (Figure 2). Of
course, they take into account the configuration of the specific feature vector (treating the
content of this feature vector as a set of descriptors).
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Figure 2. Diagram of experiments.

Each of the tested words has been divided into phonetic segments. In the case of the
words “beczka” (eng. a barrel) and “paczka” (eng. a package), three phonetic segments
were separated out. The words “bułka” (eng. a bread roll) and “jajko” (eng. an egg)
were divided into two phonetic segments. The number of phonetic segments contained
in these words is directly related to the features of the Polish language. Upon completion,
four words from each person were used for the research. When segmenting the words
(division into phonetic segments), ten samples (segments) were tested for each person.
Each of them was tested independently. For speech signal analysis, the audio-physical
characteristics (descriptors) must be extracted. The above segmentation of the words
resulted from the features of the Polish language. Each phonetic segment of the tested word
was independently parameterized by speech signal descriptors. The numerical values of
the features obtained from each segment of the speech of the laryngectomized persons
people were compared with the equivalents of words obtained from the healthy people.
Table 1 presents the phonetic segments of the studied words. IPA notations for studied
words:
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Each of the tested words has been divided into phonetic segments. In the case of the 
words “beczka” (eng. a barrel) and “paczka” (eng. a package), three phonetic segments 
were separated out. The words “bułka” (eng. a bread roll) and “jajko” (eng. an egg) were 
divided into two phonetic segments. The number of phonetic segments contained in 
these words is directly related to the features of the Polish language. Upon completion, 
four words from each person were used for the research. When segmenting the words 
(division into phonetic segments), ten samples (segments) were tested for each person. 
Each of them was tested independently. For speech signal analysis, the audio-physical 
characteristics (descriptors) must be extracted. The above segmentation of the words re-
sulted from the features of the Polish language. Each phonetic segment of the tested word 
was independently parameterized by speech signal descriptors. The numerical values of 
the features obtained from each segment of the speech of the laryngectomized persons 
people were compared with the equivalents of words obtained from the healthy people. 
Table 1 presents the phonetic segments of the studied words. IPA notations for studied 
words: 
• paczka—/paʧ̑ka/; 
• jajko—/jæjkɔ/; 
• beczka—/bɛʈ͡ ʂka/; 
• bułka—/buwka/. 

Table 1. The list of the phonetic segments under study. 

Researched Phonetic Segments 
In English In Polish Seg 1 Seg 2 Seg 3 

a barrel beczka be cz ka 
a bread roll bułka buł ka - 

an egg jajko jaj ko - 
a package paczka pa cz ka 

Examples of the phonetic segments used are shown in Figures 3–6 using their time 
domains. 
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Table 1. The list of the phonetic segments under study.

Researched Phonetic Segments

In English In Polish Seg 1 Seg 2 Seg 3

a barrel beczka be cz ka
a bread roll bułka buł ka -

an egg jajko jaj ko -
a package paczka pa cz ka

Examples of the phonetic segments used are shown in Figures 3–6 using their time
domains.
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Figure 6. Time waveform of the word “bułka” (eng. a bread roll)—laryngectomised man. Two
phonetic segments are visible.

The features of the physiological speech samples provided a baseline against which
the features of oesophageal speech were compared. The recording of the speech samples
took place at the Bydgoszcz Laryngectomy Association (city of Bydgoszcz, Poland). The
recordings took place in a specially prepared room. An OMNITRONIC IM-1000 PRO
condenser microphone was used for the recordings. All speech samples were recorded
in WAV format with a sampling rate of 44,100 Hz and 16 bits/sample [11,15]. For the
parameterization of the mentioned phonetic segments, widely used time- and frequency-
domain descriptors were used. The Octave programming environment as well as the
Praat and WaveSurfer computer programs were used to conduct the research. The WEKA
package, with the classifiers implemented in it, was used to carry out the classification
process.
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Feature Vectors Obtained Approach

Speech-signal analysis can be defined as the process of extracting physical features
from a speech signal (i.e., from sound samples). This process relies on the time- and
frequency-domain parameterization mechanism to create a feature vector that allows the
highest possible degree of object recognition. A feature vector defined in this way is
a recognition pattern dedicated to a specific case of speech analysis, e.g., oesophageal
speech. Both the time- and spectrum-domain descriptors were used for the research
purposes [15,16]. Numerical values for the individual descriptors were obtained from each
phonetic segment of the tested word.

2.3. Time Domain Descriptors

(1) ZCR (zero-crossing rate) is a measurement used to determine the ratio of zero crossings
(the crossing of the OX axis). This is determined as the percentage of audio samples in
a given fragment that change sign. The ZCR is defined by the following equation [17]:

Z(i) =
1

2WL

WL

∑
n=1
|sgn[xi(n)]− sgn[xi(n− 1)]| (1)

where sgn(*) is the function, i.e.,

sgn[xi(n)] =
{

1, xi(n) ≥ 0,
−1, xi < 0.

(2)

In the research, the value of the ZCR descriptor was calculated in each phonetic
segments of the speech of the healthy and laryngectomised people.

(2) Short-time energy (STE) is an audio descriptor from the MPEG-7 standard, also used
in speech classification [6,18,19]. It describes the envelope of the signal. STE is the
sum of squares computed in the time domain over the length of the test frame of the
signal. The STE is expressed by the formula:

STE =
N

∑
n=1

x2(n) (3)

where: x(n)—is the value of n-th sample, n—Index of the sample, N—signal length
(total number of samples in the processing window, corresponding to the one phonetic
segments).

(3) The signal mean value (SMV) descriptor expresses the average value of the input
speech signal. Its value is estimated in the tested frame of the audio signal. It is
calculated by summing the values of all samples and dividing by N. The SMV is given
by:

SMV =
1
N

N

∑
n=1

x(n) (4)

(4) Root mean square is the RMS value of a (periodic) signal, also known as nominal or
continuous. This feature is widely used in speech parameterization. It is expressed by
the formula [6,20]:

RMS =

√√√√ 1
N

N

∑
n=1

x2(n) (5)

where: N—signal length (total number of samples in the processing window, corre-
sponding to the one phonetic segments), x—is the value of nth sample.

(5) Local minimum and maximum: The local maximum is the point at which the function
changes from ascending to descending. Also, the local minimum is the point at which
the function changes from descending to ascending. In the research, each phonetic
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segment in the time domain was divided into 20 ms long windows. In each of these
windows, the local minimum and maximum values were found.

2.4. Frequency Domain Descriptors

Spectral descriptors allow for the description of a speech signal with very high pre-
cision, which has a direct impact on the recognition of the speaker. These parameters are
often used in speech recognition and improve the general recognition of the speaker. A very
rich database of definitions of mathematical spectral parameter definitions can be found
in [21–25]. Some of them have been implemented for the parameterization of phonetic
segments of oesophageal speech following laryngectomy. The appropriate selection of
spectral features enriches the definition of the oesophageal-speech pattern. The study of
oesophageal speech in the frequency domain was carried out using signal windowing—
which is the generally accepted standard when analyzing an audio signal. The length
of the window for each phonetic segment was assumed to be 20 ms. Spectrum leakage
was reduced by using a Hamming window and a 10 ms length overlap [2,18,19,26]. This
approach to the study allowed us to obtain a spectrum matrix for the analyzed phonetic
segment. Then, for each signal spectrum, the descriptors values were found and their
average value was calculated. An example spectrum matrix for the first phonetic segment
of the word “beczka” (Seg. 1 “be”) spoken by a laryngectomised woman is presented in
Figure 6.

This area of the cepstrum is the most different for oesophageal and physiological
speech. This is due to the lack of the patient’s larynx, which was removed by laryngectomy
surgery. This area of the cepstrum in laryngectomees has flat characteristics—no larynx, no
laryngeal tone.

For the research, the spectral-domain descriptors of oesophageal speech below were
used:

(1) Spectral centroid (SC) is a way of describing the shape of the power spectrum. It
shows whether the spectrum is dominated by low or high frequencies. This descriptor
also refers to the timbre of the sound and allows the separation of tonal sounds from
noise.

SC =
∑n

i=0 A(i) ∗ i
∑n

i=0 A(i)
(6)

where: A(i) is amplitude of the i-th component (harmonic), i—index of the i-th partial.
(2) Irregularity of spectrum (Ir)

Ir = log

(
20

N−1

∑
i=2

∣∣∣∣∣log
A(i)

3
√

A(i− 1) ∗ A(i) ∗ A(i + 1)

∣∣∣∣∣
)

(7)

2.4.1. Cepstrum Analysis

The cepstrum was obtained via the inverse Fourier transform applied to the logarithm
of the signal spectrum. The domain of the cepstrum consists of pseudo-time values, which
are called “quefrency”. Low quefrency values represent slowly changing components of
the logarithm of the spectrum logarithm, while high values represent to fast- changing
components.

The cepstrum is obtained by the formula:

C(t)=IFFT[log|FFT[x(t)]|] (8)

where: x(t)—analyzed windowed frame.
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To obtain the cepstrum of speech, firstthe windowed signal frame needs to be trans-
ferred to the frequency domain using the fast Fourier transform (FFT) transform and
then transferred back to the quefrency domain (an anagram of the word “frequency”)—
presented in the domain of the sample number [smpl] or time [s]. The resulting signal is
known as a real cepstrum. Quefrency measured in seconds means that it does not indi-
cate time but periods of frequency—peaks appearing in the cepstrum reveal periods of
frequency that have harmonics in the spectrum. The quefrency domain is also called the
pseudo-time domain. In the cepstrum, the low quefrencies contain information about the
slowly changing features of the log-spectrum. The pictures below show the cepstrum of a
laryngectomised woman and a healthy woman—the third phonetic segment “ka” of the
word barrel (in Polish “beczka” in Polish, “beczka”).

The Figures 7 and 8 illustrate the key differences for the representation of the cepstrum
of physiological and oesophageal speech. It can be seen that the most significant differences
are located between 50 and 100 smpl of the cepstrum. This area is characteristic of laryngeal
speech. In laryngectomy patients, this range has a flat representation, as opposed to
physiological speech. For this reason, the conducted research focused only on this range of
the cepstrum.
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2.4.2. Mel-Frequency Cepstral Coefficient

The MFCC feature vectors (mel frequency cepstral coefficients) are attributes describing
the content of the cepstrum of the analyzed sound. It is a widely used method in speech
recognition. The important point is that the MFCC analysis takes into account the perception
of human hearing [24,25]. The MFCC parameter group is derived from the cepstrum of
the signal represented in the mel scale. MFCCs encode spectra shape. The mel scale is
characterized by the fact that it describes the perceptual distance between tones of different
frequencies [26,27]. The relationship between the mel scale and the frequency scale is
expressed as:

m = 2595log10

(
1 +

f
700

)
(9)
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has undergone a laryngectomy.

Due to further operations on the mel-scale sound, a mel filter bank was used. The mel
filter bank consists of bandpass filters with triangular amplitude characteristics overlapping
with center frequencies 100 mels apart. Speech analysis typically uses 12 to 20 filters. The
MFCC coefficients were used to analyse the phonetic segments of the speech of people after
a laryngectomy. A bank of mel filters was used = 20. Figures 9 and 10 illustrate the MFCC
feature set of the phonetic segment No. 1 (“buł”) of the word bread roll (in Polish in Polish,
“bułka”), spoken by a man who had undergone laryngectomy surgery.
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3. Results

The study included people who had had total laryngectomy surgery. The purpose of
the research was to define feature vectors extracted from the time and frequency domains.
Two analytical approaches and a number of descriptors were used to parameterize the
analyzed phonetic segments. The following speech-signal descriptors used:

• Zero-crossing rate (ZCR);
• Short-time energy (STE);
• Signal mean value (SMV);
• The root mean square (RMS);
• Local minimum and maximum;
• Spectral centroid (SC);
• Irregularity of spectrum (Ir);
• Cepstrum;
• MFCC—mel-frequency cepstral coefficient.

In the first analytical approach, the values of the ZCR, STE, SMV and RMS features
were calculated over the length of the entire phonetic segment. The distribution of the
values of the features was estimated on the basis of their minimum value, maximum
value, mean value, and standard deviation. Below, the distribution values of the discussed
features from the phonetic segments of the word “„barrel”” (in Polish “beczka” in Polish,
“beczka”), have been presented (Tables 2–4).

Table 2. The distribution of the values of the features: the first phonetic segments „be”—the word
“bec-zka”.

ZCR STE SMV RMS

Laryngectomized persons

average 431.67 251.13 0.034 0.181
min 169.00 113.40 0.016 0.126
max 621.00 376.75 0.055 0.234
SD 162.65 110.80 0.015 0.042
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Table 2. Cont.

ZCR STE SMV RMS

Healthy persons

average 209.75 606.79 0.083 0.286
min 80.00 374.83 0.064 0.252
max 269.00 854.15 0.107 0.327
SD 87.37 209.28 0.018 0.031

SD—standard deviation.

Table 3. The distribution of the values of the features: the second phonetic segments „cz”—the word
“beczka”.

ZCR STE SMV RMS

Laryngectomized persons

average 543.67 152.25 0.039 0.187
min 214.00 37.93 0.012 0.110
max 916.00 398.20 0.078 0.280
SD 274.73 128.06 0.028 0.071

Healthy persons

average 464.50 384.22 0.128 0.322
min 148.00 108.09 0.045 0.211
max 1311.00 908.49 0.350 0.591
SD 564.95 376.96 0.148 0.181

SD—standard deviation.

Table 4. The distribution of the values of the features: the third phonetic segments „ka”—the word
“beczka”.

ZCR STE SMV RMS

Laryngectomized persons

average 789.33 284.26 0.026 0.156
min 383.00 121.42 0.010 0.102
max 1217.00 625.81 0.043 0.207
SD 303.23 186.58 0.013 0.043

Healthy persons

average 339.25 766.80 0.073 0.268
min 306.00 571.78 0.053 0.231
max 378.00 983.39 0.095 0.309
SD 38.13 225.05 0.019 0.036

SD—standard deviation.

We decided to use the k-NN classifier and the cross-validation method to classify the
data. Cross-validation meant that the dataset was divided into K subsets. Then, in order,
each of these subsets was treated as a test set and the others as training sets. This analysis
was performed k times. The k results obtained were averaged to obtain a single result. The
choice of the parameter k depends on the size of the datasets and their type. For large
datasets, k = 3 is usually used to reduce the number of model adaptations. For smaller
datasets, larger values of k are usually used in order not to deplete the training set too
much, which could result in low model quality. In this case, k = 10 is most often used. Due
to the small population of people who had had laryngectomy surgery, we decided to use
k = 10. Both the chosen classifier and the cross-validation method have already been used
by the authors in previous studies related to audio analysis. Recognition results for all
phonetic segments of the laryngectomised people and the healthy people using the ZCR,
STE, SMV and RMS descriptors are summarized in the tables below (Tables 5–7).
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Table 5. Error matrix for the classification of the first phonetic segment. Used k-NN, cross-validation
method (k = 10). General recognition 93.75%.

a b Classified as
93.75 6.25 a = laryngectomized
6.25 93.75 b = healthy

Table 6. Error matrix for the classification of the second phonetic segment. Used k-NN, cross-
validation method (k = 10). General recognition 62.5%.

a b Classified as
56.25 43.75 a = laryngectomized
31.25 68.75 b = healthy

Table 7. Error matrix for the classification of the third phonetic segment. Used k-NN, cross-validation
method (k = 10). General recognition 87.5%.

a b Classified as
100 0 a = laryngectomized
25 75 b = healthy

Error matrices (also called confusion matrix) should be interpreted as:

1. Markings “a” and “b” as a group of examined people (laryngectomized and healthy);
2. Shaded cells in the table contain the correct classification. For example, in Table 5,

in1st row, 93.75% means the correct classification of samples from laryngectomised
people, and 6.25% means incorrect classification.

It should be noted that in this case, the laryngectomized people were recognized with
100% accuracy—with 75% accuracy in the recognize of healthy people. Due to the adopted
procedure for analyzing the frequency domain of phonetic segments (described in point
Section 2.4 “Frequency Domain Descriptors”), the features of Ir and Br (computed for each
spectrum of this matrix) were obtained from the spectral matrix for a single signal and
then their average value was calculated. This means that Ir and Br for a specific phonetic
segment is the average of the values of these features obtained from the obtained spectrums
(an example spectrum matrix is shown in Figure 6). The same approach (calculating
the value of the average feature from the spectral matrix) was also used in the analysis
of the MFCC coefficients. Below, the distribution values of the discussed features for
the phonetic segments of the word “package” have been shown (in Polish “in Polish”,
“paczka”) (Tables 8–10).

Table 8. The first phonetic segments „pa”—descriptor values—the word “paczka”.

Br Ir

Laryngectomized persons

average 115.645 3.79
min 96.463 3.67
max 129.080 3.83
SD 13.414 0.07

Healthy persons

average 124.615 3.84
min 118.576 3.84
max 132.847 3.85
SD 6.279 0.01

SD—standard deviation.
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Table 9. The second phonetic segments „cz”—descriptor values—the word “paczka”.

Br Ir

Laryngectomized persons

average 105.538 3.69
min 78.601 3.58
max 114.724 3.80
SD 15.127 0.10

Healthy persons

average 114.653 3.75
min 106.213 3.69
max 128.502 3.80
SD 12.089 0.06

SD—standard deviation.

Table 10. The third phonetic segments „ka”—descriptor values—the word “paczka”.

Br Ir

Laryngectomized persons

average 112.193 3.74
min 99.956 3.68
max 120.649 3.83
SD 7.982 0.06

Healthy persons

average 146.588 3.81
min 123.233 3.78
max 159.358 3.86
SD 15.969 0.03

SD—standard deviation.

Recognition results for all phonetic segments in laryngectomised people and the
healthy people using the Ir and Br descriptors are presented in the Tables 11–13.

Table 11. Error matrix for the classification of the first phonetic segment. Used k-NN, cross-validation
method (k = 10). General recognition 50%.

a b Classified as
43.75 56.25 a = laryngectomized
43.75 56.25 b = healthy

Table 12. Error matrix for the classification of the second phonetic segment. Used k-NN, cross-
validation method (k = 10). General recognition 43.75%.

a b Classified as
43.75 56.25 a = laryngectomized
56.25 43.75 b = healthy

Table 13. Error matrix for the classification of the third phonetic segment. Used k-NN, cross-validation
method (k = 10). General recognition 87.5%.

a b Classified as
100 0 a = laryngectomized
25 75 b = healthy
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Having analyzed the results, it can be concluded that the two-element vector of spectral
features (Ir and Br) did not provide satisfactory classification effects. This is especially
true of the second phonetic segment, where the correct diagnosis recognition was below
50% of the general classification. The satisfactory result was obtained only for the third
phonetic segment, which was identical to the vector of time-domain features (ZCR, STE,
SMV, RMS). In the second analytical approach, the values of the ZCR, STE, SMV, RMS,
Ir and Br features were calculated in each window (windowing is 20 ms) of the phonetic
segment. The distribution of each feature in each phonetic segment was observed. In this
case, the mean value of the descriptor from all spectra was not calculated. The examples of
the RMS features and Br features distribution for the first phonetic segment of the word
barrel (in Polish “beczka” in Polish, “beczka”) are shown on Figures 11 and 12.
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Taking into account the different length of individual phonetic segments, the number
of feature component vectors (i.e., the first n signal windows) was standardized:

1. For ZCR, STE, SMV, RMS descriptors:

• Seg. 1: 6 features;
• Seg. 2: 3 features;
• Seg. 3: 6 features;

2. For Ir and Br descriptors:

• Seg. 1: 10 features;
• Seg. 2: 4 features;
• Seg. 3: 12 features.

Moreover, a comparison of the local minimum and maximum distributions in each
window of the waveform of phonetic segments was made. The example of the local
minimum and local maximum distributions for the first phonetic segment of the word
“barrel” (in Polish “beczka” in Polish, “beczka”) is shown on the fin Figure 13.
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The table below (Table 14) presents the remaining results of the research carried out for
each phonetic segment with the use of the described feature vectors. All the classification
results presented in the table apply to k-NN and the cross-validation method for k = 10.

Table 14. Summary of the classification results.
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Seg 1 MFCC (19 coefficients) 79.42% 20.58 % 94.12% 5.88% 64.7% 35.29%
Seg 2 MFCC (19 coefficients) 87.5% 12.5% 87.5% 12.5% 87.5% 12.5%
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Table 14. Cont.
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Seg 3 MFCC (19 coefficients) 81.25% 18.75% 87.5% 12.5% 75% 25%
Seg 1 Cepstrum (40 features) 84.4% 15.6% 93.75% 6.25% 75% 25%
Seg 2 Cepstrum (40 features) 40.63% 59.37% 56.25% 43.75% 25% 75%
Seg 3 Cepstrum (40 features) 62.5% 37.5% 62.5% 37.5% 62.5% 37.5%

Seg 1 local maximum
distributions (6 features) 85.7% 14.3% 71.43% 28.57% 100% 0

Seg 2 local maximum
distributions (3 features) 64% 36% 61.54% 38.46% 66.66% 33.33%

Seg 3 local maximum
distributions (6 features) 81.25% 18.75% 62.5% 37.5% 100% 0

Seg 1 local minimum
distributions (6 features) 57.15% 42.85% 50% 50% 64.3% 35.7%

Seg 2 local minimum
distributions (3 features) 75% 25% 83.33% 16.66% 66.66% 33.33%

Seg 3 local minimum
distributions (6 features) 81.25% 18.75% 62.5% 37.5% 100% 0

Seg 1 ZCR features distributions
(6 features) 87.5% 12.5% 81.25% 18.75% 93.75 6.25%

Seg 2 ZCR features distributions
(3 features) 60% 40% 66.66% 33.33% 53.33% 46.66%

Seg 3 ZCR features distributions
(6 features) 81.25% 18.75% 87.5% 12.5% 75% 25%

Seg 1 STE features distributions
(6 features) 68.75% 31.25% 62.5% 37.5% 75% 25%

Seg 2 STE features distributions
(3 features) 70.83% 29.16% 83.33% 16.66% 58.33% 41.66%

Seg 3 STE features distributions
(6 features) 81.25% 18.75% 87.5% 12.5% 75% 25%

Seg 1 SMV features distributions
(6 features) 75% 25% 75% 25% 75% 25%

Seg 2 SMV features distributions
(3 features) 63.33% 36.66% 66.66% 33.33% 60% 40%

Seg 3 SMV features distributions
(6 features) 81.25% 18.25% 87.5% 12.5% 75% 25%

Seg 1 RMS features distributions
(6 features) 78.13% 21.87% 68.75% 31.25% 87.5% 12.5%

Seg 2 RMS features distributions
(3 features) 63.33% 36.66% 66.66% 33.33% 60% 40%

Seg 3 RMS features distributions
(6 features) 81.25% 18.75% 87.5% 12.5% 75% 25%

Seg 1 Br features distribution
(10 features) 60% 40% 60% 40% 60% 40%

Seg 2 Br features distribution
(4 features) 63.33% 36.66% 66.66% 33.33% 60% 40%

Seg 3 Br features distribution
(12 features) 68.75% 31.25% 100% 0% 62.5% 37.5%

Seg 1 Ir features distribution
(10 features) 62.5% 37.5% 37.5% 62.5% 87.5% 12.5%

Seg 2 Ir features distribution
(4 features) 43.75% 56.25% 37.5% 62.5% 50% 50%

Seg 3 Ir features distribution
(12 features) 62.5% 37.5% 50% 50% 75% 25%
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4. Discussion

This paper proposes a method for analyzing oesophageal speech based on the analysis
of phonetic segments determined by changes in loudness between successive sounds in the
speech signal, the centre of which differs in loudness level from the nearest neighbor in the
signal. As a result of the experiments, the most effective descriptors for parameterization of
oesophageal speech were identified. These are the MFCC coefficients, the local minimum
and maximum indications, and the ZCR. Furthermore, it was found that the most important
features of oesophageal speech occur mainly in the first phonetic segment. The table above
presents the results of the classification of the phonetic segments (Seg. 1, Seg. 2 and Seg. 3)
of the oesophageal and physiological speech. They provide a set of patterns that can be
used to recognize the features of oesophageal speech—especially implemented during
speech rehabilitation following laryngectomy surgery. To carry out the study, the WEKA
package was used, from which the k-NN classifier and the cross-validation method for
k = 10 were selected. Using the aforementioned classifier, all proposed featurevectors of
features were tested. Since k-NN was used in each case of classification, it is possible
to evaluate the effectiveness of the proposed feature vectors. It should be noted that the
presented classification is one of the possible solutions, because it is plausible to combine
the components of the features contained in the above feature vectors. However, other
classification algorithms and rules (e.g., random forest or decision tables) can be applied,
yet these will certainly provide different results. It was also shown that the effectiveness of
the proposed feature vectors was different: beginning from good effectiveness to very poor
effectiveness, and consequently did not provide any practical applications. Nonetheless,
this knowledge is not without significance, as it allows us to exclude the sense of using
ineffective descriptors for the classification of oesophageal speech in rehabilitated people.
Examples of very poor classification are the cepstrum descriptors used for the second
phonetic segment (general recognition 40.,63%) and the distribution of four Ir descriptors
used for the second phonetic segment (general recognition 43.75%). In general, it should be
pointed out that good classification efficiency is provided by the MFCC descriptors and
the distribution of local maximum and minimum (general recognition is above 80%). The
MFCC descriptors also showed a good efficiency in the general recognition of oesophageal
and physiological speech during whole- word analysis (without phonetic segmentation),
which has been presented in detail [6]. Moreover, the distribution of the ZCR descriptors
for the first phonetic segment provides an overall classification score of almost 90%, being a
very good result. It is worth noting that the analysis of the distribution of local minima and
maxima for individual recognition of physiological speech reached 100% in three cases.

The present study used a speech analysis approach (including syllable analysis of
oesophageal speech) according to [28] and developed methods previously described by [29],
which is in line with the main research trend. This allowed us to develop a group of tools
based on coefficient analysis in the time domain, frequency domain, cepstrum, and MFCC
to study the physical features of oesophageal speech in people after total laryngectomies,
and test them on the results of real healthy people, as well as the future development of
this group of technologies to support early diagnosis and even prevention, and to compare
our results with those of other Rothera research groups [28–32].

In view of the planned use of the research results to improve early diagnosis and con-
trol of the treatment, rehabilitation, and care process in a group of patients after laryngeal
surgery, our approach based on the analysis of phonetic segments of spoken oesophageal
speech words may be helpful in improving the speech-rehabilitation process. The results
of the study may be of relevance to [4,11]. Our solution is at various stages of research
and the final therapeutic version of our solution is being developed in collaboration with
specialists from a renowned centre: Bydgoszcz Laryngectome Association (Bydgoszcz,
Poland) [11,33,34], which will allow us to better tailor the solution to the demands of patient
group and its specificities.
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The large number of related features indicates the need and opportunity for advanced
analyses to extract the most important ones. Relevant findings include:

• Indication that the classification based on a temporal feature vector is more effective
than a frequency feature vector;

• Identifying the first phonetic segment as the part of the word under study with the
highest number of features is relevant for classification purposes—of all the phonetic
segments, the first segment showed the highest classification performance—especially
on the temporal feature index;

• High classification performance of the feature vector containing MFCC coefficients
(across all three segments, the average recognition performance is about 83%);

• High classification performance of the feature vector for one phonetic segment: about
84% overall recognition performance;

• High classification efficiency resulting from the analysis of local minima and maxima:
about 86% for the 1st phonetic segment and about 81% for the 3rd phonetic segment.

The results will allow for a future focus on the analysis of the aforementioned phonetic
segments and the search for new feature vectors.

We have taken the definition of the term ‘phonetic segment’ from the approach
in [35–38] as we develop tools to support this research, diagnostic and therapeutic method.
This will allow for a better understanding of the processes involved in speech rehabilitation
related to the teaching of replacement speech (oesophageal speech), where, in the absence
of the larynx, the role of the sound source is played by the oesophageal-mandibular folds,
i.e., where the source of the speech signal is the pseudo pharynx. The research conducted
will prepare the ground for the further development of this method, i.e., the analysis of
oesophageal speech, where the word under study is divided into phonetic segments before
feature extraction.

Directions for Further Research

Further analysis of oesophageal speech with a particular focus on defining such a
vector of features that will further support the process of speech rehabilitation is planned.
Therefore, it is necessary to obtain samples of oesophageal speech from people who par-
ticipate in each of the five levels of speech rehabilitation [10,35–37]. The control and
appropriate selection of descriptors will enable the definition of feature vectors that will be
appropriate for each stage of the implemented rehabilitation. Controlling the dynamics
of changes in descriptor values will make it possible to improve the speech-rehabilitation
process of people who have undergone laryngectomy [38,39]. The above assumptions are
the aim of further research on oesophageal speech.

Possibilities of contact with people deprived of the function of physiological speech are
also implemented using the “silent speech interface (SSI)”. This implementation consists in
the use of device-enabling voice communication without the use of sound. SSI systems are
a type of electronic lip-reading device. SSIs were created using ultrasound and an optical
camera to analyze tongue and lip movements. A very broad description and application of
SSI systems is included in [40], and our experience is enhanced by [41–50].

5. Conclusions

In general, it should be stated that by adopting the applied research methodology more
often, better classification results are obtained by analyzing Seg. 1 and Seg. 2, especially
for time-domain descriptors. Also, good classification results have been obtained using
the MFCC descriptors. The worst results of the research were recorded using the Br and Ir
descriptors.
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